psvcpolicy.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This file contains routines to support the Platform Services Plugin
* These routines implement the platform independent environment monitoring
* and control policies that may be invoked by a daemon thread within
* the plugin
*/
#include <syslog.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <libintl.h>
#include <errno.h>
#include <fcntl.h>
#include <strings.h>
#include <libintl.h>
#include <sys/types.h>
#include <picl.h>
#include <picltree.h>
#include <sys/types.h>
#include <string.h>
#include <psvc_objects.h>
#define LOWTEMP_CRITICAL_MSG \
gettext("CRITICAL : LOW TEMPERATURE DETECTED %d, %s")
#define LOWTEMP_WARNING_MSG \
gettext("WARNING : LOW TEMPERATURE DETECTED %d, %s")
#define HIGHTEMP_CRITICAL_MSG \
gettext("CRITICAL : HIGH TEMPERATURE DETECTED %d, %s")
#define HIGHTEMP_WARNING_MSG \
gettext("WARNING : HIGH TEMPERATURE DETECTED %d, %s")
#define DEVICE_INSERTED_MSG gettext("Device %s inserted")
#define DEVICE_REMOVED_MSG gettext("Device %s removed")
#define DEVICE_FAILURE_MSG \
gettext("CRITICAL: Device %s failure detected by sensor %s\n")
#define DEVICE_OK_MSG gettext("Device %s OK")
#define SECONDARY_FAN_FAIL_MSG gettext("Secondary fan failure, device %s")
#define KEYSWITCH_POS_READ_FAILED_MSG \
gettext("Keyswitch position could not be determined")
#define KEYSWITCH_POS_CHANGED_MSG gettext("Keyswitch position changed to %s")
#define GET_PRESENCE_FAILED_MSG \
gettext("Failed to get presence attribute, id = %s, errno = %d\n")
#define GET_SENSOR_FAILED_MSG \
gettext("Failed to get sensor value, id = %s, errno = %d\n")
#define PS_OVER_CURRENT_MSG \
gettext("WARNING: Power Supply overcurrent detected for %s\n")
#define SET_LED_FAILED_MSG \
gettext("Failed to set LED state, id = %s, errno = %d\n")
#define SET_FANSPEED_FAILED_MSG \
gettext("Failed to set fan speed, id = %s, errno = %d\n")
#define FAN_MISSING_MSG \
gettext("WARNING: Fan missing, id = %s\n")
#define TEMP_SENSOR_FAULT \
gettext("WARNING: Temperature Sensor %s returning faulty temp\n")
#define TEMP_OFFSET 17
static char *shutdown_string = "shutdown -y -g 60 -i 5 \"OVERTEMP condition\"";
static int cpus_online = 0;
typedef struct seg_desc {
int32_t segdesc;
int16_t segoffset;
int16_t seglength;
} seg_desc_t;
static int32_t threshold_names[] = {
PSVC_HW_LO_SHUT_ATTR,
PSVC_LO_SHUT_ATTR,
PSVC_LO_WARN_ATTR,
PSVC_NOT_USED, /* LOW MODE which is not used */
PSVC_OPTIMAL_TEMP_ATTR,
PSVC_HI_WARN_ATTR,
PSVC_HI_SHUT_ATTR,
PSVC_HW_HI_SHUT_ATTR
};
int32_t
psvc_update_thresholds_0(psvc_opaque_t hdlp, char *id)
{
int32_t status = PSVC_SUCCESS;
fru_info_t fru_data;
char *fru, seg_name[2];
int8_t seg_count, temp_array[8];
int32_t match_count, i, j, seg_desc_start = 0x1806, temp_address;
int32_t seg_found, temp;
boolean_t present;
seg_desc_t segment;
status = psvc_get_attr(hdlp, id, PSVC_PRESENCE_ATTR, &present);
if ((status != PSVC_SUCCESS) || (present != PSVC_PRESENT))
return (status);
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_MATCHES_ATTR, &match_count,
PSVC_FRU);
if (status == PSVC_FAILURE)
return (status);
for (i = 0; i < match_count; i++) {
seg_found = 0;
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR,
&fru, PSVC_FRU, i);
if (status != PSVC_SUCCESS)
return (status);
fru_data.buf_start = 0x1805;
fru_data.buf = (char *)&seg_count;
fru_data.read_size = 1;
status = psvc_get_attr(hdlp, fru, PSVC_FRU_INFO_ATTR,
&fru_data);
if (status != PSVC_SUCCESS) {
return (status);
}
for (j = 0; (j < seg_count) && (!seg_found); j++) {
fru_data.buf_start = seg_desc_start;
fru_data.buf = seg_name;
fru_data.read_size = 2;
status = psvc_get_attr(hdlp, fru, PSVC_FRU_INFO_ATTR,
&fru_data);
seg_desc_start = seg_desc_start + 2;
fru_data.buf_start = seg_desc_start;
fru_data.buf = (char *)&segment;
fru_data.read_size = sizeof (seg_desc_t);
status = psvc_get_attr(hdlp, fru, PSVC_FRU_INFO_ATTR,
&fru_data);
if (status != PSVC_SUCCESS) {
syslog(LOG_ERR,
"Failed psvc_get_attr for FRU info\n");
return (status);
}
seg_desc_start = seg_desc_start + sizeof (seg_desc_t);
if (memcmp(seg_name, "SC", 2) == 0)
seg_found = 1;
}
if (seg_found) {
temp_address = segment.segoffset + TEMP_OFFSET;
fru_data.buf_start = temp_address;
fru_data.buf = (char *)&temp_array;
fru_data.read_size = sizeof (temp_array);
status = psvc_get_attr(hdlp, fru, PSVC_FRU_INFO_ATTR,
&fru_data);
if (status != PSVC_SUCCESS) {
syslog(LOG_ERR,
"Failed psvc_get_attr for FRU info\n");
return (status);
} else {
for (j = 0; j < sizeof (temp_array); j++) {
if (threshold_names[j] == PSVC_NOT_USED)
continue;
temp = temp_array[j];
status = psvc_set_attr(hdlp, id,
threshold_names[j], &temp);
if (status != PSVC_SUCCESS) {
return (status);
}
}
}
} else {
syslog(LOG_ERR, "No FRU Information for %s"
" using default temperatures\n", id);
}
}
return (status);
}
#define MAX_TEMP_SENSORS 256
static int32_t
check_temp(psvc_opaque_t hdlp, char *id, int32_t silent)
{
int32_t lo_warn, hi_warn, lo_shut, hi_shut;
uint64_t features;
int32_t temp;
char previous_state[32];
char led_state[32];
char state[32];
char fault[32];
char label[32];
boolean_t pr;
int32_t status = PSVC_SUCCESS;
int8_t fail = 0;
static int8_t threshold_low_shut[MAX_TEMP_SENSORS] = {0};
static int8_t threshold_high_shut[MAX_TEMP_SENSORS] = {0};
static int8_t threshold_low_warn[MAX_TEMP_SENSORS] = {0};
static int8_t threshold_high_warn[MAX_TEMP_SENSORS] = {0};
int32_t instance;
status = psvc_get_attr(hdlp, id, PSVC_INSTANCE_ATTR, &instance);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_PRESENCE_ATTR, &pr);
if ((status != PSVC_SUCCESS) || (pr != PSVC_PRESENT)) {
return (status);
}
status = psvc_get_attr(hdlp, id, PSVC_STATE_ATTR, state);
if (status == PSVC_FAILURE)
return (status);
if ((strcmp(state, PSVC_HOTPLUGGED) == 0)) {
return (PSVC_SUCCESS);
}
status = psvc_get_attr(hdlp, id, PSVC_FEATURES_ATTR, &features);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_LO_WARN_ATTR, &lo_warn);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_LO_SHUT_ATTR, &lo_shut);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_HI_WARN_ATTR, &hi_warn);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_HI_SHUT_ATTR, &hi_shut);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_SENSOR_VALUE_ATTR, &temp);
if (status != PSVC_SUCCESS) {
return (status);
}
/*
* The following code is to check to see if the temp sensor is
* returning a faulty reading due to it either being bad or the
* CPU being powered off for some reason. Is so we will alert the user
* and just label the sensor bad but not the WHOLE CPU module.
*/
if ((temp == 127) && (strcmp(state, PSVC_ERROR) != 0)) {
status = psvc_set_attr(hdlp, id, PSVC_STATE_ATTR, PSVC_ERROR);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_set_attr(hdlp, id, PSVC_FAULTID_ATTR,
PSVC_GEN_FAULT);
if (status != PSVC_SUCCESS)
return (status);
syslog(LOG_ERR, TEMP_SENSOR_FAULT, id);
return (status);
}
status = psvc_get_attr(hdlp, id, PSVC_LABEL_ATTR, label);
if (status != PSVC_SUCCESS)
return (status);
/*
* if any of the four temperature states (lo_shut, lo_warn,
* hi_shut, hi_warn) is detected we will not take an action
* until PSVC_THRESHOLD_COUNTER (i.e. 2) similar back-to-back readings
* take place.
*/
if ((features & PSVC_LOW_SHUT) && temp < lo_shut) {
/*
* once we are in one state, clear all the
* counters for the other three states since
* back-to-back readings of these other three
* states could not happen anymore.
*/
threshold_low_warn[instance] = 0;
threshold_high_shut[instance] = 0;
threshold_high_warn[instance] = 0;
threshold_low_shut[instance]++;
if (threshold_low_shut[instance] == PSVC_THRESHOLD_COUNTER) {
threshold_low_shut[instance] = 0;
fail = 1;
strcpy(state, PSVC_ERROR);
strcpy(fault, PSVC_TEMP_LO_SHUT);
strcpy(led_state, PSVC_LED_ON);
if (silent == 0)
syslog(LOG_ERR, LOWTEMP_CRITICAL_MSG,
temp, label);
} else { /* Threshold for showing error not reached */
return (PSVC_SUCCESS);
}
} else if ((features & PSVC_LOW_WARN) && temp < lo_warn) {
threshold_low_shut[instance] = 0;
threshold_high_shut[instance] = 0;
threshold_high_warn[instance] = 0;
threshold_low_warn[instance]++;
if (threshold_low_warn[instance] == PSVC_THRESHOLD_COUNTER) {
threshold_low_warn[instance] = 0;
fail = 1;
strcpy(state, PSVC_ERROR);
strcpy(fault, PSVC_TEMP_LO_WARN);
strcpy(led_state, PSVC_LED_ON);
if (silent == 0)
syslog(LOG_ERR, LOWTEMP_WARNING_MSG,
temp, label);
} else { /* Threshold for showing error not reached */
return (PSVC_SUCCESS);
}
} else if ((features & PSVC_HIGH_SHUT) && temp > hi_shut) {
threshold_low_warn[instance] = 0;
threshold_low_shut[instance] = 0;
threshold_high_warn[instance] = 0;
threshold_high_shut[instance]++;
if (threshold_high_shut[instance] == PSVC_THRESHOLD_COUNTER) {
threshold_high_shut[instance] = 0;
fail = 1;
strcpy(state, PSVC_ERROR);
strcpy(fault, PSVC_TEMP_HI_SHUT);
strcpy(led_state, PSVC_LED_ON);
if (silent == 0)
syslog(LOG_ERR, HIGHTEMP_CRITICAL_MSG,
temp, label);
} else { /* Threshold for showing error not reached */
return (PSVC_SUCCESS);
}
} else if ((features & PSVC_HIGH_WARN) && temp > hi_warn) {
threshold_low_warn[instance] = 0;
threshold_low_shut[instance] = 0;
threshold_high_shut[instance] = 0;
threshold_high_warn[instance]++;
if (threshold_high_warn[instance] == PSVC_THRESHOLD_COUNTER) {
threshold_high_warn[instance] = 0;
fail = 1;
strcpy(state, PSVC_ERROR);
strcpy(fault, PSVC_TEMP_HI_WARN);
strcpy(led_state, PSVC_LED_ON);
if (silent == 0)
syslog(LOG_ERR, HIGHTEMP_WARNING_MSG,
temp, label);
} else { /* Threshold for showing error not reached */
return (PSVC_SUCCESS);
}
}
/*
* If we reached this point then that means that we are either
* okay, or we have showed error PSVC_THRESHOLD_COUNTER times.
*/
if (fail != 1) {
/* within limits */
strcpy(state, PSVC_OK);
strcpy(fault, PSVC_NO_FAULT);
strcpy(led_state, PSVC_LED_OFF);
}
status = psvc_set_attr(hdlp, id, PSVC_STATE_ATTR, state);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_set_attr(hdlp, id, PSVC_FAULTID_ATTR, fault);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_PREV_STATE_ATTR,
previous_state);
if (status != PSVC_SUCCESS)
return (status);
if (strcmp(previous_state, state) != 0) {
char *led_id;
int32_t led_count;
int32_t i;
/* change state of fault LEDs */
psvc_get_attr(hdlp, id, PSVC_ASSOC_MATCHES_ATTR, &led_count,
PSVC_TS_OVERTEMP_LED);
for (i = 0; i < led_count; ++i) {
status = psvc_get_attr(hdlp, id,
PSVC_ASSOC_ID_ATTR, &led_id,
PSVC_TS_OVERTEMP_LED, i);
if (status == PSVC_FAILURE)
return (status);
status = psvc_set_attr(hdlp, led_id,
PSVC_LED_STATE_ATTR, led_state);
if (status == PSVC_FAILURE)
return (status);
}
}
return (PSVC_SUCCESS);
}
int32_t
psvc_check_temperature_policy_0(psvc_opaque_t hdlp, char *id)
{
return (check_temp(hdlp, id, 0));
}
int32_t
psvc_check_temperature_silent_policy_0(psvc_opaque_t hdlp, char *id)
{
return (check_temp(hdlp, id, 1));
}
int32_t
psvc_fan_enable_disable_policy_0(psvc_opaque_t hdlp, char *id)
{
char state[32], previous_state[32];
char *backup_fan;
int32_t status = PSVC_SUCCESS;
uint64_t features;
char label[32];
boolean_t presence;
boolean_t enable;
status = psvc_get_attr(hdlp, id, PSVC_FEATURES_ATTR, &features);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_PRESENCE_ATTR, &presence);
if (status != PSVC_SUCCESS)
return (status);
if (presence == PSVC_ABSENT) {
status = psvc_get_attr(hdlp, id, PSVC_LABEL_ATTR, label);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_ENABLE_ATTR, &enable);
if (status != PSVC_SUCCESS)
return (status);
if (features & PSVC_DEV_PRIMARY) {
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR,
&backup_fan, PSVC_ALTERNATE, 0);
if (status != PSVC_SUCCESS)
return (status);
enable = PSVC_DISABLED;
status = psvc_set_attr(hdlp, id, PSVC_ENABLE_ATTR,
&enable);
if (status != PSVC_SUCCESS)
return (status);
enable = PSVC_ENABLED;
status = psvc_set_attr(hdlp, backup_fan,
PSVC_ENABLE_ATTR, &enable);
if (status != PSVC_SUCCESS)
return (status);
} else {
enable = PSVC_DISABLED;
status = psvc_set_attr(hdlp, id, PSVC_ENABLE_ATTR,
&enable);
if (status != PSVC_SUCCESS)
return (status);
}
return (PSVC_SUCCESS);
}
/* device was present */
status = psvc_get_attr(hdlp, id, PSVC_STATE_ATTR, state);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_PREV_STATE_ATTR, previous_state);
if (status != PSVC_SUCCESS)
return (status);
if (features & PSVC_DEV_PRIMARY) {
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR,
&backup_fan, PSVC_ALTERNATE, 0);
if (status != PSVC_SUCCESS)
return (status);
if (strcmp(state, PSVC_OK) == 0) {
enable = PSVC_ENABLED;
status = psvc_set_attr(hdlp, id, PSVC_ENABLE_ATTR,
&enable);
if (status != PSVC_SUCCESS)
return (status);
enable = PSVC_DISABLED;
status = psvc_set_attr(hdlp, backup_fan,
PSVC_ENABLE_ATTR, &enable);
if (status != PSVC_SUCCESS)
return (status);
}
if ((strcmp(state, PSVC_ERROR) == 0) &&
(strcmp(previous_state, PSVC_ERROR) != 0)) {
enable = PSVC_DISABLED;
status = psvc_set_attr(hdlp, id, PSVC_ENABLE_ATTR,
&enable);
if (status != PSVC_SUCCESS)
return (status);
enable = PSVC_ENABLED;
status = psvc_set_attr(hdlp, backup_fan,
PSVC_ENABLE_ATTR, &enable);
if (status != PSVC_SUCCESS)
return (status);
}
} else {
if ((strcmp(state, PSVC_ERROR) == 0) &&
(strcmp(previous_state, PSVC_ERROR) != 0)) {
status = psvc_get_attr(hdlp, id, PSVC_LABEL_ATTR,
label);
if (status != PSVC_SUCCESS)
return (status);
syslog(LOG_ERR, SECONDARY_FAN_FAIL_MSG, label);
}
}
return (status);
}
/*
* psvc_switch_fan_onoff_policy_0
* Turn a fan on if it is enabled, turn it off if it is disabled.
*/
int32_t
psvc_switch_fan_onoff_policy_0(psvc_opaque_t hdlp, char *id)
{
boolean_t enable;
char *switchid;
char state[32];
int32_t status = PSVC_SUCCESS;
status = psvc_get_attr(hdlp, id, PSVC_ENABLE_ATTR, &enable);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR, &switchid,
PSVC_FAN_ONOFF_SENSOR, 0);
if (status != PSVC_SUCCESS)
return (status);
if (enable == PSVC_DISABLED) {
strcpy(state, PSVC_SWITCH_OFF);
} else {
strcpy(state, PSVC_SWITCH_ON);
}
status = psvc_set_attr(hdlp, switchid, PSVC_SWITCH_STATE_ATTR, state);
return (status);
}
static int32_t
check_cpu_temp_fault(psvc_opaque_t hdlp, char *cpu, int32_t cpu_count)
{
char *sensorid;
int32_t sensor_count;
int32_t status = PSVC_SUCCESS;
int32_t i;
uint64_t features;
char fault[32];
status = psvc_get_attr(hdlp, cpu, PSVC_FEATURES_ATTR, &features);
if (status == PSVC_FAILURE)
return (status);
psvc_get_attr(hdlp, cpu, PSVC_ASSOC_MATCHES_ATTR, &sensor_count,
PSVC_DEV_TEMP_SENSOR);
for (i = 0; i < sensor_count; ++i) {
status = psvc_get_attr(hdlp, cpu, PSVC_ASSOC_ID_ATTR,
&sensorid, PSVC_DEV_TEMP_SENSOR, i);
if (status == PSVC_FAILURE)
return (status);
status = psvc_get_attr(hdlp, sensorid, PSVC_FAULTID_ATTR,
fault);
if (status == PSVC_FAILURE)
return (status);
if ((strcmp(fault, PSVC_TEMP_HI_SHUT) == 0) ||
(strcmp(fault, PSVC_TEMP_LO_SHUT) == 0)) {
if (cpu_count == 1 || cpus_online == 1 ||
!(features & PSVC_DEV_HOTPLUG)) {
system(shutdown_string);
} else {
/* FIX offline cpu */
--cpus_online;
}
}
}
return (status);
}
int32_t
psvc_shutdown_policy_0(psvc_opaque_t hdlp, char *id)
{
int32_t cpu_count;
char *cpuid;
int32_t i;
boolean_t present;
int32_t status = PSVC_SUCCESS;
if (cpus_online == 0) {
/* obviously, zero isn't correct, count present cpu's */
psvc_get_attr(hdlp, id, PSVC_ASSOC_MATCHES_ATTR, &cpu_count,
PSVC_CPU);
for (i = 0; i < cpu_count; ++i) {
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR,
&cpuid, PSVC_CPU, i);
if (status == PSVC_FAILURE)
return (status);
status = psvc_get_attr(hdlp, cpuid,
PSVC_PRESENCE_ATTR, &present);
if (status == PSVC_FAILURE && present == PSVC_PRESENT)
return (status);
if (present == PSVC_PRESENT)
++cpus_online;
}
}
psvc_get_attr(hdlp, id, PSVC_ASSOC_MATCHES_ATTR, &cpu_count,
PSVC_CPU);
for (i = 0; i < cpu_count; ++i) {
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR, &cpuid,
PSVC_CPU, i);
if (status == PSVC_FAILURE)
return (status);
status = check_cpu_temp_fault(hdlp, cpuid, cpu_count);
if (status == PSVC_FAILURE && errno != ENODEV)
return (status);
}
return (PSVC_SUCCESS);
}
/*
* psvc_keyswitch_position_policy_0
* Checks the state of the keyswitch sensors.
* If a keyswitch position sensor's state is on, the position
* of the key is written to syslog. If none of the sensors
* are on (keyswitch is not at one of the detents), a message is sent
* to syslog stating that the position is unknown.
*/
int32_t
psvc_keyswitch_position_policy_0(psvc_opaque_t hdlp, char *id)
{
char position[32];
int32_t status = PSVC_SUCCESS;
static int error_reported = 0;
static char local_previous_position[32];
static int32_t first_time = 1;
int8_t retry;
if (first_time) {
first_time = 0;
status = psvc_get_attr(hdlp, id, PSVC_STATE_ATTR,
local_previous_position);
if (status != PSVC_SUCCESS)
return (status);
}
retry = 0;
do {
if (retry)
sleep(1);
status = psvc_get_attr(hdlp, id, PSVC_SWITCH_STATE_ATTR,
position);
if (status != PSVC_SUCCESS)
return (status);
if (strcmp(position, PSVC_ERROR) == 0) {
if ((errno == EINVAL) && (!(error_reported))) {
syslog(LOG_ERR,
KEYSWITCH_POS_READ_FAILED_MSG);
error_reported = 1;
return (PSVC_SUCCESS);
}
}
retry++;
} while ((retry < PSVC_NUM_OF_RETRIES) &&
(strcmp(position, local_previous_position) != 0));
status = psvc_set_attr(hdlp, id, PSVC_STATE_ATTR, position);
if (status != PSVC_SUCCESS)
return (status);
if (strcmp(position, local_previous_position) != 0) {
error_reported = 0;
strcpy(local_previous_position, position);
syslog(LOG_ERR, KEYSWITCH_POS_CHANGED_MSG, position);
}
return (status);
}
int32_t
psvc_hotplug_notifier_policy_0(psvc_opaque_t hdlp, char *id)
{
boolean_t presence, previous_presence;
int32_t status = PSVC_SUCCESS;
char label[32];
int8_t retry;
status = psvc_get_attr(hdlp, id, PSVC_PREV_PRESENCE_ATTR,
&previous_presence);
if (status != PSVC_SUCCESS)
return (status);
retry = 0;
do {
if (retry)
sleep(1);
status = psvc_get_attr(hdlp, id, PSVC_PRESENCE_ATTR, &presence);
if (status != PSVC_SUCCESS)
return (status);
retry++;
} while ((retry < PSVC_NUM_OF_RETRIES) &&
(presence != previous_presence));
if (presence != previous_presence) {
char parent_path[256];
picl_nodehdl_t child_node;
status = psvc_get_attr(hdlp, id, PSVC_LABEL_ATTR, label);
if (status != PSVC_SUCCESS)
return (status);
/* return parent path and node for an object */
psvcplugin_lookup(id, parent_path, &child_node);
if (presence == PSVC_PRESENT) {
char state[32], fault[32];
picl_nodehdl_t parent_node;
syslog(LOG_ERR, DEVICE_INSERTED_MSG, label);
strcpy(state, PSVC_OK);
status = psvc_set_attr(hdlp, id, PSVC_STATE_ATTR,
state);
if (status != PSVC_SUCCESS)
return (status);
strcpy(fault, PSVC_NO_FAULT);
status = psvc_set_attr(hdlp, id, PSVC_FAULTID_ATTR,
fault);
if (status != PSVC_SUCCESS) {
return (status);
}
status = ptree_get_node_by_path(parent_path,
&parent_node);
if (status != 0)
return (PSVC_FAILURE);
status = ptree_add_node(parent_node, child_node);
if (status != 0)
return (PSVC_FAILURE);
} else {
syslog(LOG_ERR, DEVICE_REMOVED_MSG, label);
ptree_delete_node(child_node);
}
}
status = psvc_set_attr(hdlp, id, PSVC_PREV_PRESENCE_ATTR, &presence);
if (status != PSVC_SUCCESS)
return (status);
return (status);
}
int32_t
psvc_fan_hotplug_policy_0(psvc_opaque_t hdlp, char *id)
{
boolean_t presence, previous_presence;
int32_t status = PSVC_SUCCESS;
char label[32];
int8_t retry;
status = psvc_get_attr(hdlp, id, PSVC_PREV_PRESENCE_ATTR,
&previous_presence);
if (status != PSVC_SUCCESS)
return (status);
retry = 0;
do {
if (retry)
sleep(1);
status = psvc_get_attr(hdlp, id, PSVC_PRESENCE_ATTR, &presence);
if (status != PSVC_SUCCESS)
return (status);
retry++;
} while ((retry < PSVC_NUM_OF_RETRIES) &&
(presence != previous_presence));
if (presence != previous_presence) {
char parent_path[256];
picl_nodehdl_t child_node;
status = psvc_get_attr(hdlp, id, PSVC_LABEL_ATTR, label);
if (status != PSVC_SUCCESS)
return (status);
/* return parent path and node for an object */
psvcplugin_lookup(id, parent_path, &child_node);
if (presence == PSVC_PRESENT) {
char state[32], fault[32];
char *slot_id;
char *led_id;
int32_t i, led_count;
char led_state[32];
picl_nodehdl_t parent_node;
syslog(LOG_ERR, DEVICE_INSERTED_MSG, label);
strcpy(state, PSVC_OK);
status = psvc_set_attr(hdlp, id, PSVC_STATE_ATTR,
state);
if (status != PSVC_SUCCESS)
return (status);
strcpy(fault, PSVC_NO_FAULT);
status = psvc_set_attr(hdlp, id, PSVC_FAULTID_ATTR,
fault);
if (status != PSVC_SUCCESS)
return (status);
/* turn off fault LEDs */
psvc_get_attr(hdlp, id, PSVC_ASSOC_MATCHES_ATTR,
&led_count, PSVC_DEV_FAULT_LED);
strcpy(led_state, PSVC_LED_OFF);
for (i = 0; i < led_count; ++i) {
status = psvc_get_attr(hdlp, id,
PSVC_ASSOC_ID_ATTR, &led_id,
PSVC_DEV_FAULT_LED, i);
if (status == PSVC_FAILURE)
return (status);
status = psvc_set_attr(hdlp, led_id,
PSVC_LED_STATE_ATTR, led_state);
if (status == PSVC_FAILURE)
return (status);
}
/* turn off OK to remove LEDs */
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR,
&slot_id, PSVC_PARENT, 0);
if (status != PSVC_SUCCESS)
return (status);
psvc_get_attr(hdlp, slot_id, PSVC_ASSOC_MATCHES_ATTR,
&led_count, PSVC_SLOT_REMOVE_LED);
strcpy(led_state, PSVC_LED_OFF);
for (i = 0; i < led_count; ++i) {
status = psvc_get_attr(hdlp, slot_id,
PSVC_ASSOC_ID_ATTR, &led_id,
PSVC_SLOT_REMOVE_LED, i);
if (status == PSVC_FAILURE)
return (status);
status = psvc_set_attr(hdlp, led_id,
PSVC_LED_STATE_ATTR, led_state);
if (status == PSVC_FAILURE)
return (status);
}
ptree_get_node_by_path(parent_path, &parent_node);
ptree_add_node(parent_node, child_node);
} else {
syslog(LOG_ERR, DEVICE_REMOVED_MSG, label);
ptree_delete_node(child_node);
}
}
status = psvc_set_attr(hdlp, id, PSVC_PREV_PRESENCE_ATTR, &presence);
if (status != PSVC_SUCCESS)
return (status);
return (status);
}
int32_t
psvc_init_led_policy_0(psvc_opaque_t hdlp, char *id)
{
int32_t status;
status = psvc_set_attr(hdlp, id, PSVC_LED_STATE_ATTR, PSVC_LED_OFF);
return (status);
}
int32_t
psvc_init_state_policy_0(psvc_opaque_t hdlp, char *id)
{
int32_t status;
status = psvc_set_attr(hdlp, id, PSVC_STATE_ATTR, PSVC_OK);
status = psvc_set_attr(hdlp, id, PSVC_FAULTID_ATTR, PSVC_NO_FAULT);
return (status);
}
int32_t
psvc_ps_overcurrent_check_policy_0(psvc_opaque_t hdlp, char *power_supply_id)
{
int32_t status = PSVC_SUCCESS;
boolean_t present;
char *sensor_id;
int32_t sensor_count;
int32_t i;
int32_t amps, hi_warn;
status = psvc_get_attr(hdlp, power_supply_id, PSVC_PRESENCE_ATTR,
&present);
if (status == PSVC_FAILURE) {
syslog(LOG_ERR, GET_PRESENCE_FAILED_MSG, power_supply_id,
errno);
return (status);
}
if (present == PSVC_ABSENT) {
errno = ENODEV;
return (PSVC_FAILURE);
}
psvc_get_attr(hdlp, power_supply_id, PSVC_ASSOC_MATCHES_ATTR,
&sensor_count, PSVC_PS_I_SENSOR);
for (i = 0; i < sensor_count; ++i) {
status = psvc_get_attr(hdlp, power_supply_id,
PSVC_ASSOC_ID_ATTR, &sensor_id, PSVC_PS_I_SENSOR, i);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, sensor_id, PSVC_HI_WARN_ATTR,
&hi_warn);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, sensor_id,
PSVC_SENSOR_VALUE_ATTR, &amps);
if (status != PSVC_SUCCESS) {
syslog(LOG_ERR, GET_SENSOR_FAILED_MSG, sensor_id,
errno);
return (status);
}
if (amps >= hi_warn) {
char label[32];
status = psvc_get_attr(hdlp, power_supply_id,
PSVC_LABEL_ATTR, &label);
if (status != PSVC_SUCCESS)
return (status);
syslog(LOG_ERR, PS_OVER_CURRENT_MSG, label);
}
}
return (PSVC_SUCCESS);
}
int32_t
psvc_device_fail_notifier_policy_0(psvc_opaque_t hdlp, char *id)
{
int32_t led_count, sensor_count;
char *led_id, *sensor_id;
int i;
char state[32], fault[32], previous_state[32];
char led_state[32];
int32_t status = PSVC_SUCCESS;
boolean_t present;
status = psvc_get_attr(hdlp, id, PSVC_PRESENCE_ATTR, &present);
if (status == PSVC_FAILURE)
return (status);
if (present == PSVC_ABSENT) {
errno = ENODEV;
return (PSVC_FAILURE);
}
psvc_get_attr(hdlp, id, PSVC_ASSOC_MATCHES_ATTR, &sensor_count,
PSVC_DEV_FAULT_SENSOR);
for (i = 0; i < sensor_count; ++i) {
status = psvc_get_attr(hdlp, id, PSVC_ASSOC_ID_ATTR,
&sensor_id, PSVC_DEV_FAULT_SENSOR, i);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, sensor_id,
PSVC_SWITCH_STATE_ATTR, state);
if (status != PSVC_SUCCESS)
return (status);
if (strcmp(state, PSVC_SWITCH_ON) == 0) {
strcpy(state, PSVC_ERROR);
strcpy(fault, PSVC_GEN_FAULT);
} else {
strcpy(state, PSVC_OK);
strcpy(fault, PSVC_NO_FAULT);
}
status = psvc_set_attr(hdlp, id, PSVC_STATE_ATTR, state);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_set_attr(hdlp, id, PSVC_FAULTID_ATTR, fault);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_get_attr(hdlp, id, PSVC_PREV_STATE_ATTR,
previous_state);
if (status != PSVC_SUCCESS)
return (status);
if (strcmp(state, previous_state) != 0) {
char sensor_label[32];
char dev_label[32];
int32_t j;
psvc_get_attr(hdlp, id, PSVC_LABEL_ATTR, dev_label);
psvc_get_attr(hdlp, sensor_id, PSVC_LABEL_ATTR,
sensor_label);
if (strcmp(state, PSVC_ERROR) == 0) {
syslog(LOG_ERR, DEVICE_FAILURE_MSG, dev_label,
sensor_label);
strcpy(led_state, PSVC_LED_ON);
} else {
syslog(LOG_ERR, DEVICE_OK_MSG, dev_label);
strcpy(led_state, PSVC_LED_OFF);
}
psvc_get_attr(hdlp, id, PSVC_ASSOC_MATCHES_ATTR,
&led_count, PSVC_DEV_FAULT_LED);
for (j = 0; j < led_count; j++) {
status = psvc_get_attr(hdlp, id,
PSVC_ASSOC_ID_ATTR, &led_id,
PSVC_DEV_FAULT_LED, j);
if (status != PSVC_SUCCESS)
return (status);
status = psvc_set_attr(hdlp, led_id,
PSVC_LED_STATE_ATTR, led_state);
if (status != PSVC_SUCCESS) {
syslog(LOG_ERR, SET_LED_FAILED_MSG,
led_id, errno);
return (status);
}
}
}
}
return (PSVC_SUCCESS);
}
static float
get_filtered_error(float *last_errors, int current_error)
{
float error;
float adder;
int i = 0;
adder = last_errors[0];
for (i = 1; i < PSVC_MAXERRORS; i++) {
adder = adder + last_errors[i];
}
adder = adder + current_error;
error = adder/(PSVC_MAXERRORS+1);
return (error);
}
static int32_t
change_cpu_fans(psvc_opaque_t hdlp, char *fan_id, int32_t fan_speed)
{
int err = PSVC_SUCCESS;
int i;
int32_t control_count;
char *control_id;
int32_t old_fan_speed;
psvc_get_attr(hdlp, fan_id, PSVC_ASSOC_MATCHES_ATTR, &control_count,
PSVC_FAN_DRIVE_CONTROL);
if (control_count == 0)
return (PSVC_SUCCESS);
err = psvc_get_attr(hdlp, fan_id, PSVC_ASSOC_ID_ATTR, &control_id,
PSVC_FAN_DRIVE_CONTROL, 0);
if (err != PSVC_SUCCESS)
return (err);
/*
* this call will return PSVC_FAILURE on the first pass,
* because no value has been set.
*/
err = psvc_get_attr(hdlp, control_id, PSVC_CONTROL_VALUE_ATTR,
&old_fan_speed);
if (err == PSVC_SUCCESS && old_fan_speed == fan_speed)
return (PSVC_SUCCESS);
for (i = 0; i < control_count; i++) {
err = psvc_get_attr(hdlp, fan_id, PSVC_ASSOC_ID_ATTR,
&control_id, PSVC_FAN_DRIVE_CONTROL, i);
if (err != PSVC_SUCCESS)
return (err);
err = psvc_set_attr(hdlp, control_id, PSVC_CONTROL_VALUE_ATTR,
&fan_speed);
if (err == PSVC_FAILURE) {
syslog(LOG_ERR, SET_FANSPEED_FAILED_MSG, control_id,
errno);
return (err);
}
}
return (err);
}
static int32_t
device_temp_check(psvc_opaque_t hdlp, char *fan_id, int32_t *hot_device)
{
int i;
int32_t err = PSVC_SUCCESS;
char *sensor_id;
int32_t sensor_count;
int32_t temp;
*hot_device = 0;
psvc_get_attr(hdlp, fan_id, PSVC_ASSOC_MATCHES_ATTR, &sensor_count,
PSVC_DEV_TEMP_SENSOR);
for (i = 0; i < sensor_count; i++) {
err = psvc_get_attr(hdlp, fan_id, PSVC_ASSOC_ID_ATTR,
&sensor_id, PSVC_DEV_TEMP_SENSOR, i);
if (err == PSVC_FAILURE)
return (err);
err = psvc_get_attr(hdlp, sensor_id, PSVC_SENSOR_VALUE_ATTR,
&temp);
if (err == PSVC_FAILURE) {
if (errno == ENODEV) {
temp = 0;
} else {
syslog(LOG_ERR, GET_SENSOR_FAILED_MSG, errno,
sensor_id);
return (err);
}
}
if (*hot_device < temp)
*hot_device = temp;
}
return (PSVC_SUCCESS);
}
int32_t
psvc_fan_control_policy_0(psvc_opaque_t hdlp, char *fan_id)
{
boolean_t is_enabled;
int32_t err = PSVC_SUCCESS;
int16_t setpoint, hysteresis, loopgain, loopbias;
int current_error; /* Holds current error */
/* Signal before signaling */
float filtered_error; /* Holds the filtered error signal */
int ampout; /* output of loop amplifier */
int hot_device;
int16_t error_number;
float last_errors[PSVC_MAXERRORS]; /* Holds the filtered error */
/* from the last n iterations */
psvc_get_attr(hdlp, fan_id, PSVC_ENABLE_ATTR, &is_enabled);
if (is_enabled == PSVC_DISABLED)
return (PSVC_SUCCESS);
err = psvc_get_attr(hdlp, fan_id, PSVC_SETPOINT_ATTR, &setpoint);
if (err != PSVC_SUCCESS)
return (err);
err = psvc_get_attr(hdlp, fan_id, PSVC_HYSTERESIS_ATTR,
&hysteresis);
if (err != PSVC_SUCCESS)
return (err);
err = psvc_get_attr(hdlp, fan_id, PSVC_LOOPGAIN_ATTR, &loopgain);
if (err != PSVC_SUCCESS)
return (err);
err = psvc_get_attr(hdlp, fan_id, PSVC_LOOPBIAS_ATTR, &loopbias);
if (err != PSVC_SUCCESS)
return (err);
err = psvc_get_attr(hdlp, fan_id, PSVC_TEMP_DIFFERENTIAL_ATTR,
last_errors);
if (err != PSVC_SUCCESS)
return (err);
err = psvc_get_attr(hdlp, fan_id, PSVC_TEMP_DIFFERENTIAL_INDEX_ATTR,
&error_number);
if (err != PSVC_SUCCESS)
return (err);
err = device_temp_check(hdlp, fan_id, &hot_device);
if (err != PSVC_SUCCESS) {
printf("psvc_fan_control failure in device_temp_check\n");
return (err);
}
current_error = setpoint - hot_device;
filtered_error = get_filtered_error(last_errors, current_error);
if (filtered_error <= 0 || filtered_error > hysteresis) {
ampout = (int)((filtered_error * loopgain) + loopbias);
if (ampout < 0)
ampout = 0;
if (ampout > 1023)
ampout = 1023;
err = change_cpu_fans(hdlp, fan_id, ampout);
if (err != PSVC_SUCCESS)
return (err);
}
last_errors[error_number++] = current_error;
if (error_number == PSVC_MAXERRORS)
error_number = 0;
err = psvc_set_attr(hdlp, fan_id, PSVC_TEMP_DIFFERENTIAL_ATTR,
last_errors);
if (err != PSVC_SUCCESS)
return (err);
err = psvc_set_attr(hdlp, fan_id, PSVC_TEMP_DIFFERENTIAL_INDEX_ATTR,
&error_number);
if (err != PSVC_SUCCESS)
return (err);
return (PSVC_SUCCESS);
}
int32_t
psvc_fan_present_policy_0(psvc_opaque_t hdlp, char *id)
{
int32_t status = PSVC_SUCCESS;
boolean_t presence;
int fd;
FILE *fp;
status = psvc_get_attr(hdlp, id, PSVC_PRESENCE_ATTR, &presence);
if (status != PSVC_SUCCESS)
return (status);
if (presence == PSVC_ABSENT) {
/*
* We make this open, write, close, call because picld
* starts in rcS.d while print services does not start
* until later (either rc2.d or rc3.d)
*/
fd = open("/dev/console", O_WRONLY | O_NOCTTY);
if (fd != -1) {
fp = fdopen(fd, "w+");
if (fp != NULL) {
fprintf(fp, FAN_MISSING_MSG, id);
fclose(fp);
}
close(fd);
}
syslog(LOG_ERR, FAN_MISSING_MSG, id);
}
return (status);
}