kaif.c revision ae115bc77f6fcde83175c75b4206dc2e50747966
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* The debugger/PROM interface
*/
#include <sys/types.h>
#include <sys/mmu.h>
#ifndef sun4v
#include <sys/spitregs.h>
#endif /* sun4v */
#include <sys/machasi.h>
#include <sys/machtrap.h>
#include <sys/trap.h>
#include <sys/privregs.h>
#include <kmdb/kaif.h>
#include <kmdb/kaif_regs.h>
#include <kmdb/kmdb_asmutil.h>
#include <kmdb/kmdb_kdi.h>
#include <kmdb/kmdb_promif_isadep.h>
#include <kmdb/kmdb_dpi_impl.h>
#include <mdb/mdb_debug.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_nv.h>
#include <mdb/mdb_kreg_impl.h>
#include <mdb/mdb_v9util.h>
#include <mdb/mdb.h>
#define KAIF_PREGNO_PSTATE 0x6 /* %pstate is priv reg 6 */
#define KAIF_BRKPT_INSTR 0x91d0207e /* ta 0x7e */
#define OP(x) ((x) >> 30)
#define OP2(x) (((x) >> 22) & 0x07)
#define OP3(x) (((x) >> 19) & 0x3f)
#define COND(x) (((x) >> 25) & 0x0f)
#define RD(x) (((x) >> 25) & 0x1f)
#define RS1(x) (((x) >> 14) & 0x1f)
#define RS2(x) ((x) & 0x1f)
#define OP_BRANCH 0x0
#define OP_ARITH 0x2
#define OP2_BPcc 0x1
#define OP2_Bicc 0x2
#define OP2_BPr 0x3
#define OP2_FBPfcc 0x5
#define OP2_FBfcc 0x6
#define OP3_RDPR 0x2a
#define OP3_WRPR 0x32
#define A(x) (((x) >> 29) & 0x01)
#define I(x) (((x) >> 13) & 0x01)
#define DISP16(x) ((((x) >> 6) & 0xc000) | ((x) & 0x3fff))
#define DISP22(x) ((x) & 0x3fffff)
#define DISP19(x) ((x) & 0x7ffff)
#define SIMM13(x) ((x) & 0x1fff)
static uint64_t kaif_vwapt_addr;
static uint64_t kaif_pwapt_addr;
#ifndef sun4v
static uint64_t kaif_lsuctl;
#endif /* sun4v */
kaif_cpusave_t *kaif_cpusave;
int kaif_ncpusave;
caddr_t kaif_dseg;
caddr_t kaif_dseg_lim;
caddr_t kaif_tba; /* table currently in use */
caddr_t kaif_tba_obp; /* obp's trap table */
caddr_t kaif_tba_native; /* our table; needs khat */
#ifdef sun4v
caddr_t kaif_tba_kernel; /* kernel's trap table */
#endif /* sun4v */
size_t kaif_tba_native_sz;
int *kaif_promexitarmp;
int kaif_trap_switch;
void (*kaif_modchg_cb)(struct modctl *, int);
void (*kaif_ktrap_install)(int, void (*)(void));
void (*kaif_ktrap_restore)(void);
static int
kaif_get_master_cpuid(void)
{
return (kaif_master_cpuid);
}
/*ARGSUSED*/
static int
kaif_get_nwin(int cpuid)
{
return (get_nwin());
}
static kaif_cpusave_t *
kaif_cpuid2save(int cpuid)
{
kaif_cpusave_t *save;
if (cpuid == DPI_MASTER_CPUID)
return (&kaif_cpusave[kaif_master_cpuid]);
if (cpuid < 0 || cpuid >= kaif_ncpusave) {
(void) set_errno(EINVAL);
return (NULL);
}
save = &kaif_cpusave[cpuid];
if (save->krs_cpu_state != KAIF_CPU_STATE_MASTER &&
save->krs_cpu_state != KAIF_CPU_STATE_SLAVE) {
(void) set_errno(EINVAL);
return (NULL);
}
return (save);
}
static int
kaif_get_cpu_state(int cpuid)
{
kaif_cpusave_t *save;
if ((save = kaif_cpuid2save(cpuid)) == NULL)
return (-1); /* errno is set for us */
switch (save->krs_cpu_state) {
case KAIF_CPU_STATE_MASTER:
return (DPI_CPU_STATE_MASTER);
case KAIF_CPU_STATE_SLAVE:
return (DPI_CPU_STATE_SLAVE);
default:
return (set_errno(EINVAL));
}
}
static const mdb_tgt_gregset_t *
kaif_get_gregs(int cpuid)
{
kaif_cpusave_t *save;
mdb_tgt_gregset_t *gregs;
int wp, i;
if ((save = kaif_cpuid2save(cpuid)) == NULL)
return (NULL); /* errno is set for us */
gregs = &save->krs_gregs;
/*
* The DPI startup routine populates the register window portions of
* the kaif_cpusave_t. We copy the current set of ins, outs, and
* locals to the gregs. We also extract %pstate from %tstate.
*/
wp = gregs->kregs[KREG_CWP];
for (i = 0; i < 8; i++) {
gregs->kregs[KREG_L0 + i] = save->krs_rwins[wp].rw_local[i];
gregs->kregs[KREG_I0 + i] = save->krs_rwins[wp].rw_in[i];
}
gregs->kregs[KREG_PSTATE] = KREG_TSTATE_PSTATE(save->krs_tstate);
if (++wp == kaif_get_nwin(cpuid))
wp = 0;
for (i = 0; i < 8; i++)
gregs->kregs[KREG_O0 + i] = save->krs_rwins[wp].rw_in[i];
return (gregs);
}
static kreg_t *
kaif_find_regp(kaif_cpusave_t *save, const char *regname)
{
mdb_tgt_gregset_t *gregs;
int nwin, i;
int win;
nwin = kaif_get_nwin(DPI_MASTER_CPUID);
gregs = &save->krs_gregs;
win = gregs->kregs[KREG_CWP];
if (strcmp(regname, "sp") == 0)
regname = "o6";
else if (strcmp(regname, "fp") == 0)
regname = "i6";
if (strlen(regname) == 2 && regname[1] >= '0' && regname[1] <= '7') {
int idx = regname[1] - '0';
switch (regname[0]) {
case 'o':
if (++win == nwin)
win = 0;
/*FALLTHROUGH*/
case 'i':
return ((kreg_t *)&save->krs_rwins[win].rw_in[idx]);
case 'l':
return ((kreg_t *)&save->krs_rwins[win].rw_local[idx]);
}
}
for (i = 0; mdb_sparcv9_kregs[i].rd_name != NULL; i++) {
const mdb_tgt_regdesc_t *rd = &mdb_sparcv9_kregs[i];
if (strcmp(rd->rd_name, regname) == 0)
return (&gregs->kregs[rd->rd_num]);
}
(void) set_errno(ENOENT);
return (NULL);
}
static int
kaif_get_register(const char *regname, kreg_t *valp)
{
kaif_cpusave_t *save;
kreg_t *regp;
save = kaif_cpuid2save(DPI_MASTER_CPUID);
if (strcmp(regname, "pstate") == 0) {
*valp = KREG_TSTATE_PSTATE(save->krs_tstate);
return (0);
}
if ((regp = kaif_find_regp(save, regname)) == NULL)
return (-1);
*valp = *regp;
return (0);
}
static int
kaif_set_register(const char *regname, kreg_t val)
{
kaif_cpusave_t *save;
kreg_t *regp;
save = kaif_cpuid2save(DPI_MASTER_CPUID);
if (strcmp(regname, "g0") == 0) {
return (0);
} else if (strcmp(regname, "pstate") == 0) {
save->krs_tstate &= ~KREG_TSTATE_PSTATE_MASK;
save->krs_tstate |= (val & KREG_PSTATE_MASK) <<
KREG_TSTATE_PSTATE_SHIFT;
return (0);
}
if ((regp = kaif_find_regp(save, regname)) == NULL)
return (-1);
*regp = val;
return (0);
}
static int
kaif_brkpt_arm(uintptr_t addr, mdb_instr_t *instrp)
{
mdb_instr_t bkpt = KAIF_BRKPT_INSTR;
if (mdb_tgt_vread(mdb.m_target, instrp, sizeof (mdb_instr_t), addr) !=
sizeof (mdb_instr_t))
return (-1); /* errno is set for us */
if (mdb_tgt_vwrite(mdb.m_target, &bkpt, sizeof (mdb_instr_t), addr) !=
sizeof (mdb_instr_t))
return (-1); /* errno is set for us */
return (0);
}
static int
kaif_brkpt_disarm(uintptr_t addr, mdb_instr_t instrp)
{
if (mdb_tgt_vwrite(mdb.m_target, &instrp, sizeof (mdb_instr_t), addr) !=
sizeof (mdb_instr_t))
return (-1); /* errno is set for us */
return (0);
}
/*
* Calculate the watchpoint mask byte (VM or PM, as appropriate). A 1 bit in
* the mask indicates that the corresponding byte in the watchpoint address
* should be used for activation comparison.
*/
/*
* Sun4v doesn't have watchpoint regs
*/
#ifndef sun4v
static uchar_t
kaif_wapt_calc_mask(size_t len)
{
int pow;
if (len == 8)
return (0xff);
for (pow = 0; len > 1; len /= 256, pow++);
return (~((1 << pow) - 1));
}
#endif
/*
* UltraSPARC processors have one physical and one virtual watchpoint. These
* watchpoints are specified by setting the address in a register, and by
* setting a selector byte in another register to determine which bytes of the
* address are to be used for comparison. For simplicity, we only support
* selector byte values whose bit patterns match the regexp "1+0*". Watchpoint
* addresses must be 8-byte aligned on these chips, so a selector byte of 0xff
* indicates an 8-byte watchpoint. Successive valid sizes are powers of 256,
* starting with 256.
*/
static int
kaif_wapt_validate(kmdb_wapt_t *wp)
{
if (wp->wp_wflags & MDB_TGT_WA_X) {
warn("execute watchpoints are not supported on this "
"platform\n");
return (set_errno(EMDB_TGTNOTSUP));
}
if (wp->wp_size % 0xff != 0 && wp->wp_size != 8) {
warn("watchpoint size must be 8 or a power of 256 bytes\n");
return (set_errno(EINVAL));
}
if (wp->wp_addr & (wp->wp_size - 1)) {
warn("%lu-byte watchpoints must be %lu-byte aligned\n",
wp->wp_size, wp->wp_size);
return (set_errno(EINVAL));
}
if (wp->wp_type != DPI_WAPT_TYPE_PHYS &&
wp->wp_type != DPI_WAPT_TYPE_VIRT) {
warn("requested watchpoint type not supported on this "
"platform\n");
return (set_errno(EMDB_TGTHWNOTSUP));
}
return (0);
}
static int
kaif_wapt_reserve(kmdb_wapt_t *wp)
{
#ifdef sun4v
#ifdef lint
ASSERT(wp == (kmdb_wapt_t *)wp);
#endif /* !lint */
/* Watchpoints not supported */
return (set_errno(EMDB_TGTHWNOTSUP));
#else
uint64_t *addrp;
if (wp->wp_type == DPI_WAPT_TYPE_PHYS)
addrp = &kaif_pwapt_addr;
else
addrp = &kaif_vwapt_addr;
if (*addrp != NULL)
return (set_errno(EMDB_WPTOOMANY));
*addrp = wp->wp_addr;
return (0);
#endif
}
static void
kaif_wapt_release(kmdb_wapt_t *wp)
{
uint64_t *addrp = (wp->wp_type == DPI_WAPT_TYPE_PHYS ?
&kaif_pwapt_addr : &kaif_vwapt_addr);
ASSERT(*addrp != NULL);
*addrp = NULL;
}
/*ARGSUSED*/
static void
kaif_wapt_arm(kmdb_wapt_t *wp)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
uint64_t mask = kaif_wapt_calc_mask(wp->wp_size);
if (wp->wp_type == DPI_WAPT_TYPE_PHYS) {
kaif_lsuctl &= ~KAIF_LSUCTL_PWAPT_MASK;
if (wp->wp_wflags & MDB_TGT_WA_R)
kaif_lsuctl |= LSU_PR;
if (wp->wp_wflags & MDB_TGT_WA_W)
kaif_lsuctl |= LSU_PW;
kaif_lsuctl |= ((mask << LSU_PM_SHIFT) & LSU_PM);
} else if (wp->wp_type == DPI_WAPT_TYPE_VIRT) {
kaif_lsuctl &= ~KAIF_LSUCTL_VWAPT_MASK;
if (wp->wp_wflags & MDB_TGT_WA_R)
kaif_lsuctl |= LSU_VR;
if (wp->wp_wflags & MDB_TGT_WA_W)
kaif_lsuctl |= LSU_VW;
kaif_lsuctl |= ((mask << LSU_VM_SHIFT) & LSU_VM);
}
#endif /* sun4v */
}
/*ARGSUSED*/
static void
kaif_wapt_disarm(kmdb_wapt_t *wp)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
if (wp->wp_type == DPI_WAPT_TYPE_PHYS) {
ASSERT(kaif_pwapt_addr != NULL);
kaif_lsuctl &= ~(LSU_PR|LSU_PW);
} else {
ASSERT(kaif_vwapt_addr != NULL);
kaif_lsuctl &= ~(LSU_VR|LSU_VW);
}
#endif
}
/*
* `kaif_wapt_arm' and `kaif_wapt_disarm' modify the global state we keep that
* indicates what the values of the wapt control registers should be. These
* values must be individually set and cleared on each active CPU, a task which
* is performed by `kaif_wapt_clear_regs' and `kaif_wapt_set_regs', invoked as
* the world is stopped and resumed, respectively. `kaif_wapt_set_regs' is also
* used for CPU initialization.
*/
void
kaif_wapt_set_regs(void)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
uint64_t lsu;
wrasi(ASI_DMMU, MMU_VAW, kaif_vwapt_addr);
wrasi(ASI_DMMU, MMU_PAW, kaif_pwapt_addr);
ASSERT((kaif_lsuctl & ~KAIF_LSUCTL_WAPT_MASK) == NULL);
lsu = rdasi(ASI_LSU, NULL);
lsu &= ~KAIF_LSUCTL_WAPT_MASK;
lsu |= kaif_lsuctl;
wrasi(ASI_LSU, NULL, lsu);
#endif /* sun4v */
}
void
kaif_wapt_clear_regs(void)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
uint64_t lsu = rdasi(ASI_LSU, NULL);
lsu &= ~KAIF_LSUCTL_WAPT_MASK;
wrasi(ASI_LSU, NULL, lsu);
#endif /* sun4v */
}
/*
* UltraSPARC has one PA watchpoint and one VA watchpoint. The trap we get will
* tell us which one we hit, but it won't tell us where. We could attempt to
* dissect the instruction at %pc to see where it was reading from or writing
* to, but that gets messy in a hurry. We can, however, make a couple of
* assumptions:
*
* - kaif_set_watchpoint and kaif_delete_watchpoint will enforce the limits as
* to the number of watch points. As such, at most one VA watchpoint and one
* PA watchpoint will be on the active list.
*
* - We'll only be called on watchpoints that are on the active list.
*
* Taking these two assumptions, we can conclude that, if we're stopped due to
* a watchpoint and we're asked to match against a watchpoint, we must have
* stopped due to the watchpoint. This is all very terrifying, but the
* alternative (taking instructions apart) is worse.
*/
/*ARGSUSED*/
static int
kaif_wapt_match(kmdb_wapt_t *wp)
{
int state, why, deswhy;
state = kmdb_dpi_get_state(&why);
if (wp->wp_type == DPI_WAPT_TYPE_PHYS)
deswhy = DPI_STATE_WHY_P_WAPT;
else
deswhy = DPI_STATE_WHY_V_WAPT;
return (state == DPI_STATE_FAULTED && why == deswhy);
}
static const char *
regno2name(int idx)
{
const mdb_tgt_regdesc_t *rd;
for (rd = mdb_sparcv9_kregs; rd->rd_name != NULL; rd++) {
if (idx == rd->rd_num)
return (rd->rd_name);
}
ASSERT(rd->rd_name != NULL);
return ("unknown");
}
/*
* UltraSPARC doesn't support single-step natively, so we have to do it
* ourselves, by placing breakpoints at the instruction after the current one.
* Note that "after" will be %npc in the simple case, but can be one of
* several places if %pc is a branch.
*
* If %pc is an unconditional annulled branch, we put a breakpoint at the branch
* target. If it is a conditional annulled branch, we put breakpoints at %pc +
* 8 and the branch target. For all other branches, %npc will be set correctly
* as determined by the branch condition, and thus we can step through the
* branch by putting a breakpoint at %npc. If %pc contains a non-branch
* instruction (with the exception of certain rdpr and wrpr instructions,
* described more below), we step over it by placing a breakpoint at %npc.
*/
static int
kaif_step(void)
{
kreg_t pc, npc, brtgt, pstate, tt;
int bptgt = 0, bpnpc = 0, bppc8 = 0;
mdb_instr_t svtgt = 0, svnpc = 0, svpc8 = 0;
mdb_instr_t instr;
int ie, err;
(void) kmdb_dpi_get_register("pc", &pc);
(void) kmdb_dpi_get_register("npc", &npc);
if (mdb_tgt_vread(mdb.m_target, &instr, sizeof (instr), pc) !=
sizeof (instr)) {
warn("failed to read %%pc at %p for step", (void *)pc);
return (-1);
}
/*
* If the current instruction is a read or write of PSTATE we need
* to emulate it because we've taken over management of PSTATE and
* we need keep interrupts disabled. If it's a branch, we may need
* to set two breakpoints -- one at the target and one at the
* subsequent instruction.
*/
if (OP(instr) == OP_ARITH) {
if (OP3(instr) == OP3_RDPR &&
RS1(instr) == KAIF_PREGNO_PSTATE) {
const char *tgtreg =
mdb_sparcv9_kregs[RD(instr)].rd_name;
kreg_t pstate;
(void) kmdb_dpi_get_register("pstate", &pstate);
(void) kmdb_dpi_set_register(tgtreg, pstate);
(void) kmdb_dpi_set_register("pc", npc);
(void) kmdb_dpi_set_register("npc", npc + 4);
return (0);
} else if (OP3(instr) == OP3_WRPR &&
RD(instr) == KAIF_PREGNO_PSTATE) {
kreg_t rs1, rs2, val;
(void) kmdb_dpi_get_register(regno2name(RS1(instr)),
&rs1);
if (I(instr)) {
int imm = SIMM13(instr);
imm <<= 19;
imm >>= 19;
rs2 = imm;
} else {
(void) kmdb_dpi_get_register(
regno2name(RS2(instr)), &rs2);
}
val = rs1 ^ rs2;
(void) kmdb_dpi_set_register("pstate", val);
(void) kmdb_dpi_set_register("pc", npc);
(void) kmdb_dpi_set_register("npc", npc + 4);
return (0);
}
bpnpc = 1;
} else if (OP(instr) == OP_BRANCH) {
int disp, cond, annul;
switch (OP2(instr)) {
case OP2_BPcc:
case OP2_FBPfcc:
cond = (COND(instr) != 8);
disp = DISP19(instr);
disp <<= 13;
disp >>= 11;
break;
case OP2_Bicc:
case OP2_FBfcc:
cond = (COND(instr) != 8);
disp = DISP22(instr);
disp <<= 10;
disp >>= 8;
break;
case OP2_BPr:
cond = 1;
disp = DISP16(instr);
disp <<= 16;
disp >>= 14;
break;
default:
bpnpc = 1;
}
if (!bpnpc) {
annul = A(instr);
if (!cond && annul) {
brtgt = pc + disp;
bptgt = 1;
} else {
bpnpc = 1;
if (cond && annul)
bppc8 = 1;
}
}
} else {
bpnpc = 1;
}
/*
* Place the breakpoints and resume this CPU with IE off. We'll come
* back after having encountered either one of the breakpoints we placed
* or a trap.
*/
err = 0;
if ((bpnpc && kaif_brkpt_arm(npc, &svnpc) != 0) ||
(bppc8 && kaif_brkpt_arm(pc + 8, &svpc8) != 0) ||
(bptgt && kaif_brkpt_arm(brtgt, &svtgt) != 0)) {
err = errno;
goto step_done;
}
(void) kmdb_dpi_get_register("pstate", &pstate);
ie = pstate & KREG_PSTATE_IE_MASK;
(void) kmdb_dpi_set_register("pstate", (pstate & ~KREG_PSTATE_IE_MASK));
kmdb_dpi_resume_master(); /* ... there and back again ... */
(void) kmdb_dpi_get_register("pstate", &pstate);
(void) kmdb_dpi_set_register("pstate",
((pstate & ~KREG_PSTATE_IE_MASK) | ie));
(void) kmdb_dpi_get_register("tt", &tt);
step_done:
if (svnpc)
(void) kaif_brkpt_disarm(npc, svnpc);
if (svpc8)
(void) kaif_brkpt_disarm(pc + 8, svpc8);
if (svtgt)
(void) kaif_brkpt_disarm(brtgt, svtgt);
return (err == 0 ? 0 : set_errno(err));
}
static uintptr_t
kaif_call(uintptr_t funcva, uint_t argc, const uintptr_t *argv)
{
kreg_t g6, g7;
(void) kmdb_dpi_get_register("g6", &g6);
(void) kmdb_dpi_get_register("g7", &g7);
return (kaif_invoke(funcva, argc, argv, g6, g7));
}
static const mdb_bitmask_t krm_flag_bits[] = {
{ "M_W", KAIF_CRUMB_F_MAIN_OBPWAPT, KAIF_CRUMB_F_MAIN_OBPWAPT },
{ "M_PE", KAIF_CRUMB_F_MAIN_OBPPENT, KAIF_CRUMB_F_MAIN_OBPPENT },
{ "M_NRM", KAIF_CRUMB_F_MAIN_NORMAL, KAIF_CRUMB_F_MAIN_NORMAL },
{ "I_RE", KAIF_CRUMB_F_IVEC_REENTER, KAIF_CRUMB_F_IVEC_REENTER },
{ "I_OBP", KAIF_CRUMB_F_IVEC_INOBP, KAIF_CRUMB_F_IVEC_INOBP },
{ "I_NRM", KAIF_CRUMB_F_IVEC_NORMAL, KAIF_CRUMB_F_IVEC_NORMAL },
{ "O_NRM", KAIF_CRUMB_F_OBP_NORMAL, KAIF_CRUMB_F_OBP_NORMAL },
{ "O_REVEC", KAIF_CRUMB_F_OBP_REVECT, KAIF_CRUMB_F_OBP_REVECT },
{ NULL }
};
static void
dump_crumb(kaif_crumb_t *krmp)
{
kaif_crumb_t krm;
if (mdb_vread(&krm, sizeof (kaif_crumb_t), (uintptr_t)krmp) !=
sizeof (kaif_crumb_t)) {
warn("failed to read crumb at %p", krmp);
return;
}
mdb_printf(" src: ");
switch (krm.krm_src) {
case KAIF_CRUMB_SRC_OBP:
mdb_printf("O");
break;
case KAIF_CRUMB_SRC_IVEC:
mdb_printf("I");
break;
case KAIF_CRUMB_SRC_MAIN:
mdb_printf("M");
break;
case 0:
mdb_printf("-");
break;
default:
mdb_printf("%d", krm.krm_src);
}
mdb_printf(" tt %3x pc %8p %-20A <%b>\n",
krm.krm_tt, krm.krm_pc, krm.krm_pc, krm.krm_flag, krm_flag_bits);
}
static void
dump_crumbs(kaif_cpusave_t *save)
{
int i;
for (i = KAIF_NCRUMBS; i > 0; i--) {
uint_t idx = (save->krs_curcrumbidx + i) % KAIF_NCRUMBS;
dump_crumb(&save->krs_crumbs[idx]);
}
}
static void
kaif_dump_crumbs(uintptr_t addr, int cpuid)
{
int i;
if (addr != NULL) {
/* dump_crumb will protect us from bogus addresses */
dump_crumb((kaif_crumb_t *)addr);
} else if (cpuid != -1) {
if (cpuid >= kaif_ncpusave)
return;
dump_crumbs(&kaif_cpusave[cpuid]);
} else {
for (i = 0; i < kaif_ncpusave; i++) {
kaif_cpusave_t *save = &kaif_cpusave[i];
if (save->krs_cpu_state == KAIF_CPU_STATE_NONE)
continue;
mdb_printf("%sCPU %d crumbs: (curidx %d)\n",
(i == 0 ? "" : "\n"), i, save->krs_curcrumbidx);
dump_crumbs(save);
}
}
}
static int
kaif_get_rwin(int cpuid, int win, struct rwindow *rwin)
{
kaif_cpusave_t *save;
if ((save = kaif_cpuid2save(cpuid)) == NULL)
return (-1); /* errno is set for us */
if (win < 0 || win >= kaif_get_nwin(cpuid))
return (-1);
bcopy(&save->krs_rwins[win], rwin, sizeof (struct rwindow));
return (0);
}
static void
kaif_enter_mon(void)
{
kmdb_prom_enter_mon();
kaif_prom_rearm();
kaif_slave_loop_barrier();
}
static void
kaif_modchg_register(void (*func)(struct modctl *, int))
{
kaif_modchg_cb = func;
}
static void
kaif_modchg_cancel(void)
{
ASSERT(kaif_modchg_cb != NULL);
kaif_modchg_cb = NULL;
}
void
kaif_mod_loaded(struct modctl *modp)
{
if (kaif_modchg_cb != NULL)
kaif_modchg_cb(modp, 1);
}
void
kaif_mod_unloading(struct modctl *modp)
{
if (kaif_modchg_cb != NULL)
kaif_modchg_cb(modp, 0);
}
void
kaif_trap_set_debugger(void)
{
set_tba(kaif_tba);
}
void
kaif_trap_set_saved(kaif_cpusave_t *save)
{
set_tba((caddr_t)save->krs_gregs.kregs[KREG_TBA]);
}
static void
kaif_kernpanic(int cpuid)
{
struct regs regs;
/*
* We're going to try to panic the system by using the same entry point
* used by the PROM when told to `sync'. The kernel wants a
* fully-populated struct regs, which we're going to build using the
* state captured at the time of the debugger fault. Said state lives
* in kaif_cb_save, since we haven't yet copied it over to the cpusave
* structure for the current master.
*/
regs.r_tstate = kaif_cb_save.krs_tstate;
regs.r_g1 = kaif_cb_save.krs_gregs.kregs[KREG_G1];
regs.r_g2 = kaif_cb_save.krs_gregs.kregs[KREG_G2];
regs.r_g3 = kaif_cb_save.krs_gregs.kregs[KREG_G3];
regs.r_g4 = kaif_cb_save.krs_gregs.kregs[KREG_G4];
regs.r_g5 = kaif_cb_save.krs_gregs.kregs[KREG_G5];
regs.r_g6 = kaif_cb_save.krs_gregs.kregs[KREG_G6];
regs.r_g7 = kaif_cb_save.krs_gregs.kregs[KREG_G7];
regs.r_o0 = kaif_cb_save.krs_gregs.kregs[KREG_O0];
regs.r_o1 = kaif_cb_save.krs_gregs.kregs[KREG_O1];
regs.r_o2 = kaif_cb_save.krs_gregs.kregs[KREG_O2];
regs.r_o3 = kaif_cb_save.krs_gregs.kregs[KREG_O3];
regs.r_o4 = kaif_cb_save.krs_gregs.kregs[KREG_O4];
regs.r_o5 = kaif_cb_save.krs_gregs.kregs[KREG_O5];
regs.r_o6 = kaif_cb_save.krs_gregs.kregs[KREG_O6];
regs.r_o7 = kaif_cb_save.krs_gregs.kregs[KREG_O7];
regs.r_pc = kaif_cb_save.krs_gregs.kregs[KREG_PC];
regs.r_npc = kaif_cb_save.krs_gregs.kregs[KREG_NPC];
regs.r_y = kaif_cb_save.krs_gregs.kregs[KREG_Y];
/*
* The %tba is, as ever, different. We don't want the %tba from the
* time of the fault -- that'll be the debugger's. We want the %tba
* saved when the debugger was initially entered. It'll be saved in
* the cpusave area for the current CPU.
*/
set_tba((caddr_t)kaif_cpusave[cpuid].krs_gregs.kregs[KREG_TBA]);
kmdb_kdi_kernpanic(&regs, kaif_cb_save.krs_gregs.kregs[KREG_TT]);
}
static int
kaif_init(kmdb_auxv_t *kav)
{
struct rwindow *rwins;
int nwin = get_nwin();
int i;
kaif_vwapt_addr = kaif_pwapt_addr = 0;
kaif_tba = kav->kav_tba_active;
kaif_tba_obp = kav->kav_tba_obp;
kaif_tba_native = kav->kav_tba_native;
kaif_tba_native_sz = kav->kav_tba_native_sz;
#ifdef sun4v
kaif_tba_kernel = kav->kav_tba_kernel;
#endif
/* Allocate the per-CPU save areas */
kaif_cpusave = mdb_zalloc(sizeof (kaif_cpusave_t) * kav->kav_ncpu,
UM_SLEEP);
kaif_ncpusave = kav->kav_ncpu;
rwins = mdb_zalloc(sizeof (struct rwindow) * nwin * kav->kav_ncpu,
UM_SLEEP);
for (i = 0; i < kaif_ncpusave; i++) {
kaif_cpusave_t *save = &kaif_cpusave[i];
save->krs_cpu_id = i;
save->krs_rwins = &rwins[nwin * i];
save->krs_curcrumbidx = KAIF_NCRUMBS - 1;
save->krs_curcrumb = &save->krs_crumbs[save->krs_curcrumbidx];
}
kaif_dseg = kav->kav_dseg;
kaif_dseg_lim = kav->kav_dseg + kav->kav_dseg_size;
kaif_promexitarmp = kav->kav_promexitarmp;
kaif_ktrap_install = kav->kav_ktrap_install;
kaif_ktrap_restore = kav->kav_ktrap_restore;
kaif_modchg_cb = NULL;
kaif_trap_switch = (kav->kav_flags & KMDB_AUXV_FL_NOTRPSWTCH) == 0;
return (0);
}
dpi_ops_t kmdb_dpi_ops = {
kaif_init,
kaif_activate,
kaif_deactivate,
kaif_enter_mon,
kaif_modchg_register,
kaif_modchg_cancel,
kaif_get_cpu_state,
kaif_get_master_cpuid,
kaif_get_gregs,
kaif_get_register,
kaif_set_register,
kaif_get_rwin,
kaif_get_nwin,
kaif_brkpt_arm,
kaif_brkpt_disarm,
kaif_wapt_validate,
kaif_wapt_reserve,
kaif_wapt_release,
kaif_wapt_arm,
kaif_wapt_disarm,
kaif_wapt_match,
kaif_step,
kaif_call,
kaif_dump_crumbs,
kaif_kernpanic
};