nca.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* NCA mdb module. Provides a collection of dcmds and walkers that
* operate on core NCA data structures. Dependencies on NCA internals
* are described in $SRC/uts/common/inet/nca/nca.h.
*/
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ks.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/sunddi.h>
#include <sys/processor.h>
#include <netinet/in.h>
#include <netinet/ip6.h> /* must come before common.h */
#include <inet/common.h> /* must come before led.h */
#include <inet/led.h> /* must come before ip.h */
#include <inet/ip.h> /* must come before tcp.h */
#include <inet/tcp.h> /* must come before nca/nca.h */
#include <inet/nca/nca.h>
#include <inet/nca/ncadoorhdr.h>
#define NCA_WALK_PLRU (void *)1
#define NCA_WALK_VLRU (void *)2
#define NCA_ADDR_WIDTH 11 /* kernel addresses *shouldn't* be wider */
#define YESNO(bool) ((bool) ? 'Y' : 'n')
/*
* Structure for assigning a name to a region of memory.
*/
typedef struct {
const char *nm_name; /* name of region */
int nm_len; /* length to region */
uintptr_t nm_addr; /* starting address of region */
} namedmem_t;
/*
* Structure for giving a name to a constant.
*/
typedef struct {
const char *const_name; /* name of constant */
int const_value; /* constant itself */
} constname_t;
/*
* Structure for mapping a bit to a name and a description. Instances
* of this datatype should always be arrays which decode bits in a
* number, and the index into the array should contain the description
* of a bit at position "index" in the number being decoded. The list
* must be terminated by an entry with a NULL `bit_name'.
*/
typedef struct {
const char *bit_name; /* name of bit */
const char *bit_descr; /* description of bit's purpose */
} bitname_t;
/*
* Note: These should be defined in upside down order to their
* definitions in nca.h
* (Assumes that current ordering convention in nca.h will
* prevail for future additions)
*/
static const bitname_t node_refs[] = {
{ "REF_UNUSED", "0x00000001" },
{ "REF_UNUSED", "0x00000002" },
{ "REF_UNUSED", "0x00000004" },
{ "REF_UNUSED", "0x00000008" },
{ "REF_UNUSED", "0x00000010" },
{ "REF_UNUSED", "0x00000020" },
{ "REF_UNUSED", "0x00000040" },
{ "REF_UNUSED", "0x00000080" },
{ "REF_UNUSED", "0x00000100" },
{ "REF_UNUSED", "0x00000200" },
{ "REF_UNUSED", "0x00000400" },
{ "REF_SEGMAP", "segmapped (PHYS|VIRT)" },
{ "REF_NCAFS", "NCAfs required" },
{ "REF_VNODE", "vnode hashed" },
{ "REF_ERROR", "errored" },
{ "REF_OWNED", "owned (won't be freed)" },
{ "REF_UPCALL", "upcall not completed yet" },
{ "REF_CTAG", "CTAG hashed" },
{ "REF_PREEMPT", "processing preempted" },
{ "REF_ONVLRU", "on virtual memory LRU list" },
{ "REF_ONPLRU", "on physical memory LRU list" },
{ "REF_MISS", "in miss processing" },
{ "REF_NOLRU", "not safe for LRU reclaim" },
{ "REF_RESP", "done parsing response header" },
{ "REF_FILE", "reachable through filename hash" },
{ "REF_SAFED", "not safe for use" },
{ "REF_DONE", "done with miss processing" },
{ "REF_KMEM", "content-backed via kmem_alloc()" },
{ "REF_CKSUM", "checksum mapping in-use" },
{ "REF_VIRT", "virtually mapped (data valid)" },
{ "REF_PHYS", "physically mapped (pp valid)" },
{ "REF_URI", "reachable through URI hash" },
{ NULL }
};
static const bitname_t advise_types[] = {
{ "ADVISE", "" },
{ "ADVISE_REPLACE", "replace cached object with provided object" },
{ "ADVISE_FLUSH", "flush cached object" },
{ "ADVISE_TEMP", "return this object; keep cached object" },
{ NULL }
};
/*
* Print `len' bytes of buffer `buf'. Handle nonprintable characters
* specially.
*/
static void
printbuf(uint8_t *buf, size_t len)
{
size_t i;
/*
* TODO: display octal form of unprintable characters in dim mode
* once mdb pager bug is fixed.
*/
for (i = 0; i < len; i++)
mdb_printf(isgraph(buf[i]) ? "%c" : "\\%#o", buf[i]);
mdb_printf("\n");
}
/*
* Convert HTTP method operation `method' to a name.
*/
static const char *
method2name(unsigned int method)
{
unsigned int i;
static constname_t http_methods[] = {
{ "NCA_UNKNOWN", NCA_UNKNOWN },
{ "NCA_OPTIONS", NCA_OPTIONS },
{ "NCA_GET", NCA_GET },
{ "NCA_HEAD", NCA_HEAD },
{ "NCA_POST", NCA_POST },
{ "NCA_PUT", NCA_PUT },
{ "NCA_DELETE", NCA_DELETE },
{ "NCA_TRACE", NCA_TRACE },
{ "NCA_RAW", NCA_RAW },
{ NULL }
};
for (i = 0; http_methods[i].const_name != NULL; i++) {
if (method == http_methods[i].const_value)
return (http_methods[i].const_name);
}
return ("<unknown>");
}
/*
* Convert TCP state `state' to a name.
*/
static const char *
state2name(int state)
{
unsigned int i;
static constname_t tcp_states[] = {
{ "CLOSED", TCPS_CLOSED },
{ "IDLE", TCPS_IDLE },
{ "BOUND", TCPS_BOUND },
{ "LISTEN", TCPS_LISTEN },
{ "SYN_SENT", TCPS_SYN_SENT },
{ "SYN_RCVD", TCPS_SYN_RCVD },
{ "ESTABLISHED", TCPS_ESTABLISHED },
{ "CLOSE_WAIT", TCPS_CLOSE_WAIT },
{ "FIN_WAIT1", TCPS_FIN_WAIT_1 },
{ "FIN_WAIT2", TCPS_FIN_WAIT_2 },
{ "CLOSING", TCPS_CLOSING },
{ "LAST_ACK", TCPS_LAST_ACK },
{ "TIME_WAIT", TCPS_TIME_WAIT },
{ NULL }
};
for (i = 0; tcp_states[i].const_name != NULL; i++) {
if (state == tcp_states[i].const_value)
return (tcp_states[i].const_name);
}
return ("<unknown>");
}
/*
* Convert an nca_io2_t direct_type into a name.
*/
static const char *
direct2name(unsigned int type)
{
unsigned int i;
static const constname_t direct_types[] = {
{ "DIRECT_NONE", NCA_IO_DIRECT_NONE },
{ "DIRECT_FILENAME", NCA_IO_DIRECT_FILENAME },
{ "DIRECT_SHMSEG", NCA_IO_DIRECT_SHMSEG },
{ "DIRECT_FILEDESC", NCA_IO_DIRECT_FILEDESC },
{ "DIRECT_CTAG", NCA_IO_DIRECT_CTAG },
{ "DIRECT_SPLICE", NCA_IO_DIRECT_SPLICE },
{ "DIRECT_TEE", NCA_IO_DIRECT_TEE },
{ "DIRECT_FILE_FD", NCA_IO_DIRECT_FILE_FD },
{ NULL, 0 }
};
for (i = 0; direct_types[i].const_name != NULL; i++) {
if (type == direct_types[i].const_value)
return (direct_types[i].const_name);
}
return ("<unknown>");
}
/*
* Convert an nca_io2_t operation into a name.
*/
static const char *
op2name(nca_op_t op)
{
unsigned int i;
static const constname_t op_types[] = {
{ "http", http_op },
{ "error", error_op },
{ "error_retry", error_retry_op },
{ "resource", resource_op },
{ "timeout", timeout_op },
{ "door_attach", door_attach_op },
{ "log", log_op },
{ "log_ok", log_ok_op },
{ "log_error", log_error_op },
{ "log_op_fiov", log_op_fiov },
{ NULL, 0 }
};
for (i = 0; op_types[i].const_name != NULL; i++) {
if (op == op_types[i].const_value)
return (op_types[i].const_name);
}
return ("<unknown>");
}
/*
* Convert from ticks to milliseconds.
*/
static uint64_t
tick2msec(uint64_t tick)
{
static int tick_per_msec;
static int msec_per_tick;
static int once;
if (once == 0) {
if (mdb_readvar(&tick_per_msec, "tick_per_msec") == -1) {
mdb_warn("cannot read symbol tick_per_msec");
return (0);
}
if (mdb_readvar(&msec_per_tick, "msec_per_tick") == -1) {
mdb_warn("cannot read symbol msec_per_tick");
return (0);
}
once++;
}
return (tick_per_msec ? tick / tick_per_msec : tick * msec_per_tick);
}
/*
* Print the core fields in an nca_io2_t. With the "-v" argument,
* provide more verbose output. With the "-p" argument, print payload
* information.
*/
static int
nca_io2(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
unsigned int i;
unsigned int payload_len;
uint64_t payload_output_max = 0;
unsigned int verbose = FALSE;
const int IO2_ADVDELT = NCA_ADDR_WIDTH + 1;
boolean_t arm;
nca_io2_t io2;
uint8_t *buf;
namedmem_t area[3];
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &verbose,
'p', MDB_OPT_UINT64, &payload_output_max, NULL) != argc)
return (DCMD_USAGE);
if (!DCMD_HDRSPEC(flags) && verbose)
mdb_printf("\n\n");
if (DCMD_HDRSPEC(flags) || verbose) {
mdb_printf("%<u>%-*s %2s %4s %8s %*s %8s %16s %-12s%</u>\n",
NCA_ADDR_WIDTH, "ADDR", "AV", "MFNP", "TID",
NCA_ADDR_WIDTH, "CONN", "CONN_TAG", "CACHE_TAG",
"OPERATION");
}
if (mdb_vread(&io2, sizeof (nca_io2_t), addr) == -1) {
mdb_warn("cannot read nca_io2_t at %p", addr);
return (DCMD_ERR);
}
if (io2.version != NCA_HTTP_VERSION2)
mdb_warn("nca_io2_t at %p has incorrect version `%u'\n", addr,
io2.version);
mdb_printf("%0*p %02x %c%c%c%c %08x %0*llx %08x %016llx %s\n",
NCA_ADDR_WIDTH, addr, io2.advisory, YESNO(io2.more),
YESNO(io2.first), YESNO(io2.nocache), YESNO(io2.preempt),
(uint32_t)io2.tid, NCA_ADDR_WIDTH, io2.cid, io2.tag, io2.ctag,
op2name(io2.op));
if (verbose) {
arm = B_TRUE;
for (i = 0; advise_types[i].bit_name != NULL; i++) {
if ((io2.advisory & (1 << i)) == 0)
continue;
if (arm) {
mdb_printf("%*s|\n", IO2_ADVDELT, "");
mdb_printf("%*s+--> ", IO2_ADVDELT, "");
arm = B_FALSE;
} else
mdb_printf("%*s ", IO2_ADVDELT, "");
mdb_printf("%-15s %s\n", advise_types[i].bit_name,
advise_types[i].bit_descr);
}
}
payload_len = io2.data_len + io2.direct_len + io2.trailer_len;
if (payload_output_max == 0 || payload_len == 0)
return (DCMD_OK);
mdb_inc_indent(4);
mdb_printf("\n%u byte payload consists of:\n", payload_len);
mdb_inc_indent(4);
buf = mdb_alloc(payload_output_max, UM_SLEEP);
area[0].nm_name = "data";
area[0].nm_addr = addr + io2.data;
area[0].nm_len = io2.data_len;
area[1].nm_name = direct2name(io2.direct_type);
area[1].nm_addr = addr + io2.direct;
area[1].nm_len = io2.direct_len;
area[2].nm_name = "trailer";
area[2].nm_addr = addr + io2.trailer;
area[2].nm_len = io2.trailer_len;
for (i = 0; i < sizeof (area) / sizeof (area[0]); i++) {
if (area[i].nm_len <= 0)
continue;
mdb_printf("%d byte %s area at %p (", area[i].nm_len,
area[i].nm_name, area[i].nm_addr);
if (area[i].nm_len > payload_output_max) {
mdb_printf("first");
area[i].nm_len = (int)payload_output_max;
} else
mdb_printf("all");
mdb_printf(" %u bytes follow):\n", area[i].nm_len);
if (mdb_vread(buf, area[i].nm_len, area[i].nm_addr) == -1)
mdb_warn("cannot read %s area at %p", area[i].nm_name,
area[i].nm_addr);
else {
mdb_inc_indent(4);
printbuf(buf, area[i].nm_len);
mdb_dec_indent(4);
}
}
mdb_dec_indent(4);
mdb_dec_indent(4);
mdb_free(buf, payload_output_max);
return (DCMD_OK);
}
static void
nca_io2_help(void)
{
mdb_printf("Print the core information for a given NCA nca_io2_t.\n");
mdb_printf("Options:\n");
mdb_printf("\t-p N\tshow up to N bytes of payload information from\n");
mdb_printf("\t\teach payload area\n");
mdb_printf("\t\t(reminder: default radix is %<b>hex%</b>)\n");
mdb_printf("\t-v\tbe verbose (more descriptive)\n");
}
/*
* Print the core fields for one or all NCA timers. If no address is
* specified, all NCA timers are printed; otherwise the specified timer
* list is printed. With the "-e" argument, the "encapsulated" pointer
* for each te_t in a given tb_t is shown in parentheses.
*/
static int
nca_timer(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
unsigned int show_encap = FALSE;
void *tb_addr, *te_addr;
clock_t lbolt, first_exec = 0;
ti_t ti;
tb_t tb;
te_t te;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("nca_timer", "nca_timer", argc, argv) == -1) {
mdb_warn("cannot walk timer list");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv, 'e', MDB_OPT_SETBITS, TRUE, &show_encap,
NULL) != argc)
return (DCMD_USAGE);
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%-*s %-*s %-55s%</u>\n", NCA_ADDR_WIDTH, "TI",
NCA_ADDR_WIDTH, "SQUEUE", "FIRELIST +MSEC");
}
if (mdb_vread(&ti, sizeof (ti_t), addr) == -1) {
mdb_warn("cannot read ti_t at %p", addr);
return (DCMD_ERR);
}
if (mdb_readvar(&lbolt, "lbolt") == -1) {
mdb_warn("cannot read symbol lbolt");
return (DCMD_ERR);
}
mdb_printf("%0*p %0*p", NCA_ADDR_WIDTH, addr, NCA_ADDR_WIDTH, ti.ep);
mdb_inc_indent(24);
for (tb_addr = ti.head; tb_addr != NULL; tb_addr = tb.next) {
if (mdb_vread(&tb, sizeof (tb_t), (uintptr_t)tb_addr) == -1) {
mdb_warn("cannot read tb_t at %p", tb_addr);
return (DCMD_ERR);
}
if (first_exec == 0) {
mdb_printf(" %ld", tick2msec(tb.exec - lbolt));
first_exec = tb.exec;
} else
mdb_printf(" %+lld", tick2msec(tb.exec - first_exec));
if (!show_encap || tb.head == NULL)
continue;
mdb_printf("(");
for (te_addr = tb.head; te_addr != NULL; te_addr = te.next) {
if (mdb_vread(&te, sizeof (te_t), (uintptr_t)te_addr)
== -1) {
mdb_warn("cannot read te_t at %p", te_addr);
return (DCMD_ERR);
}
mdb_printf("%0p%s", te.ep, te.next == NULL ? "" : " ");
}
mdb_printf(")");
}
mdb_printf("\n");
mdb_dec_indent(24);
return (DCMD_OK);
}
static void
nca_timer_help(void)
{
mdb_printf("Print the core information for one or all NCA timer\n");
mdb_printf("lists. If no timer list is given, then all timer lists\n");
mdb_printf("are shown. For each timer list, the list of timers to\n");
mdb_printf("fire on that list are shown, the first in absolute\n");
mdb_printf("ticks and the rest in ticks relative to the first.\n\n");
mdb_printf("Options:\n");
mdb_printf("\t-e\tshow the encapsulating pointer for each event ");
mdb_printf("at each fire time\n");
}
/*
* Print the core fields in an NCA node_t. With the "-r" argument,
* provide additional information about the request; with "-v",
* provide more verbose output.
*/
static int
nca_node(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
unsigned int i, max;
unsigned int verbose = FALSE;
unsigned int request = FALSE;
const int NODE_REFDELT = NCA_ADDR_WIDTH + 4 + 2;
boolean_t arm;
node_t node;
char *buf;
namedmem_t hdr[4];
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &verbose,
'r', MDB_OPT_SETBITS, TRUE, &request, 'p', NULL) != argc)
return (DCMD_USAGE);
if (!DCMD_HDRSPEC(flags) && verbose)
mdb_printf("\n\n");
if (DCMD_HDRSPEC(flags) || verbose) {
mdb_printf("%<u>%-*s %4s %5s %8s %-*s %-*s %-*s %-*s%</u>\n",
NCA_ADDR_WIDTH, "ADDR", "REF", "STATE", "DATASIZE",
NCA_ADDR_WIDTH, "SQUEUE", NCA_ADDR_WIDTH, "REQUEST",
NCA_ADDR_WIDTH, "PLRUN", NCA_ADDR_WIDTH, "VLRUN");
}
if (mdb_vread(&node, sizeof (node_t), addr) == -1) {
mdb_warn("cannot read node_t at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%0*p %4d %05x %8d %0*p %0*p %0*p %0*p\n",
NCA_ADDR_WIDTH, addr, node.cnt, node.ref,
node.datasz, NCA_ADDR_WIDTH, node.sqp, NCA_ADDR_WIDTH,
node.req, NCA_ADDR_WIDTH, node.plrunn, NCA_ADDR_WIDTH, node.vlrunn);
if (verbose) {
arm = B_TRUE;
for (i = 0; node_refs[i].bit_name != NULL; i++) {
if ((node.ref & (1 << i)) == 0)
continue;
if (arm) {
mdb_printf("%*s|\n", NODE_REFDELT, "");
mdb_printf("%*s+--> ", NODE_REFDELT, "");
arm = B_FALSE;
} else
mdb_printf("%*s ", NODE_REFDELT, "");
mdb_printf("%-12s %s\n", node_refs[i].bit_name,
node_refs[i].bit_descr);
}
}
if (!request || node.req == NULL)
return (DCMD_OK);
mdb_inc_indent(4);
mdb_printf("\n%u byte HTTP/%u.%u %s request (%u bytes in header, "
"%u in content)\n", node.reqsz, node.version >> 16,
node.version & 0xff, method2name(node.method), node.reqhdrsz,
node.reqcontl);
hdr[0].nm_name = "URI";
hdr[0].nm_addr = (uintptr_t)node.path;
hdr[0].nm_len = node.pathsz;
hdr[1].nm_name = "Accept";
hdr[1].nm_addr = (uintptr_t)node.reqaccept;
hdr[1].nm_len = node.reqacceptsz;
hdr[2].nm_name = "Accept-Language";
hdr[2].nm_addr = (uintptr_t)node.reqacceptl;
hdr[2].nm_len = node.reqacceptlsz;
hdr[3].nm_name = "Host";
hdr[3].nm_addr = (uintptr_t)node.reqhost;
hdr[3].nm_len = node.reqhostsz;
/*
* A little optimization. Allocate all of the necessary memory here,
* so we don't have to allocate on each loop iteration.
*/
max = node.reqhdrsz;
for (i = 0; i < 4; i++)
max = MAX(max, hdr[i].nm_len);
max++;
buf = mdb_alloc(max, UM_SLEEP);
mdb_inc_indent(4);
for (i = 0; i < sizeof (hdr) / sizeof (hdr[0]); i++) {
if (hdr[i].nm_len <= 0)
continue;
if (mdb_vread(buf, hdr[i].nm_len, hdr[i].nm_addr) == -1) {
mdb_warn("cannot read \"%s\" header field at %p",
hdr[i].nm_name, hdr[i].nm_addr);
continue;
}
buf[hdr[i].nm_len] = '\0';
mdb_printf("%s: ", hdr[i].nm_name);
mdb_inc_indent(4);
mdb_printf("%s\n", buf);
mdb_dec_indent(4);
}
if (node.reqhdrsz > 0 && verbose) {
if (mdb_vread(buf, node.reqhdrsz, (uintptr_t)node.reqhdr) == -1)
mdb_warn("cannot read header at %p", node.reqhdr);
else {
mdb_printf("Raw header: ");
mdb_inc_indent(4);
printbuf((uint8_t *)buf, node.reqhdrsz);
mdb_dec_indent(4);
}
}
mdb_dec_indent(4);
mdb_dec_indent(4);
mdb_free(buf, max);
return (DCMD_OK);
}
static void
nca_node_help(void)
{
mdb_printf("Print the core information for a given NCA node_t.\n\n");
mdb_printf("Options:\n");
mdb_printf("\t-r\tdisplay HTTP request information\n");
mdb_printf("\t-v\tbe verbose (more descriptive)\n");
}
/*
* Print the core fields in an NCA nca_conn_t. With the "-t" argument, skip
* all nca_conn_t's that are in the TIME_WAIT state. With the "-x" argument,
* show the xmit data.
*/
static int
nca_conn(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
unsigned int i;
nca_conn_t conn;
unsigned int show_timewait = TRUE;
unsigned int show_xmit = FALSE;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv, 'x', MDB_OPT_SETBITS, TRUE, &show_xmit,
't', MDB_OPT_CLRBITS, TRUE, &show_timewait, NULL) != argc)
return (DCMD_USAGE);
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%-*s %3s %8s %15s %15s %-*s %-10s%</u>\n",
NCA_ADDR_WIDTH, "ADDR", "REF", "CREATE", "LOCAL_ADDR",
"REMOTE_ADDR", NCA_ADDR_WIDTH, "NODE", "STATE");
}
if (mdb_vread(&conn, sizeof (nca_conn_t), addr) == -1) {
mdb_warn("cannot read nca_conn_t at %p", addr);
return (DCMD_ERR);
}
if (!show_timewait && conn.tcp_state == TCPS_TIME_WAIT)
return (DCMD_OK);
mdb_printf("%0*p %3d %8lx %15I %15I %0*p %s\n", NCA_ADDR_WIDTH, addr,
conn.ref, conn.create, conn.laddr, conn.faddr, NCA_ADDR_WIDTH,
conn.req_np, state2name(conn.tcp_state));
if (show_xmit) {
mdb_inc_indent(4);
for (i = 0; i < TCP_XMIT_MAX_IX; i++) {
mdb_printf("xmit[%d]\n", i);
mdb_printf("\tref pointer\t\t%p\n", conn.xmit[i].np);
mdb_printf("\tdata pointer\t\t%p\n", conn.xmit[i].dp);
mdb_printf("\tcksum array\t\t%p\n", conn.xmit[i].cp);
mdb_printf("\tremaining xmit data\t%d\n",
conn.xmit[i].sz);
mdb_printf("\tref to node_t\t\t%p\n",
conn.xmit[i].refed);
mdb_printf("\tremaining segment data\t%d\n",
conn.xmit[i].dsz);
mdb_printf("\tvirtual pointer\t\t%p\n",
conn.xmit[i].dvp);
}
mdb_dec_indent(4);
}
return (DCMD_OK);
}
static void
nca_conn_help(void)
{
mdb_printf("Print the core information for a given NCA "
"nca_conn_t.\n\n");
mdb_printf("Options:\n");
mdb_printf("\t-t\tskip connections in the TIME_WAIT state\n");
mdb_printf("\t-x\tshow TCP XMIT information\n");
}
/*
* Print the core TCP-related fields in an NCA nca_conn_t. With the "-t"
* argument, skips all nca_conn_t's that are in the TIME_WAIT state.
*/
static int
nca_tcpconn(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
nca_conn_t conn;
unsigned int show_timewait = TRUE;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv, 't', MDB_OPT_CLRBITS, TRUE, &show_timewait,
NULL) != argc)
return (DCMD_USAGE);
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%-*s %21s %5s %8s %5s %8s %5s %-9s%</u>\n",
NCA_ADDR_WIDTH, "ADDR", "REMOTE_ADDR", "SWIND", "SUNASEQ",
"SNSEQ", "RACKSEQ", "RNSEQ", "STATE");
}
if (mdb_vread(&conn, sizeof (nca_conn_t), addr) == -1) {
mdb_warn("cannot read nca_conn_t at %p", addr);
return (DCMD_ERR);
}
if (!show_timewait && conn.tcp_state == TCPS_TIME_WAIT)
return (DCMD_OK);
mdb_nhconvert(&conn.conn_fport, &conn.conn_fport, sizeof (in_port_t));
mdb_printf("%0*p %15I:%05hu %5u %08x %+5d %08x %+5d %-9s\n",
NCA_ADDR_WIDTH, addr, conn.faddr, conn.conn_fport, conn.tcp_swnd,
conn.tcp_suna, conn.tcp_snxt - conn.tcp_suna, conn.tcp_rack,
conn.tcp_rnxt - conn.tcp_rack, state2name(conn.tcp_state));
return (DCMD_OK);
}
static void
nca_tcpconn_help(void)
{
mdb_printf("Print the core TCP-related information for a given ");
mdb_printf("NCA nca_conn_t.\n\n");
mdb_printf("Options:\n");
mdb_printf("\t-t\tskip connections in the TIME_WAIT state\n");
}
/*
* Initialize a walk for the NCA connection fanout table. Note that
* local walks are not supported since they're more trouble than
* they're worth.
*/
static int
nca_connf_walk_init(mdb_walk_state_t *wsp)
{
int fanout_size;
if (wsp->walk_addr != 0) {
mdb_warn("nca_connf_walk does not support local walks\n");
return (WALK_DONE);
}
if (mdb_readvar(&wsp->walk_addr, "nca_conn_fanout") == -1) {
mdb_warn("cannot read symbol nca_conn_fanout");
return (WALK_ERR);
}
if (mdb_readvar(&fanout_size, "nca_conn_fanout_size") == -1) {
mdb_warn("cannot read symbol nca_conn_fanout_size");
return (WALK_ERR);
}
wsp->walk_data = (void *)(uintptr_t)fanout_size;
return (WALK_NEXT);
}
/*
* Walk the NCA connection fanout table; `wsp->walk_data' is used to keep
* track of the number of indicies that are left to walk so we know when
* to stop.
*/
static int
nca_connf_walk_step(mdb_walk_state_t *wsp)
{
connf_t connf;
nca_conn_t conn;
int status;
intptr_t i = (intptr_t)wsp->walk_data;
if (i-- <= 0)
return (WALK_DONE);
if (mdb_vread(&connf, sizeof (connf_t), wsp->walk_addr) == -1) {
mdb_warn("cannot read connf_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
/*
* No point in walking the fanout if there are no
* connections in it.
*/
if (connf.head != NULL) {
/*
* Point to the nca_conn_t instead of the connf_t so that output
* can be piped to ::nca_conn dcmd.
*/
if (mdb_vread(&conn, sizeof (nca_conn_t),
(uintptr_t)connf.head) == -1) {
mdb_warn("cannot read nca_conn_t at %p", connf.head);
return (WALK_ERR);
}
status = wsp->walk_callback((uintptr_t)connf.head, &conn,
wsp->walk_cbdata);
} else {
status = WALK_NEXT;
}
wsp->walk_data = (void *)i;
wsp->walk_addr += sizeof (connf_t);
return (status);
}
/*
* Initialize a walk for the NCA node fanout tables. Note that local
* walks are not supported since they're more trouble than they're
* worth.
*/
static int
nca_nodef_walk_init(mdb_walk_state_t *wsp)
{
char varname[256];
uint32_t size;
if (wsp->walk_addr != 0) {
mdb_warn("nca_nodef_walk does not support local walks\n");
return (WALK_DONE);
}
if (mdb_readvar(&wsp->walk_addr, wsp->walk_arg) == -1) {
mdb_warn("cannot read symbol %s", wsp->walk_arg);
return (WALK_ERR);
}
mdb_snprintf(varname, sizeof (varname), "%s_sz", wsp->walk_arg);
if (mdb_readvar(&size, varname) == -1) {
mdb_warn("cannot read symbol %s", varname);
return (WALK_ERR);
}
wsp->walk_data = (void *)(uintptr_t)size;
return (WALK_NEXT);
}
/*
* Walk the NCA node fanout table; `wsp->walk_data' is used to keep
* track of the number of indicies that are left to walk so we know
* when to stop.
*/
static int
nca_nodef_walk_step(mdb_walk_state_t *wsp)
{
nodef_t nodef;
node_t node;
int status;
intptr_t i = (intptr_t)wsp->walk_data;
if (i-- <= 0)
return (WALK_DONE);
if (mdb_vread(&nodef, sizeof (nodef_t), wsp->walk_addr) == -1) {
mdb_warn("cannot read nodef_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &nodef, wsp->walk_cbdata);
wsp->walk_data = (void *)i;
wsp->walk_addr += sizeof (nodef_t);
if (nodef.head != NULL) {
/*
* Point to the node_t instead of the nodef_t so that output
* can be piped to ::nca_node dcmd.
*/
if (mdb_vread(&node, sizeof (node),
(uintptr_t)nodef.head) == -1) {
mdb_warn("cannot read node_t at %p", nodef.head);
return (WALK_ERR);
}
status = wsp->walk_callback((uintptr_t)nodef.head,
&node, wsp->walk_cbdata);
} else {
status = WALK_NEXT;
}
return (status);
}
/*
* Initialize a walk for the NCA CPU table. Note that local walks
* are not supported since they're more trouble than they're worth.
*/
static int
nca_cpu_walk_init(mdb_walk_state_t *wsp)
{
int ncpus;
if (wsp->walk_addr != 0) {
mdb_warn("nca_cpu_walk does not support local walks\n");
return (WALK_DONE);
}
if (mdb_readvar(&wsp->walk_addr, "nca_gv") == -1) {
mdb_warn("cannot read symbol nca_gv");
return (WALK_ERR);
}
if (mdb_readvar(&ncpus, "ncpus") == -1) {
mdb_warn("cannot read symbol ncpus");
return (WALK_ERR);
}
wsp->walk_data = (void *)(uintptr_t)ncpus;
return (WALK_NEXT);
}
/*
* Walk the NCA CPU table; `wsp->walk_data' is used to keep track of the
* number of CPUs that are left to walk so we know when to stop.
*/
static int
nca_cpu_walk_step(mdb_walk_state_t *wsp)
{
nca_cpu_t cpu;
int status;
intptr_t curcpu = (intptr_t)wsp->walk_data;
if (curcpu-- <= 0)
return (WALK_DONE);
if (mdb_vread(&cpu, sizeof (nca_cpu_t), wsp->walk_addr) == -1) {
mdb_warn("cannot read nca_cpu_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &cpu, wsp->walk_cbdata);
wsp->walk_data = (void *)curcpu;
wsp->walk_addr += sizeof (nca_cpu_t);
return (status);
}
/*
* Initialize a walk for the NCA timer list. Note that local walks
* are not supported since this walk is layered on top of "nca_cpu"
* which doesn't support them (and they're not too useful here anyway).
*/
static int
nca_timer_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr != 0) {
mdb_warn("nca_timer_walk does not support local walks\n");
return (WALK_DONE);
}
if (mdb_layered_walk("nca_cpu", wsp) == -1) {
mdb_warn("cannot walk nca_cpu");
return (WALK_ERR);
}
return (WALK_NEXT);
}
/*
* Walk the NCA timer list; done as a layered walk on top of "nca_cpu".
*/
static int
nca_timer_walk_step(mdb_walk_state_t *wsp)
{
const nca_cpu_t *nca_cpu = wsp->walk_layer;
ti_t ti;
/*
* Just skip CPUs that don't have any timers running.
*/
if (nca_cpu->tcp_ti == NULL)
return (WALK_NEXT);
if (mdb_vread(&ti, sizeof (ti_t), (uintptr_t)nca_cpu->tcp_ti) == -1) {
mdb_warn("cannot read ti_t at %p", nca_cpu->tcp_ti);
return (WALK_ERR);
}
return (wsp->walk_callback((uintptr_t)nca_cpu->tcp_ti, &ti,
wsp->walk_cbdata));
}
/*
* Initialize a walk for NCA node LRUs; the type of LRU to walk should
* be specified through `wsp->walk_arg'. If no starting location for
* the walk is given, `wsp->walk_addr' is set to the head of the
* appropriate LRU.
*/
static int
nca_node_lru_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
lru_t lru;
if (wsp->walk_addr != 0)
return (WALK_NEXT);
/*
* We do this instead of mdb_readvar() so that we catch changes
* in the size of the lru_t structure.
*/
if (mdb_lookup_by_name("nca_lru", &sym) == -1) {
mdb_warn("cannot lookup symbol nca_lru");
return (WALK_ERR);
}
if (sym.st_size != sizeof (lru)) {
mdb_warn("nca_lru object size mismatch\n");
return (WALK_ERR);
}
if (mdb_vread(&lru, sym.st_size, (uintptr_t)sym.st_value) == -1) {
mdb_warn("cannot read nca_lru at %p", sym.st_value);
return (WALK_ERR);
}
if (wsp->walk_arg == NCA_WALK_PLRU)
wsp->walk_addr = (uintptr_t)lru.phead;
else
wsp->walk_addr = (uintptr_t)lru.vhead;
return (WALK_NEXT);
}
/*
* Walk the NCA node LRUs; the type of LRU to walk should be specified
* through `wsp->walk_arg'.
*/
static int
nca_node_lru_walk_step(mdb_walk_state_t *wsp)
{
node_t node;
int status;
if (wsp->walk_addr == 0)
return (WALK_DONE);
if (mdb_vread(&node, sizeof (node_t), wsp->walk_addr) == -1) {
mdb_warn("cannot read node_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &node, wsp->walk_cbdata);
if (wsp->walk_arg == NCA_WALK_PLRU)
wsp->walk_addr = (uintptr_t)node.plrunn;
else
wsp->walk_addr = (uintptr_t)node.vlrunn;
return (status);
}
/*
* Walk the NCA node structures; follows node_t next pointers from a
* given offset, specified through `wsp->walk_arg'.
*/
static int
nca_node_walk_step(mdb_walk_state_t *wsp)
{
node_t node;
int status;
if (wsp->walk_addr == 0) {
mdb_warn("nca_node_walk does not support global walks\n");
return (WALK_DONE);
}
if (mdb_vread(&node, sizeof (node_t), wsp->walk_addr) == -1) {
mdb_warn("cannot read node_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &node, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
/* LINTED */
wsp->walk_addr = *(uintptr_t *)((caddr_t)&node +
(uint_t)(uintptr_t)wsp->walk_arg);
if (wsp->walk_addr == 0)
return (WALK_DONE);
return (WALK_NEXT);
}
/*
* Walk the NCA connection structures; follows nca_conn_t next pointers
* from a given offset, specified through `wsp->walk_arg'.
*/
static int
nca_conn_walk_step(mdb_walk_state_t *wsp)
{
nca_conn_t conn;
int status;
if (wsp->walk_addr == 0) {
mdb_warn("nca_conn_walk does not support global walks\n");
return (WALK_DONE);
}
if (mdb_vread(&conn, sizeof (nca_conn_t), wsp->walk_addr) == -1) {
mdb_warn("cannot read nca_conn_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &conn, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
/* LINTED */
wsp->walk_addr = *(uintptr_t *)((caddr_t)&conn +
(uint_t)(uintptr_t)wsp->walk_arg);
if (wsp->walk_addr == 0)
return (WALK_DONE);
return (WALK_NEXT);
}
static const mdb_dcmd_t dcmds[] = {
{ "nca_conn", ":[-tx]", "print core NCA nca_conn_t info", nca_conn,
nca_conn_help },
{ "nca_tcpconn", ":[-t]", "print TCP NCA nca_conn_t info",
nca_tcpconn, nca_tcpconn_help },
{ "nca_io2", ":[-pv]", "print core NCA io2_t info", nca_io2,
nca_io2_help },
{ "nca_node", ":[-rv]", "print core NCA node_t info", nca_node,
nca_node_help },
{ "nca_timer", "?[-e]", "print core NCA timer info", nca_timer,
nca_timer_help },
{ NULL }
};
static const mdb_walker_t walkers[] = {
{ "nca_conn_hash", "walk the NCA connection hash chain", 0,
nca_conn_walk_step, 0, (void *)OFFSETOF(nca_conn_t, hashnext) },
{ "nca_conn_bind", "walk the NCA connection bind chain", 0,
nca_conn_walk_step, 0, (void *)OFFSETOF(nca_conn_t, bindnext) },
{ "nca_conn_miss", "walk the NCA connection miss chain", 0,
nca_conn_walk_step, 0, (void *)OFFSETOF(nca_conn_t, nodenext) },
{ "nca_conn_tw", "walk the NCA connection TIME_WAIT chain", 0,
nca_conn_walk_step, 0, (void *)OFFSETOF(nca_conn_t, twnext) },
{ "nca_node_file", "walk the NCA node file chain", 0,
nca_node_walk_step, 0, (void *)OFFSETOF(node_t, filenext) },
{ "nca_node_hash", "walk the NCA node hash chain", 0,
nca_node_walk_step, 0, (void *)OFFSETOF(node_t, hashnext) },
{ "nca_node_chunk", "walk the NCA node chunk chain", 0,
nca_node_walk_step, 0, (void *)OFFSETOF(node_t, next) },
{ "nca_node_ctag", "walk the NCA node ctag chain", 0,
nca_node_walk_step, 0, (void *)OFFSETOF(node_t, ctagnext) },
{ "nca_node_plru", "walk the NCA node physical LRU chain",
nca_node_lru_walk_init, nca_node_lru_walk_step, 0, NCA_WALK_PLRU },
{ "nca_node_vlru", "walk the NCA node virtual LRU chain",
nca_node_lru_walk_init, nca_node_lru_walk_step, 0, NCA_WALK_VLRU },
{ "nca_uri_hash", "walk the NCA URI node hash table",
nca_nodef_walk_init, nca_nodef_walk_step, 0, "ncaurihash" },
{ "nca_file_hash", "walk the NCA file node hash table",
nca_nodef_walk_init, nca_nodef_walk_step, 0, "ncafilehash" },
{ "nca_ctag_hash", "walk the NCA ctag node hash table",
nca_nodef_walk_init, nca_nodef_walk_step, 0, "ncactaghash" },
{ "nca_vnode_hash", "walk the NCA vnode node hash table",
nca_nodef_walk_init, nca_nodef_walk_step, 0, "ncavnodehash" },
{ "nca_cpu", "walk the NCA CPU table",
nca_cpu_walk_init, nca_cpu_walk_step },
{ "nca_timer", "walk the NCA timer table",
nca_timer_walk_init, nca_timer_walk_step },
{ "nca_connf", "walk the NCA connection fanout",
nca_connf_walk_init, nca_connf_walk_step },
{ NULL }
};
static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
const mdb_modinfo_t *
_mdb_init(void)
{
return (&modinfo);
}