ldd.c revision f441771b0ce9f9d6122d318ff8290cb1a2848f9d
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright (c) 1988 AT&T
* All Rights Reserved
*
*
* Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Print the list of shared objects required by a dynamic executable or shared
* object.
*
* usage is: ldd [-d | -r] [-D] [-c] [-e envar] [-i] [-f] [-L] [-l] [-p] [-s]
* [-U | -u] [-v] [-w] file(s)
*
* ldd opens the file and verifies the information in the elf header.
* If the file is a dynamic executable, we set up some environment variables
* and exec(2) the file. If the file is a shared object, we preload the
* file with a dynamic executable stub. The runtime linker (ld.so.1) actually
* provides the diagnostic output, according to the environment variables set.
*
* If neither -d nor -r is specified, we set only LD_TRACE_LOADED_OBJECTS_[AE].
* The runtime linker will print the pathnames of all dynamic objects it
* loads, and then exit. Note that we distiguish between ELF and AOUT objects
* when setting this environment variable - AOUT executables cause the mapping
* of sbcp, the dependencies of which the user isn't interested in.
*
* If -d or -r is specified, we also set LD_WARN=1; the runtime linker will
* perform its normal relocations and issue warning messages for unresolved
* references. It will then exit.
* If -r is specified, we set LD_BIND_NOW=1, so that the runtime linker
* will perform all relocations, otherwise (under -d) the runtime linker
* will not perform PLT (function) type relocations.
*
* If -c is specified we also set LD_NOCONFIG=1, thus disabling any
* configuration file use.
*
* If -D is specified we skip deferred dependency processing. By default,
* ldd loads all deferred dependencies. However, during normal process
* execution, deferred dependencies are only loaded when an explicit binding
* to an individual deferred reference is made. As no user code is executed
* under ldd, explicit references to deferred symbols can't be triggered.
*
* If -e is specified the associated environment variable is set for the
* child process that will produce ldd's diagnostics.
*
* If -i is specified, we set LD_INIT=1. The order of inititialization
* sections to be executed is printed. We also set LD_WARN=1.
*
* If -f is specified, we will run ldd as root on executables that have
* an unsercure runtime linker that does not live under the "/usr/lib"
* directory. By default we will not let this happen.
*
* If -l is specified it generates a warning for any auxiliary filter not found.
* Prior to 2.8 this forced any filters to load (all) their filtees. This is
* now the default, however missing auxiliary filters don't generate any error
* diagniostic. See also -L.
*
* If -L is specified we revert to lazy loading, thus any filtee or lazy
* dependency loading is deferred until relocations cause loading. Without
* this option we set LD_LOADFLTR=1, thus forcing any filters to load (all)
* their filtees, and LD_NOLAZYLOAD=1 thus forcing immediate processing of
* any lazy loaded dependencies.
*
* If -s is specified we also set LD_TRACE_SEARCH_PATH=1, thus enabling
* the runtime linker to indicate the search algorithm used.
*
* If -v is specified we also set LD_VERBOSE=1, thus enabling the runtime
* linker to indicate all object dependencies (not just the first object
* loaded) together with any versioning requirements.
*
* If -U or -u is specified unused dependencies are detected. -u causes
* LD_UNUSED=1 to be set, which causes dependencies that are unused within the
* process to be detected. -U causes LD_UNREF=1 to be set, which causes
* unreferenced objects, and unreferenced cyclic dependencies to be detected.
* These options assert that at least -d is set as relocation references are
* what determine an objects use.
*
* If -w is specified, no unresolved weak references are allowed. -w causes
* LD_NOUNRESWEAK=1 to be set. By default, an unresolved weak reference is
* allowed, and a "0" is written to the relocation offset. The -w option
* disables this default. Any weak references that can not be resolved result
* in relocation error messages. This option has no use without -r or -d.
*
* If the -p option is specified, no unresolved PARENT or EXTERN references are
* allowed. -p causes LD_NOPAREXT=1 to be set. By default, PARENT and EXTERN
* references, which have been explicitly assigned via a mapfile when a shared
* object was built, imply that a caller will provide the symbols, and hence
* these are not reported as relocation errors. Note, the -p option is asserted
* by default when either the -r or -d options are used to inspect a dynamic
* executable. This option has no use with a shared object without -r or -d.
*/
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <_libelf.h>
#include <stdlib.h>
#include <unistd.h>
#include <wait.h>
#include <locale.h>
#include <errno.h>
#include <signal.h>
#include "machdep.h"
#include "sgs.h"
#include "conv.h"
#include "a.out.h"
#include "msg.h"
static int elf_check(int, char *, char *, Elf *, int);
static int aout_check(int, char *, char *, int, int);
static int run(int, char *, char *, const char *, int);
/*
* Define all environment variable strings. The character following the "="
* will be written to, to disable or enable the associated feature.
*/
static char bind[] = "LD_BIND_NOW= ",
load_elf[] = "LD_TRACE_LOADED_OBJECTS_E= ",
load_aout[] = "LD_TRACE_LOADED_OBJECTS_A= ",
path[] = "LD_TRACE_SEARCH_PATHS= ",
verb[] = "LD_VERBOSE= ",
warn[] = "LD_WARN= ",
conf[] = "LD_NOCONFIG= ",
fltr[] = "LD_LOADFLTR= ",
lazy[] = "LD_NOLAZYLOAD=1",
init[] = "LD_INIT= ",
uref[] = "LD_UNREF= ",
used[] = "LD_UNUSED= ",
weak[] = "LD_NOUNRESWEAK= ",
nope[] = "LD_NOPAREXT= ",
defr[] = "LD_DEFERRED= ";
static char *load;
static const char *prefile_32, *prefile_64, *prefile;
static APlist *eopts = NULL;
int
main(int argc, char **argv, char **envp)
{
char *str, *cname = argv[0];
Elf *elf;
int cflag = 0, dflag = 0, fflag = 0, iflag = 0, Lflag = 0;
int lflag = 0, rflag = 0, sflag = 0, Uflag = 0, uflag = 0;
int Dflag = 0, pflag = 0, vflag = 0, wflag = 0;
int nfile, var, error = 0;
Aliste idx;
/*
* If we're on a 64-bit kernel, try to exec a full 64-bit version of
* the binary. If successful, conv_check_native() won't return.
*
* This is done to ensure that ldd can handle objects >2GB.
* ldd uses libelf, which is not large file capable. The
* 64-bit ldd can handle any sized object.
*/
(void) conv_check_native(argv, envp);
/*
* Establish locale.
*/
(void) setlocale(LC_MESSAGES, MSG_ORIG(MSG_STR_EMPTY));
(void) textdomain(MSG_ORIG(MSG_SUNW_OST_SGS));
/*
* verify command line syntax and process arguments
*/
opterr = 0; /* disable getopt error mesg */
while ((var = getopt(argc, argv, MSG_ORIG(MSG_STR_GETOPT))) != EOF) {
switch (var) {
case 'c' : /* enable config search */
cflag = 1;
break;
case 'D' : /* skip deferred dependencies */
Dflag = 1;
break;
case 'd' : /* perform data relocations */
dflag = 1;
if (rflag)
error++;
break;
case 'e' :
if (aplist_append(&eopts, optarg, 10) == NULL) {
(void) fprintf(stderr, MSG_INTL(MSG_SYS_MALLOC),
cname);
exit(1);
}
break;
case 'f' :
fflag = 1;
break;
case 'L' :
Lflag = 1;
break;
case 'l' :
lflag = 1;
break;
case 'i' : /* print the order of .init */
iflag = 1;
break;
case 'p' :
pflag = 1; /* expose unreferenced */
break; /* parent or externals */
case 'r' : /* perform all relocations */
rflag = 1;
if (dflag)
error++;
break;
case 's' : /* enable search path output */
sflag = 1;
break;
case 'U' : /* list unreferenced */
Uflag = 1; /* dependencies */
if (uflag)
error++;
break;
case 'u' : /* list unused dependencies */
uflag = 1;
if (Uflag)
error++;
break;
case 'v' : /* enable verbose output */
vflag = 1;
break;
case 'w' : /* expose unresolved weak */
wflag = 1; /* references */
break;
default :
error++;
break;
}
if (error)
break;
}
if (error) {
(void) fprintf(stderr, MSG_INTL(MSG_ARG_USAGE), cname);
exit(1);
}
/*
* Determine if any of the LD_PRELOAD family is already set in the
* environment, if so we'll continue to analyze each object with the
* appropriate setting.
*/
if (((prefile_32 = getenv(MSG_ORIG(MSG_LD_PRELOAD_32))) == NULL) ||
(*prefile_32 == '\0')) {
prefile_32 = MSG_ORIG(MSG_STR_EMPTY);
}
if (((prefile_64 = getenv(MSG_ORIG(MSG_LD_PRELOAD_64))) == NULL) ||
(*prefile_64 == '\0')) {
prefile_64 = MSG_ORIG(MSG_STR_EMPTY);
}
if (((prefile = getenv(MSG_ORIG(MSG_LD_PRELOAD))) == NULL) ||
(*prefile == '\0')) {
prefile = MSG_ORIG(MSG_STR_EMPTY);
}
/*
* Determine if any environment requests are for the LD_PRELOAD family,
* and if so override any environment settings we've established above.
*/
for (APLIST_TRAVERSE(eopts, idx, str)) {
if ((strncmp(str, MSG_ORIG(MSG_LD_PRELOAD_32),
MSG_LD_PRELOAD_32_SIZE)) == 0) {
str += MSG_LD_PRELOAD_32_SIZE;
if ((*str++ == '=') && (*str != '\0'))
prefile_32 = str;
continue;
}
if ((strncmp(str, MSG_ORIG(MSG_LD_PRELOAD_64),
MSG_LD_PRELOAD_64_SIZE)) == 0) {
str += MSG_LD_PRELOAD_64_SIZE;
if ((*str++ == '=') && (*str != '\0'))
prefile_64 = str;
continue;
}
if ((strncmp(str, MSG_ORIG(MSG_LD_PRELOAD),
MSG_LD_PRELOAD_SIZE)) == 0) {
str += MSG_LD_PRELOAD_SIZE;
if ((*str++ == '=') && (*str != '\0'))
prefile = str;
continue;
}
}
/*
* Set the appropriate relocation environment variables (Note unsetting
* the environment variables is done just in case the user already
* has these in their environment ... sort of thing the test folks
* would do :-)
*/
warn[sizeof (warn) - 2] = (dflag || rflag || Uflag || uflag) ? '1' :
'\0';
bind[sizeof (bind) - 2] = (rflag) ? '1' : '\0';
path[sizeof (path) - 2] = (sflag) ? '1' : '\0';
verb[sizeof (verb) - 2] = (vflag) ? '1' : '\0';
fltr[sizeof (fltr) - 2] = (Lflag) ? '\0' : (lflag) ? '2' : '1';
init[sizeof (init) - 2] = (iflag) ? '1' : '\0';
conf[sizeof (conf) - 2] = (cflag) ? '1' : '\0';
lazy[sizeof (lazy) - 2] = (Lflag) ? '\0' : '1';
uref[sizeof (uref) - 2] = (Uflag) ? '1' : '\0';
used[sizeof (used) - 2] = (uflag) ? '1' : '\0';
weak[sizeof (weak) - 2] = (wflag) ? '1' : '\0';
nope[sizeof (nope) - 2] = (pflag) ? '1' : '\0';
defr[sizeof (defr) - 2] = (Dflag) ? '\0' : '1';
/*
* coordinate libelf's version information
*/
if (elf_version(EV_CURRENT) == EV_NONE) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_LIBELF), cname,
EV_CURRENT);
exit(1);
}
/*
* Loop through remaining arguments. Note that from here on there
* are no exit conditions so that we can process a list of files,
* any error condition is retained for a final exit status.
*/
nfile = argc - optind;
for (; optind < argc; optind++) {
char *fname = argv[optind];
/*
* Open file (do this before checking access so that we can
* provide the user with better diagnostics).
*/
if ((var = open(fname, O_RDONLY)) == -1) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN), cname,
fname, strerror(err));
error = 1;
continue;
}
/*
* Get the files elf descriptor and process it as an elf or
* a.out (4.x) file.
*/
elf = elf_begin(var, ELF_C_READ, (Elf *)0);
switch (elf_kind(elf)) {
case ELF_K_AR :
(void) fprintf(stderr, MSG_INTL(MSG_USP_NODYNORSO),
cname, fname);
error = 1;
break;
case ELF_K_COFF:
(void) fprintf(stderr, MSG_INTL(MSG_USP_UNKNOWN),
cname, fname);
error = 1;
break;
case ELF_K_ELF:
if (elf_check(nfile, fname, cname, elf, fflag) != NULL)
error = 1;
break;
default:
/*
* This is either an unknown file or an aout format
*/
if (aout_check(nfile, fname, cname, var, fflag) != NULL)
error = 1;
break;
}
(void) elf_end(elf);
(void) close(var);
}
return (error);
}
static int
elf_check(int nfile, char *fname, char *cname, Elf *elf, int fflag)
{
Conv_inv_buf_t inv_buf;
GElf_Ehdr ehdr;
GElf_Phdr phdr;
int dynamic = 0, interp = 0, cnt, class;
/*
* verify information in file header
*/
if (gelf_getehdr(elf, &ehdr) == NULL) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_GETEHDR),
cname, fname, elf_errmsg(-1));
return (1);
}
/*
* Compatible machine
*/
if ((ehdr.e_machine != M_MACH_32) && (ehdr.e_machine != M_MACH_64) &&
(ehdr.e_machine != M_MACHPLUS)) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_MACHTYPE), cname, fname,
conv_ehdr_mach(ehdr.e_machine, 0, &inv_buf));
return (1);
}
/*
* Compatible encoding (byte order)
*/
if (ehdr.e_ident[EI_DATA] != M_DATA) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_DATA), cname, fname,
conv_ehdr_data(ehdr.e_ident[EI_DATA], 0, &inv_buf));
return (1);
}
/*
* Compatible class
*/
switch (class = ehdr.e_ident[EI_CLASS]) {
case ELFCLASS32:
/*
* If M_MACH is not the same thing as M_MACHPLUS and this
* is an M_MACHPLUS object, then the corresponding header
* flag must be set.
*/
if ((ehdr.e_machine != M_MACH) &&
((ehdr.e_flags & M_FLAGSPLUS) == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_MACHFLAGS),
cname, fname);
return (1);
}
break;
case ELFCLASS64:
/* Requires 64-bit kernel */
if (conv_sys_eclass() == ELFCLASS32) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_KCLASS32),
cname, fname, conv_ehdr_class(class, 0, &inv_buf));
return (1);
}
break;
default:
(void) fprintf(stderr, MSG_INTL(MSG_ELF_CLASS), cname, fname,
conv_ehdr_class(class, 0, &inv_buf));
return (1);
}
/*
* Object type
*/
if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN) &&
(ehdr.e_type != ET_REL)) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_BADMAGIC),
cname, fname);
return (1);
}
/*
* Check that the file is executable. Dynamic executables must be
* executable to be exec'ed. Shared objects need not be executable to
* be mapped with a dynamic executable, however, by convention they're
* supposed to be executable.
*/
if (access(fname, X_OK) != 0) {
if (ehdr.e_type == ET_EXEC) {
(void) fprintf(stderr, MSG_INTL(MSG_USP_NOTEXEC_1),
cname, fname);
return (1);
}
(void) fprintf(stderr, MSG_INTL(MSG_USP_NOTEXEC_2), cname,
fname);
}
/*
* Determine whether we have a dynamic section or interpretor.
*/
for (cnt = 0; cnt < (int)ehdr.e_phnum; cnt++) {
if (dynamic && interp)
break;
if (gelf_getphdr(elf, cnt, &phdr) == NULL) {
(void) fprintf(stderr, MSG_INTL(MSG_ELF_GETPHDR),
cname, fname, elf_errmsg(-1));
return (1);
}
if (phdr.p_type == PT_DYNAMIC) {
dynamic = 1;
continue;
}
if (phdr.p_type != PT_INTERP)
continue;
interp = 1;
/*
* If fflag is not set, and euid == root, and the interpreter
* does not live under /lib, /usr/lib or /etc/lib then don't
* allow ldd to execute the image. This prevents someone
* creating a `trojan horse' by substituting their own
* interpreter that could preform privileged operations
* when ldd is against it.
*/
if ((fflag == 0) && (geteuid() == 0) &&
(strcmp(fname, conv_lddstub(class)) != 0)) {
char *interpreter;
/*
* Does the interpreter live under a trusted directory.
*/
interpreter = elf_getident(elf, 0) + phdr.p_offset;
if ((strncmp(interpreter, MSG_ORIG(MSG_PTH_USRLIB),
MSG_PTH_USRLIB_SIZE) != 0) &&
(strncmp(interpreter, MSG_ORIG(MSG_PTH_LIB),
MSG_PTH_LIB_SIZE) != 0) &&
(strncmp(interpreter, MSG_ORIG(MSG_PTH_ETCLIB),
MSG_PTH_ETCLIB_SIZE) != 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_USP_ELFINS),
cname, fname, interpreter);
return (1);
}
}
}
/*
* Catch the case of a static executable (ie, an ET_EXEC that has a set
* of program headers but no PT_DYNAMIC).
*/
if (ehdr.e_phnum && !dynamic) {
(void) fprintf(stderr, MSG_INTL(MSG_USP_NODYNORSO), cname,
fname);
return (1);
}
/*
* If there is a dynamic section, then check for the DF_1_NOHDR
* flag, and bail if it is present. Such objects are created using
* a mapfile option (?N in the version 1 syntax, or HDR_NOALLOC
* otherwise). The ELF header and program headers are
* not mapped as part of the first segment, and virtual addresses
* are computed without them. If ldd tries to interpret such
* a file, it will become confused and generate bad output or
* crash. Such objects are always special purpose files (like an OS
* kernel) --- files for which the ldd operation doesn't make sense.
*/
if (dynamic && (_gelf_getdyndtflags_1(elf) & DF_1_NOHDR)) {
(void) fprintf(stderr, MSG_INTL(MSG_USP_NOHDR), cname,
fname);
return (1);
}
load = load_elf;
/*
* Run the required program (shared and relocatable objects require the
* use of lddstub).
*/
if ((ehdr.e_type == ET_EXEC) && interp)
return (run(nfile, cname, fname, (const char *)fname, class));
else
return (run(nfile, cname, fname, conv_lddstub(class), class));
}
static int
aout_check(int nfile, char *fname, char *cname, int fd, int fflag)
{
struct exec32 aout;
int err;
if (lseek(fd, 0, SEEK_SET) != 0) {
err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_SYS_LSEEK), cname, fname,
strerror(err));
return (1);
}
if (read(fd, (char *)&aout, sizeof (aout)) != sizeof (aout)) {
err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_SYS_READ), cname, fname,
strerror(err));
return (1);
}
if (aout.a_machtype != M_SPARC) {
(void) fprintf(stderr, MSG_INTL(MSG_USP_UNKNOWN), cname, fname);
return (1);
}
if (N_BADMAG(aout) || !aout.a_dynamic) {
(void) fprintf(stderr, MSG_INTL(MSG_USP_NODYNORSO), cname,
fname);
return (1);
}
if (!fflag && (geteuid() == 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_USP_AOUTINS), cname, fname);
return (1);
}
/*
* Run the required program.
*/
if ((aout.a_magic == ZMAGIC) && (aout.a_entry <= sizeof (aout))) {
load = load_elf;
return (run(nfile, cname, fname, conv_lddstub(ELFCLASS32),
ELFCLASS32));
} else {
load = load_aout;
return (run(nfile, cname, fname, (const char *)fname,
ELFCLASS32));
}
}
/*
* Run the required program, setting the preload and trace environment
* variables accordingly.
*/
static int
run(int nfile, char *cname, char *fname, const char *ename, int class)
{
const char *preload = 0;
int pid, status;
if ((pid = fork()) == -1) {
int err = errno;
(void) fprintf(stderr, MSG_INTL(MSG_SYS_FORK), cname,
strerror(err));
return (1);
}
if (pid) { /* parent */
while (wait(&status) != pid)
;
if (WIFSIGNALED(status) && ((WSIGMASK & status) != SIGPIPE)) {
(void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC), cname,
fname);
(void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC_SIG),
(WSIGMASK & status), ((status & WCOREFLG) ?
MSG_INTL(MSG_SYS_EXEC_CORE) :
MSG_ORIG(MSG_STR_EMPTY)));
status = 1;
} else if (WHIBYTE(status)) {
(void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC), cname,
fname);
(void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC_STAT),
WHIBYTE(status));
status = 1;
}
} else { /* child */
Aliste idx;
char *str;
size_t size;
/*
* When using ldd(1) to analyze a shared object we preload the
* shared object with lddstub. Any additional preload
* requirements are added after the object being analyzed, this
* allows us to skip the first object but produce diagnostics
* for each other preloaded object.
*/
if (fname != ename) {
char *str;
const char *files = prefile;
const char *format = MSG_ORIG(MSG_STR_FMT1);
for (str = fname; *str; str++)
if (*str == '/') {
format = MSG_ORIG(MSG_STR_FMT2);
break;
}
preload = MSG_ORIG(MSG_LD_PRELOAD);
/*
* Determine which preload files and preload environment
* variable to use.
*/
if (class == ELFCLASS64) {
if (prefile_64 != MSG_ORIG(MSG_STR_EMPTY)) {
files = prefile_64;
preload = MSG_ORIG(MSG_LD_PRELOAD_64);
}
} else {
if (prefile_32 != MSG_ORIG(MSG_STR_EMPTY)) {
files = prefile_32;
preload = MSG_ORIG(MSG_LD_PRELOAD_32);
}
}
if ((str = (char *)malloc(strlen(preload) +
strlen(fname) + strlen(files) + 5)) == 0) {
(void) fprintf(stderr, MSG_INTL(MSG_SYS_MALLOC),
cname);
exit(1);
}
(void) sprintf(str, format, preload, fname, files);
if (putenv(str) != 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ENV_FAILED),
cname);
exit(1);
}
/*
* The pointer "load" has be assigned to load_elf[] or
* load_aout[]. Use the size of load_elf[] as the size
* of load_aout[] is the same.
*/
load[sizeof (load_elf) - 2] = '2';
} else
load[sizeof (load_elf) - 2] = '1';
/*
* Establish new environment variables to affect the child
* process.
*/
if ((putenv(warn) != 0) || (putenv(bind) != 0) ||
(putenv(path) != 0) || (putenv(verb) != 0) ||
(putenv(fltr) != 0) || (putenv(conf) != 0) ||
(putenv(init) != 0) || (putenv(lazy) != 0) ||
(putenv(uref) != 0) || (putenv(used) != 0) ||
(putenv(weak) != 0) || (putenv(load) != 0) ||
(putenv(nope) != 0) || (putenv(defr) != 0)) {
(void) fprintf(stderr, MSG_INTL(MSG_ENV_FAILED), cname);
exit(1);
}
/*
* Establish explicit environment requires (but don't override
* any preload request established to process a shared object).
*/
size = 0;
for (APLIST_TRAVERSE(eopts, idx, str)) {
if (preload) {
if (size == 0)
size = strlen(preload);
if ((strncmp(preload, str, size) == 0) &&
(str[size] == '=')) {
continue;
}
}
if (putenv(str) != 0) {
(void) fprintf(stderr, MSG_INTL(MSG_ENV_FAILED),
cname);
exit(1);
}
}
/*
* Execute the object and let ld.so.1 do the rest.
*/
if (nfile > 1)
(void) printf(MSG_ORIG(MSG_STR_FMT3), fname);
(void) fflush(stdout);
if ((execl(ename, ename, (char *)0)) == -1) {
(void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC), cname,
fname);
perror(ename);
_exit(0);
/* NOTREACHED */
}
}
return (status);
}
const char *
_ldd_msg(Msg mid)
{
return (gettext(MSG_ORIG(mid)));
}