kvm_ia32dep.c revision 843e19887f64dde75055cf8842fc4db2171eff45
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Libkvm Kernel Target Intel 32-bit component
*
* This file provides the ISA-dependent portion of the libkvm kernel target.
* For more details on the implementation refer to mdb_kvm.c.
*/
#include <sys/types.h>
#include <sys/regset.h>
#include <sys/frame.h>
#include <sys/stack.h>
#include <sys/sysmacros.h>
#include <sys/panic.h>
#include <strings.h>
#include <mdb/mdb_target_impl.h>
#include <mdb/mdb_disasm.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_conf.h>
#include <mdb/mdb_kreg_impl.h>
#include <mdb/mdb_ia32util.h>
#include <mdb/kvm_isadep.h>
#include <mdb/mdb_kvm.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_debug.h>
#include <mdb/mdb.h>
/*ARGSUSED*/
int
kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
mdb_ia32_printregs((const mdb_tgt_gregset_t *)addr);
return (DCMD_OK);
}
static int
kt_stack_common(uintptr_t addr, uint_t flags, int argc,
const mdb_arg_t *argv, mdb_tgt_stack_f *func)
{
kt_data_t *kt = mdb.m_target->t_data;
void *arg = (void *)mdb.m_nargs;
mdb_tgt_gregset_t gregs, *grp;
if (flags & DCMD_ADDRSPEC) {
bzero(&gregs, sizeof (gregs));
gregs.kregs[KREG_EBP] = addr;
grp = &gregs;
} else
grp = kt->k_regs;
if (argc != 0) {
if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
return (DCMD_USAGE);
if (argv->a_type == MDB_TYPE_STRING)
arg = (void *)(uint_t)mdb_strtoull(argv->a_un.a_str);
else
arg = (void *)(uint_t)argv->a_un.a_val;
}
(void) mdb_ia32_kvm_stack_iter(mdb.m_target, grp, func, arg);
return (DCMD_OK);
}
int
kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
return (kt_stack_common(addr, flags, argc, argv, mdb_ia32_kvm_frame));
}
int
kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
return (kt_stack_common(addr, flags, argc, argv, mdb_ia32_kvm_framev));
}
const mdb_tgt_ops_t kt_ia32_ops = {
kt_setflags, /* t_setflags */
kt_setcontext, /* t_setcontext */
kt_activate, /* t_activate */
kt_deactivate, /* t_deactivate */
(void (*)()) mdb_tgt_nop, /* t_periodic */
kt_destroy, /* t_destroy */
kt_name, /* t_name */
(const char *(*)()) mdb_conf_isa, /* t_isa */
kt_platform, /* t_platform */
kt_uname, /* t_uname */
kt_dmodel, /* t_dmodel */
kt_aread, /* t_aread */
kt_awrite, /* t_awrite */
kt_vread, /* t_vread */
kt_vwrite, /* t_vwrite */
kt_pread, /* t_pread */
kt_pwrite, /* t_pwrite */
kt_fread, /* t_fread */
kt_fwrite, /* t_fwrite */
(ssize_t (*)()) mdb_tgt_notsup, /* t_ioread */
(ssize_t (*)()) mdb_tgt_notsup, /* t_iowrite */
kt_vtop, /* t_vtop */
kt_lookup_by_name, /* t_lookup_by_name */
kt_lookup_by_addr, /* t_lookup_by_addr */
kt_symbol_iter, /* t_symbol_iter */
kt_mapping_iter, /* t_mapping_iter */
kt_object_iter, /* t_object_iter */
kt_addr_to_map, /* t_addr_to_map */
kt_name_to_map, /* t_name_to_map */
kt_addr_to_ctf, /* t_addr_to_ctf */
kt_name_to_ctf, /* t_name_to_ctf */
kt_status, /* t_status */
(int (*)()) mdb_tgt_notsup, /* t_run */
(int (*)()) mdb_tgt_notsup, /* t_step */
(int (*)()) mdb_tgt_notsup, /* t_step_out */
(int (*)()) mdb_tgt_notsup, /* t_step_branch */
(int (*)()) mdb_tgt_notsup, /* t_next */
(int (*)()) mdb_tgt_notsup, /* t_cont */
(int (*)()) mdb_tgt_notsup, /* t_signal */
(int (*)()) mdb_tgt_null, /* t_add_vbrkpt */
(int (*)()) mdb_tgt_null, /* t_add_sbrkpt */
(int (*)()) mdb_tgt_null, /* t_add_pwapt */
(int (*)()) mdb_tgt_null, /* t_add_vwapt */
(int (*)()) mdb_tgt_null, /* t_add_iowapt */
(int (*)()) mdb_tgt_null, /* t_add_sysenter */
(int (*)()) mdb_tgt_null, /* t_add_sysexit */
(int (*)()) mdb_tgt_null, /* t_add_signal */
(int (*)()) mdb_tgt_null, /* t_add_fault */
kt_getareg, /* t_getareg */
kt_putareg, /* t_putareg */
mdb_ia32_kvm_stack_iter, /* t_stack_iter */
};
void
kt_regs_to_kregs(struct regs *regs, mdb_tgt_gregset_t *gregs)
{
gregs->kregs[KREG_SAVFP] = regs->r_savfp;
gregs->kregs[KREG_SAVPC] = regs->r_savpc;
gregs->kregs[KREG_EAX] = regs->r_eax;
gregs->kregs[KREG_EBX] = regs->r_ebx;
gregs->kregs[KREG_ECX] = regs->r_ecx;
gregs->kregs[KREG_EDX] = regs->r_edx;
gregs->kregs[KREG_ESI] = regs->r_esi;
gregs->kregs[KREG_EDI] = regs->r_edi;
gregs->kregs[KREG_EBP] = regs->r_ebp;
gregs->kregs[KREG_ESP] = regs->r_esp;
gregs->kregs[KREG_CS] = regs->r_cs;
gregs->kregs[KREG_DS] = regs->r_ds;
gregs->kregs[KREG_SS] = regs->r_ss;
gregs->kregs[KREG_ES] = regs->r_es;
gregs->kregs[KREG_FS] = regs->r_fs;
gregs->kregs[KREG_GS] = regs->r_gs;
gregs->kregs[KREG_EFLAGS] = regs->r_efl;
gregs->kregs[KREG_EIP] = regs->r_eip;
gregs->kregs[KREG_UESP] = regs->r_uesp;
gregs->kregs[KREG_TRAPNO] = regs->r_trapno;
gregs->kregs[KREG_ERR] = regs->r_err;
}
void
kt_ia32_init(mdb_tgt_t *t)
{
kt_data_t *kt = t->t_data;
panic_data_t pd;
label_t label;
struct regs regs;
kreg_t *kregs;
uintptr_t addr;
/*
* Initialize the machine-dependent parts of the kernel target
* structure. Once this is complete and we fill in the ops
* vector, the target is now fully constructed and we can use
* the target API itself to perform the rest of our initialization.
*/
kt->k_rds = mdb_ia32_kregs;
kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP);
kt->k_regsize = sizeof (mdb_tgt_gregset_t);
kt->k_dcmd_regs = kt_regs;
kt->k_dcmd_stack = kt_stack;
kt->k_dcmd_stackv = kt_stackv;
kt->k_dcmd_stackr = kt_stackv;
kt->k_dcmd_cpustack = kt_cpustack;
kt->k_dcmd_cpuregs = kt_cpuregs;
t->t_ops = &kt_ia32_ops;
kregs = kt->k_regs->kregs;
(void) mdb_dis_select("ia32");
/*
* Lookup the symbols corresponding to subroutines in locore.s where
* we expect a saved regs structure to be pushed on the stack. When
* performing stack tracebacks we will attempt to detect interrupt
* frames by comparing the %eip value to these symbols.
*/
(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
"cmnint", &kt->k_intr_sym, NULL);
(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
"cmntrap", &kt->k_trap_sym, NULL);
/*
* Don't attempt to load any thread or register information if
* we're examining the live operating system.
*/
if (kt->k_symfile != NULL && strcmp(kt->k_symfile, "/dev/ksyms") == 0)
return;
/*
* If the panicbuf symbol is present and we can consume a panicbuf
* header of the appropriate version from this address, then we can
* initialize our current register set based on its contents.
* Prior to the re-structuring of panicbuf, our only register data
* was the panic_regs label_t, into which a setjmp() was performed,
* or the panic_reg register pointer, which was only non-zero if
* the system panicked as a result of a trap calling die().
*/
if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd),
MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) &&
pd.pd_version == PANICBUFVERS) {
size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff);
panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP);
uint_t i, n;
(void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size,
MDB_TGT_OBJ_EXEC, "panicbuf");
n = (pd_size - (sizeof (panic_data_t) -
sizeof (panic_nv_t))) / sizeof (panic_nv_t);
for (i = 0; i < n; i++) {
(void) kt_putareg(t, kt->k_tid,
pdp->pd_nvdata[i].pnv_name,
pdp->pd_nvdata[i].pnv_value);
}
mdb_free(pdp, pd_size);
return;
}
if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr),
MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != NULL &&
mdb_tgt_vread(t, &regs, sizeof (regs), addr) == sizeof (regs)) {
kt_regs_to_kregs(&regs, kt->k_regs);
return;
}
/*
* If we can't read any panic regs, then our penultimate try is for any
* CPU context that may have been stored (for example, in Xen core
* dumps). As this can only succeed for kernels with the above
* methods available, we let it over-ride the older panic_regs method,
* which will always manage to read the label_t, even if there's
* nothing useful there.
*/
if (kt_kvmregs(t, 0, kt->k_regs) == 0)
return;
if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &label, sizeof (label),
MDB_TGT_OBJ_EXEC, "panic_regs") == sizeof (label)) {
kregs[KREG_EDI] = label.val[0];
kregs[KREG_ESI] = label.val[1];
kregs[KREG_EBX] = label.val[2];
kregs[KREG_EBP] = label.val[3];
kregs[KREG_ESP] = label.val[4];
kregs[KREG_EIP] = label.val[5];
return;
}
warn("failed to read panicbuf, panic_reg and panic_regs -- "
"current register set will be unavailable\n");
}