kvm_amd64dep.c revision ae115bc77f6fcde83175c75b4206dc2e50747966
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Libkvm Kernel Target Intel 64-bit component
*
* This file provides the ISA-dependent portion of the libkvm kernel target.
* For more details on the implementation refer to mdb_kvm.c.
*/
#include <sys/types.h>
#include <sys/reg.h>
#include <sys/frame.h>
#include <sys/stack.h>
#include <sys/sysmacros.h>
#include <sys/panic.h>
#include <sys/privregs.h>
#include <strings.h>
#include <mdb/mdb_target_impl.h>
#include <mdb/mdb_disasm.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_conf.h>
#include <mdb/mdb_kreg_impl.h>
#include <mdb/mdb_amd64util.h>
#include <mdb/mdb_kvm.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_debug.h>
#include <mdb/mdb.h>
static int
kt_getareg(mdb_tgt_t *t, mdb_tgt_tid_t tid,
const char *rname, mdb_tgt_reg_t *rp)
{
const mdb_tgt_regdesc_t *rdp;
kt_data_t *kt = t->t_data;
if (tid != kt->k_tid)
return (set_errno(EMDB_NOREGS));
for (rdp = kt->k_rds; rdp->rd_name != NULL; rdp++) {
if (strcmp(rname, rdp->rd_name) == 0) {
*rp = kt->k_regs->kregs[rdp->rd_num];
return (0);
}
}
return (set_errno(EMDB_BADREG));
}
static int
kt_putareg(mdb_tgt_t *t, mdb_tgt_tid_t tid, const char *rname, mdb_tgt_reg_t r)
{
const mdb_tgt_regdesc_t *rdp;
kt_data_t *kt = t->t_data;
if (tid != kt->k_tid)
return (set_errno(EMDB_NOREGS));
for (rdp = kt->k_rds; rdp->rd_name != NULL; rdp++) {
if (strcmp(rname, rdp->rd_name) == 0) {
kt->k_regs->kregs[rdp->rd_num] = (kreg_t)r;
return (0);
}
}
return (set_errno(EMDB_BADREG));
}
/*ARGSUSED*/
int
kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kt_data_t *kt = mdb.m_target->t_data;
if (argc != 0 || (flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
mdb_amd64_printregs(kt->k_regs);
return (DCMD_OK);
}
/*
* Return a flag indicating if the specified %eip is likely to have an
* interrupt frame on the stack. We do this by comparing the address to the
* range of addresses spanned by several well-known routines, and looking
* to see if the next and previous %ebp values are "far" apart. Sigh.
*/
int
mdb_kvm_intrframe(mdb_tgt_t *t, uintptr_t pc, uintptr_t fp,
uintptr_t prevfp)
{
kt_data_t *kt = t->t_data;
return ((pc >= kt->k_intr_sym.st_value &&
(pc < kt->k_intr_sym.st_value + kt->k_intr_sym.st_size)) ||
(pc >= kt->k_trap_sym.st_value &&
(pc < kt->k_trap_sym.st_value + kt->k_trap_sym.st_size)) ||
(fp >= prevfp + 0x2000) || (fp <= prevfp - 0x2000));
}
static int
kt_stack_common(uintptr_t addr, uint_t flags, int argc,
const mdb_arg_t *argv, mdb_tgt_stack_f *func)
{
kt_data_t *kt = mdb.m_target->t_data;
void *arg = (void *)(uintptr_t)mdb.m_nargs;
mdb_tgt_gregset_t gregs, *grp;
if (flags & DCMD_ADDRSPEC) {
bzero(&gregs, sizeof (gregs));
gregs.kregs[KREG_RBP] = addr;
grp = &gregs;
} else
grp = kt->k_regs;
if (argc != 0) {
if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
return (DCMD_USAGE);
if (argv->a_type == MDB_TYPE_STRING)
arg = (void *)mdb_strtoull(argv->a_un.a_str);
else
arg = (void *)argv->a_un.a_val;
}
(void) mdb_amd64_kvm_stack_iter(mdb.m_target, grp, func, arg);
return (DCMD_OK);
}
static int
kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_frame));
}
static int
kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_framev));
}
const mdb_tgt_ops_t kt_amd64_ops = {
kt_setflags, /* t_setflags */
kt_setcontext, /* t_setcontext */
kt_activate, /* t_activate */
kt_deactivate, /* t_deactivate */
(void (*)()) mdb_tgt_nop, /* t_periodic */
kt_destroy, /* t_destroy */
kt_name, /* t_name */
(const char *(*)()) mdb_conf_isa, /* t_isa */
kt_platform, /* t_platform */
kt_uname, /* t_uname */
kt_dmodel, /* t_dmodel */
kt_aread, /* t_aread */
kt_awrite, /* t_awrite */
kt_vread, /* t_vread */
kt_vwrite, /* t_vwrite */
kt_pread, /* t_pread */
kt_pwrite, /* t_pwrite */
kt_fread, /* t_fread */
kt_fwrite, /* t_fwrite */
(ssize_t (*)()) mdb_tgt_notsup, /* t_ioread */
(ssize_t (*)()) mdb_tgt_notsup, /* t_iowrite */
kt_vtop, /* t_vtop */
kt_lookup_by_name, /* t_lookup_by_name */
kt_lookup_by_addr, /* t_lookup_by_addr */
kt_symbol_iter, /* t_symbol_iter */
kt_mapping_iter, /* t_mapping_iter */
kt_object_iter, /* t_object_iter */
kt_addr_to_map, /* t_addr_to_map */
kt_name_to_map, /* t_name_to_map */
kt_addr_to_ctf, /* t_addr_to_ctf */
kt_name_to_ctf, /* t_name_to_ctf */
kt_status, /* t_status */
(int (*)()) mdb_tgt_notsup, /* t_run */
(int (*)()) mdb_tgt_notsup, /* t_step */
(int (*)()) mdb_tgt_notsup, /* t_step_out */
(int (*)()) mdb_tgt_notsup, /* t_step_branch */
(int (*)()) mdb_tgt_notsup, /* t_next */
(int (*)()) mdb_tgt_notsup, /* t_cont */
(int (*)()) mdb_tgt_notsup, /* t_signal */
(int (*)()) mdb_tgt_null, /* t_add_vbrkpt */
(int (*)()) mdb_tgt_null, /* t_add_sbrkpt */
(int (*)()) mdb_tgt_null, /* t_add_pwapt */
(int (*)()) mdb_tgt_null, /* t_add_vwapt */
(int (*)()) mdb_tgt_null, /* t_add_iowapt */
(int (*)()) mdb_tgt_null, /* t_add_sysenter */
(int (*)()) mdb_tgt_null, /* t_add_sysexit */
(int (*)()) mdb_tgt_null, /* t_add_signal */
(int (*)()) mdb_tgt_null, /* t_add_fault */
kt_getareg, /* t_getareg */
kt_putareg, /* t_putareg */
mdb_amd64_kvm_stack_iter, /* t_stack_iter */
};
void
kt_amd64_init(mdb_tgt_t *t)
{
kt_data_t *kt = t->t_data;
panic_data_t pd;
kreg_t *kregs;
struct regs regs;
uintptr_t addr;
/*
* Initialize the machine-dependent parts of the kernel target
* structure. Once this is complete and we fill in the ops
* vector, the target is now fully constructed and we can use
* the target API itself to perform the rest of our initialization.
*/
kt->k_rds = mdb_amd64_kregs;
kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP);
kt->k_regsize = sizeof (mdb_tgt_gregset_t);
kt->k_dcmd_regs = kt_regs;
kt->k_dcmd_stack = kt_stack;
kt->k_dcmd_stackv = kt_stackv;
kt->k_dcmd_stackr = kt_stackv;
t->t_ops = &kt_amd64_ops;
kregs = kt->k_regs->kregs;
(void) mdb_dis_select("amd64");
/*
* Lookup the symbols corresponding to subroutines in locore.s where
* we expect a saved regs structure to be pushed on the stack. When
* performing stack tracebacks we will attempt to detect interrupt
* frames by comparing the %eip value to these symbols.
*/
(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
"cmnint", &kt->k_intr_sym, NULL);
(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
"cmntrap", &kt->k_trap_sym, NULL);
/*
* Don't attempt to load any thread or register information if
* we're examining the live operating system.
*/
if (strcmp(kt->k_symfile, "/dev/ksyms") == 0)
return;
/*
* If the panicbuf symbol is present and we can consume a panicbuf
* header of the appropriate version from this address, then we can
* initialize our current register set based on its contents.
* Prior to the re-structuring of panicbuf, our only register data
* was the panic_regs label_t, into which a setjmp() was performed,
* or the panic_reg register pointer, which was only non-zero if
* the system panicked as a result of a trap calling die().
*/
if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd),
MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) &&
pd.pd_version == PANICBUFVERS) {
size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff);
panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP);
uint_t i, n;
(void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size,
MDB_TGT_OBJ_EXEC, "panicbuf");
n = (pd_size - (sizeof (panic_data_t) -
sizeof (panic_nv_t))) / sizeof (panic_nv_t);
for (i = 0; i < n; i++) {
(void) kt_putareg(t, kt->k_tid,
pdp->pd_nvdata[i].pnv_name,
pdp->pd_nvdata[i].pnv_value);
}
mdb_free(pdp, pd_size);
} else if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr),
MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != NULL &&
mdb_tgt_vread(t, &regs, sizeof (regs), addr) == sizeof (regs)) {
kregs[KREG_SAVFP] = regs.r_savfp;
kregs[KREG_SAVPC] = regs.r_savpc;
kregs[KREG_RDI] = regs.r_rdi;
kregs[KREG_RSI] = regs.r_rsi;
kregs[KREG_RDX] = regs.r_rdx;
kregs[KREG_RCX] = regs.r_rcx;
kregs[KREG_R8] = regs.r_r8;
kregs[KREG_R9] = regs.r_r9;
kregs[KREG_RAX] = regs.r_rax;
kregs[KREG_RBX] = regs.r_rbx;
kregs[KREG_RBP] = regs.r_rbp;
kregs[KREG_R10] = regs.r_r10;
kregs[KREG_R11] = regs.r_r11;
kregs[KREG_R12] = regs.r_r12;
kregs[KREG_R13] = regs.r_r13;
kregs[KREG_R14] = regs.r_r14;
kregs[KREG_R15] = regs.r_r15;
kregs[KREG_DS] = regs.r_ds;
kregs[KREG_ES] = regs.r_es;
kregs[KREG_FS] = regs.r_fs;
kregs[KREG_GS] = regs.r_gs;
kregs[KREG_TRAPNO] = regs.r_trapno;
kregs[KREG_ERR] = regs.r_err;
kregs[KREG_RIP] = regs.r_rip;
kregs[KREG_CS] = regs.r_cs;
kregs[KREG_RFLAGS] = regs.r_rfl;
kregs[KREG_RSP] = regs.r_rsp;
kregs[KREG_SS] = regs.r_ss;
} else {
warn("failed to read panicbuf and panic_reg -- "
"current register set will be unavailable\n");
}
}