genunix.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <mdb/mdb_param.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ks.h>
#include <mdb/mdb_ctf.h>
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/session.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/var.h>
#include <sys/t_lock.h>
#include <sys/callo.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/regset.h>
#include <sys/stack.h>
#include <sys/cpuvar.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/flock_impl.h>
#include <sys/kmem_impl.h>
#include <sys/vmem_impl.h>
#include <sys/kstat.h>
#include <vm/seg_vn.h>
#include <vm/anon.h>
#include <vm/as.h>
#include <vm/seg_map.h>
#include <sys/dditypes.h>
#include <sys/ddi_impldefs.h>
#include <sys/sysmacros.h>
#include <sys/sysconf.h>
#include <sys/task.h>
#include <sys/project.h>
#include <sys/taskq.h>
#include <sys/taskq_impl.h>
#include <sys/errorq_impl.h>
#include <sys/cred_impl.h>
#include <sys/zone.h>
#include <sys/panic.h>
#include <regex.h>
#include <sys/port_impl.h>
#include "contract.h"
#include "cpupart_mdb.h"
#include "devinfo.h"
#include "leaky.h"
#include "lgrp.h"
#include "list.h"
#include "log.h"
#include "kgrep.h"
#include "kmem.h"
#include "bio.h"
#include "streams.h"
#include "cyclic.h"
#include "findstack.h"
#include "ndievents.h"
#include "mmd.h"
#include "net.h"
#include "nvpair.h"
#include "ctxop.h"
#include "tsd.h"
#include "thread.h"
#include "memory.h"
#include "sobj.h"
#include "sysevent.h"
#include "rctl.h"
#include "typegraph.h"
#include "ldi.h"
#include "vfs.h"
#include "zone.h"
#include "modhash.h"
/*
* Surely this is defined somewhere...
*/
#define NINTR 16
#ifndef STACK_BIAS
#define STACK_BIAS 0
#endif
static char
pstat2ch(uchar_t state)
{
switch (state) {
case SSLEEP: return ('S');
case SRUN: return ('R');
case SZOMB: return ('Z');
case SIDL: return ('I');
case SONPROC: return ('O');
case SSTOP: return ('T');
default: return ('?');
}
}
#define PS_PRTTHREADS 0x1
#define PS_PRTLWPS 0x2
#define PS_PSARGS 0x4
#define PS_TASKS 0x8
#define PS_PROJECTS 0x10
#define PS_ZONES 0x20
static int
ps_threadprint(uintptr_t addr, const void *data, void *private)
{
const kthread_t *t = (const kthread_t *)data;
uint_t prt_flags = *((uint_t *)private);
static const mdb_bitmask_t t_state_bits[] = {
{ "TS_FREE", UINT_MAX, TS_FREE },
{ "TS_SLEEP", TS_SLEEP, TS_SLEEP },
{ "TS_RUN", TS_RUN, TS_RUN },
{ "TS_ONPROC", TS_ONPROC, TS_ONPROC },
{ "TS_ZOMB", TS_ZOMB, TS_ZOMB },
{ "TS_STOPPED", TS_STOPPED, TS_STOPPED },
{ NULL, 0, 0 }
};
if (prt_flags & PS_PRTTHREADS)
mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
if (prt_flags & PS_PRTLWPS)
mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
return (WALK_NEXT);
}
int
ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint_t prt_flags = 0;
proc_t pr;
struct pid pid, pgid, sid;
sess_t session;
cred_t cred;
task_t tk;
kproject_t pj;
zone_t zn;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
mdb_warn("can't walk 'proc'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
return (DCMD_USAGE);
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%1s %6s %6s %6s %6s ",
"S", "PID", "PPID", "PGID", "SID");
if (prt_flags & PS_TASKS)
mdb_printf("%5s ", "TASK");
if (prt_flags & PS_PROJECTS)
mdb_printf("%5s ", "PROJ");
if (prt_flags & PS_ZONES)
mdb_printf("%5s ", "ZONE");
mdb_printf("%6s %10s %?s %s%</u>\n",
"UID", "FLAGS", "ADDR", "NAME");
}
mdb_vread(&pr, sizeof (pr), addr);
mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
if (prt_flags & (PS_TASKS | PS_PROJECTS))
mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
if (prt_flags & PS_PROJECTS)
mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
if (prt_flags & PS_ZONES)
mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
mdb_printf("%c %6d %6d %6d %6d ",
pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
sid.pid_id);
if (prt_flags & PS_TASKS)
mdb_printf("%5d ", tk.tk_tkid);
if (prt_flags & PS_PROJECTS)
mdb_printf("%5d ", pj.kpj_id);
if (prt_flags & PS_ZONES)
mdb_printf("%5d ", zn.zone_id);
mdb_printf("%6d 0x%08x %0?p %s\n",
cred.cr_uid, pr.p_flag, addr,
(prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
if (prt_flags & ~PS_PSARGS)
(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
return (DCMD_OK);
}
#define PG_NEWEST 0x0001
#define PG_OLDEST 0x0002
#define PG_PIPE_OUT 0x0004
typedef struct pgrep_data {
uint_t pg_flags;
uint_t pg_psflags;
uintptr_t pg_xaddr;
hrtime_t pg_xstart;
const char *pg_pat;
#ifndef _KMDB
regex_t pg_reg;
#endif
} pgrep_data_t;
/*ARGSUSED*/
static int
pgrep_cb(uintptr_t addr, const void *pdata, void *data)
{
const proc_t *prp = pdata;
pgrep_data_t *pgp = data;
#ifndef _KMDB
regmatch_t pmatch;
#endif
/*
* kmdb doesn't have access to the reg* functions, so we fall back
* to strstr.
*/
#ifdef _KMDB
if (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)
return (WALK_NEXT);
#else
if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
return (WALK_NEXT);
#endif
if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
hrtime_t start;
start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
prp->p_user.u_start.tv_nsec;
if (pgp->pg_flags & PG_NEWEST) {
if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
pgp->pg_xaddr = addr;
pgp->pg_xstart = start;
}
} else {
if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
pgp->pg_xaddr = addr;
pgp->pg_xstart = start;
}
}
} else if (pgp->pg_flags & PG_PIPE_OUT) {
mdb_printf("%p\n", addr);
} else {
if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
mdb_warn("can't invoke 'ps'");
return (WALK_DONE);
}
pgp->pg_psflags &= ~DCMD_LOOPFIRST;
}
return (WALK_NEXT);
}
/*ARGSUSED*/
int
pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
pgrep_data_t pg;
int i;
#ifndef _KMDB
int err;
#endif
if (flags & DCMD_ADDRSPEC)
return (DCMD_USAGE);
pg.pg_flags = 0;
pg.pg_xaddr = 0;
i = mdb_getopts(argc, argv,
'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
NULL);
argc -= i;
argv += i;
if (argc != 1)
return (DCMD_USAGE);
/*
* -n and -o are mutually exclusive.
*/
if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
return (DCMD_USAGE);
if (argv->a_type != MDB_TYPE_STRING)
return (DCMD_USAGE);
if (flags & DCMD_PIPE_OUT)
pg.pg_flags |= PG_PIPE_OUT;
pg.pg_pat = argv->a_un.a_str;
if (DCMD_HDRSPEC(flags))
pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
else
pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
#ifndef _KMDB
if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
size_t nbytes;
char *buf;
nbytes = regerror(err, &pg.pg_reg, NULL, 0);
buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
(void) regerror(err, &pg.pg_reg, buf, nbytes);
mdb_warn("%s\n", buf);
return (DCMD_ERR);
}
#endif
if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
mdb_warn("can't walk 'proc'");
return (DCMD_ERR);
}
if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
if (pg.pg_flags & PG_PIPE_OUT) {
mdb_printf("%p\n", pg.pg_xaddr);
} else {
if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
0, NULL) != 0) {
mdb_warn("can't invoke 'ps'");
return (DCMD_ERR);
}
}
}
return (DCMD_OK);
}
int
task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
task_t tk;
kproject_t pj;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
mdb_warn("can't walk task_cache");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
"ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
}
if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
mdb_warn("can't read task_t structure at %p", addr);
return (DCMD_ERR);
}
if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
mdb_warn("can't read project_t structure at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
tk.tk_flags);
return (DCMD_OK);
}
int
project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kproject_t pj;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
mdb_warn("can't walk projects");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
"ADDR", "PROJID", "ZONEID", "REFCNT");
}
if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
mdb_warn("can't read kproject_t structure at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
pj.kpj_count);
return (DCMD_OK);
}
/*ARGSUSED*/
int
callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
callout_table_t *co_ktable[CALLOUT_TABLES];
int co_kfanout;
callout_table_t co_table;
callout_t co_callout;
callout_t *co_ptr;
int co_id;
clock_t lbolt;
int i, j, k;
const char *lbolt_sym;
if ((flags & DCMD_ADDRSPEC) || argc != 0)
return (DCMD_USAGE);
if (mdb_prop_postmortem)
lbolt_sym = "panic_lbolt";
else
lbolt_sym = "lbolt";
if (mdb_readvar(&lbolt, lbolt_sym) == -1) {
mdb_warn("failed to read '%s'", lbolt_sym);
return (DCMD_ERR);
}
if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) {
mdb_warn("failed to read callout_fanout");
return (DCMD_ERR);
}
if (mdb_readvar(&co_ktable, "callout_table") == -1) {
mdb_warn("failed to read callout_table");
return (DCMD_ERR);
}
mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n",
"FUNCTION", "ARGUMENT", "ID", "TIME");
for (i = 0; i < CALLOUT_NTYPES; i++) {
for (j = 0; j < co_kfanout; j++) {
co_id = CALLOUT_TABLE(i, j);
if (mdb_vread(&co_table, sizeof (co_table),
(uintptr_t)co_ktable[co_id]) == -1) {
mdb_warn("failed to read table at %p",
(uintptr_t)co_ktable[co_id]);
continue;
}
for (k = 0; k < CALLOUT_BUCKETS; k++) {
co_ptr = co_table.ct_idhash[k];
while (co_ptr != NULL) {
mdb_vread(&co_callout,
sizeof (co_callout),
(uintptr_t)co_ptr);
mdb_printf("%-24a %0?p %0?lx %?lx "
"(T%+ld)\n", co_callout.c_func,
co_callout.c_arg, co_callout.c_xid,
co_callout.c_runtime,
co_callout.c_runtime - lbolt);
co_ptr = co_callout.c_idnext;
}
}
}
}
return (DCMD_OK);
}
/*ARGSUSED*/
int
class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
long num_classes, i;
sclass_t *class_tbl;
GElf_Sym g_sclass;
char class_name[PC_CLNMSZ];
size_t tbl_size;
if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
mdb_warn("failed to find symbol sclass\n");
return (DCMD_ERR);
}
tbl_size = (size_t)g_sclass.st_size;
num_classes = tbl_size / (sizeof (sclass_t));
class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
mdb_warn("failed to read sclass");
return (DCMD_ERR);
}
mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
"INIT FCN", "CLASS FCN");
for (i = 0; i < num_classes; i++) {
if (mdb_vread(class_name, sizeof (class_name),
(uintptr_t)class_tbl[i].cl_name) == -1)
(void) strcpy(class_name, "???");
mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
class_tbl[i].cl_init, class_tbl[i].cl_funcs);
}
return (DCMD_OK);
}
#define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
int
vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t rootdir;
vnode_t vn;
char buf[MAXPATHLEN];
uint_t opt_F = FALSE;
if (mdb_getopts(argc, argv,
'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC)) {
mdb_warn("expected explicit vnode_t address before ::\n");
return (DCMD_USAGE);
}
if (mdb_readvar(&rootdir, "rootdir") == -1) {
mdb_warn("failed to read rootdir");
return (DCMD_ERR);
}
if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
return (DCMD_ERR);
if (*buf == '\0') {
mdb_printf("??\n");
return (DCMD_OK);
}
mdb_printf("%s", buf);
if (opt_F && buf[strlen(buf)-1] != '/' &&
mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
mdb_printf("\n");
return (DCMD_OK);
}
int
ld_walk_init(mdb_walk_state_t *wsp)
{
wsp->walk_data = (void *)wsp->walk_addr;
return (WALK_NEXT);
}
int
ld_walk_step(mdb_walk_state_t *wsp)
{
int status;
lock_descriptor_t ld;
if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
mdb_warn("couldn't read lock_descriptor_t at %p\n",
wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
if (status == WALK_ERR)
return (WALK_ERR);
wsp->walk_addr = (uintptr_t)ld.l_next;
if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
return (WALK_DONE);
return (status);
}
int
lg_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
mdb_warn("failed to find symbol 'lock_graph'\n");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)sym.st_value;
wsp->walk_data = (void *)(sym.st_value + sym.st_size);
return (WALK_NEXT);
}
typedef struct lg_walk_data {
uintptr_t startaddr;
mdb_walk_cb_t callback;
void *data;
} lg_walk_data_t;
/*
* We can't use ::walk lock_descriptor directly, because the head of each graph
* is really a dummy lock. Rather than trying to dynamically determine if this
* is a dummy node or not, we just filter out the initial element of the
* list.
*/
static int
lg_walk_cb(uintptr_t addr, const void *data, void *priv)
{
lg_walk_data_t *lw = priv;
if (addr != lw->startaddr)
return (lw->callback(addr, data, lw->data));
return (WALK_NEXT);
}
int
lg_walk_step(mdb_walk_state_t *wsp)
{
graph_t *graph;
lg_walk_data_t lw;
if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
return (WALK_DONE);
if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
wsp->walk_addr += sizeof (graph);
if (graph == NULL)
return (WALK_NEXT);
lw.callback = wsp->walk_callback;
lw.data = wsp->walk_cbdata;
lw.startaddr = (uintptr_t)&(graph->active_locks);
if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
return (WALK_ERR);
}
lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
return (WALK_ERR);
}
return (WALK_NEXT);
}
/*
* The space available for the path corresponding to the locked vnode depends
* on whether we are printing 32- or 64-bit addresses.
*/
#ifdef _LP64
#define LM_VNPATHLEN 20
#else
#define LM_VNPATHLEN 30
#endif
/*ARGSUSED*/
static int
lminfo_cb(uintptr_t addr, const void *data, void *priv)
{
const lock_descriptor_t *ld = data;
char buf[LM_VNPATHLEN];
proc_t p;
mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
addr, ld->l_type == F_RDLCK ? "RD" :
ld->l_type == F_WRLCK ? "WR" : "??",
ld->l_state, ld->l_flock.l_pid,
ld->l_flock.l_pid == 0 ? "<kernel>" :
mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
"<defunct>" : p.p_user.u_comm,
ld->l_vnode);
mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
sizeof (buf));
mdb_printf("%s\n", buf);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
"ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
}
/*ARGSUSED*/
int
seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
struct seg s;
if (argc != 0)
return (DCMD_USAGE);
if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
"SEG", "BASE", "SIZE", "DATA", "OPS");
}
if (mdb_vread(&s, sizeof (s), addr) == -1) {
mdb_warn("failed to read seg at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%?p %?p %?lx %?p %a\n",
addr, s.s_base, s.s_size, s.s_data, s.s_ops);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
{
uintptr_t pp =
mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
if (pp != NULL)
(*nres)++;
return (WALK_NEXT);
}
static int
pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
{
mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
if (segvn == (uintptr_t)seg->s_ops) {
struct segvn_data svn;
int nres = 0;
(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
if (svn.amp == NULL) {
mdb_printf(" %8s", "");
goto drive_on;
}
/*
* We've got an amp for this segment; walk through
* the amp, and determine mappings.
*/
if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
&nres, (uintptr_t)svn.amp) == -1)
mdb_warn("failed to walk anon (amp=%p)", svn.amp);
mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
drive_on:
if (svn.vp != NULL) {
char buf[29];
mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
mdb_printf(" %s", buf);
} else
mdb_printf(" [ anon ]");
}
mdb_printf("\n");
return (WALK_NEXT);
}
static int
pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
{
mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
if (segvn == (uintptr_t)seg->s_ops) {
struct segvn_data svn;
(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
if (svn.vp != NULL) {
mdb_printf(" %0?p", svn.vp);
} else {
mdb_printf(" [ anon ]");
}
}
mdb_printf("\n");
return (WALK_NEXT);
}
/*ARGSUSED*/
int
pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t segvn;
proc_t proc;
uint_t quick = FALSE;
mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
GElf_Sym sym;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
return (DCMD_USAGE);
if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
mdb_warn("failed to read proc at %p", addr);
return (DCMD_ERR);
}
if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
segvn = (uintptr_t)sym.st_value;
else
segvn = NULL;
mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
if (quick) {
mdb_printf("VNODE\n");
cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
} else {
mdb_printf("%8s %s\n", "RES", "PATH");
}
if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
mdb_warn("failed to walk segments of as %p", proc.p_as);
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct anon_walk_data {
uintptr_t *aw_levone;
uintptr_t *aw_levtwo;
int aw_nlevone;
int aw_levone_ndx;
int aw_levtwo_ndx;
struct anon_map aw_amp;
struct anon_hdr aw_ahp;
} anon_walk_data_t;
int
anon_walk_init(mdb_walk_state_t *wsp)
{
anon_walk_data_t *aw;
if (wsp->walk_addr == NULL) {
mdb_warn("anon walk doesn't support global walks\n");
return (WALK_ERR);
}
aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
mdb_warn("failed to read anon map at %p", wsp->walk_addr);
mdb_free(aw, sizeof (anon_walk_data_t));
return (WALK_ERR);
}
if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
(uintptr_t)(aw->aw_amp.ahp)) == -1) {
mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
mdb_free(aw, sizeof (anon_walk_data_t));
return (WALK_ERR);
}
if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
(aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
aw->aw_nlevone = aw->aw_ahp.size;
aw->aw_levtwo = NULL;
} else {
aw->aw_nlevone =
(aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
aw->aw_levtwo =
mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
}
aw->aw_levone =
mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
aw->aw_levone_ndx = 0;
aw->aw_levtwo_ndx = 0;
mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
(uintptr_t)aw->aw_ahp.array_chunk);
if (aw->aw_levtwo != NULL) {
while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
aw->aw_levone_ndx++;
if (aw->aw_levone_ndx == aw->aw_nlevone) {
mdb_warn("corrupt anon; couldn't"
"find ptr to lev two map");
goto out;
}
}
mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
aw->aw_levone[aw->aw_levone_ndx]);
}
out:
wsp->walk_data = aw;
return (0);
}
int
anon_walk_step(mdb_walk_state_t *wsp)
{
int status;
anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
struct anon anon;
uintptr_t anonptr;
again:
/*
* Once we've walked through level one, we're done.
*/
if (aw->aw_levone_ndx == aw->aw_nlevone)
return (WALK_DONE);
if (aw->aw_levtwo == NULL) {
anonptr = aw->aw_levone[aw->aw_levone_ndx];
aw->aw_levone_ndx++;
} else {
anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
aw->aw_levtwo_ndx++;
if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
aw->aw_levtwo_ndx = 0;
do {
aw->aw_levone_ndx++;
if (aw->aw_levone_ndx == aw->aw_nlevone)
return (WALK_DONE);
} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
sizeof (uintptr_t),
aw->aw_levone[aw->aw_levone_ndx]);
}
}
if (anonptr != NULL) {
mdb_vread(&anon, sizeof (anon), anonptr);
status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
} else
goto again;
return (status);
}
void
anon_walk_fini(mdb_walk_state_t *wsp)
{
anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
if (aw->aw_levtwo != NULL)
mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
mdb_free(aw, sizeof (anon_walk_data_t));
}
/*ARGSUSED*/
int
whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
{
if ((uintptr_t)f->f_vnode == *target) {
mdb_printf("file %p\n", addr);
*target = NULL;
}
return (WALK_NEXT);
}
/*ARGSUSED*/
int
whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
{
uintptr_t t = *target;
if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
mdb_warn("couldn't file walk proc %p", addr);
return (WALK_ERR);
}
if (t == NULL)
mdb_printf("%p\n", addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t target = addr;
if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
return (DCMD_USAGE);
if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
mdb_warn("can't proc walk");
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct datafmt {
char *hdr1;
char *hdr2;
char *dashes;
char *fmt;
} datafmt_t;
static datafmt_t kmemfmt[] = {
{ "cache ", "name ",
"-------------------------", "%-25s " },
{ " buf", " size", "------", "%6u " },
{ " buf", "in use", "------", "%6u " },
{ " buf", " total", "------", "%6u " },
{ " memory", " in use", "---------", "%9u " },
{ " alloc", " succeed", "---------", "%9u " },
{ "alloc", " fail", "-----", "%5u " },
{ NULL, NULL, NULL, NULL }
};
static datafmt_t vmemfmt[] = {
{ "vmem ", "name ",
"-------------------------", "%-*s " },
{ " memory", " in use", "---------", "%9llu " },
{ " memory", " total", "----------", "%10llu " },
{ " memory", " import", "---------", "%9llu " },
{ " alloc", " succeed", "---------", "%9llu " },
{ "alloc", " fail", "-----", "%5llu " },
{ NULL, NULL, NULL, NULL }
};
/*ARGSUSED*/
static int
kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
{
if (ccp->cc_rounds > 0)
*avail += ccp->cc_rounds;
if (ccp->cc_prounds > 0)
*avail += ccp->cc_prounds;
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
{
*alloc += ccp->cc_alloc;
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
{
*avail += sp->slab_chunks - sp->slab_refcnt;
return (WALK_NEXT);
}
typedef struct kmastat_vmem {
uintptr_t kv_addr;
struct kmastat_vmem *kv_next;
int kv_meminuse;
int kv_alloc;
int kv_fail;
} kmastat_vmem_t;
static int
kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp)
{
kmastat_vmem_t *kv;
datafmt_t *dfp = kmemfmt;
int magsize;
int avail, alloc, total;
size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
cp->cache_slabsize;
mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
magsize = kmem_get_magsize(cp);
alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
avail = cp->cache_full.ml_total * magsize;
total = cp->cache_buftotal;
(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
if (kv->kv_addr == (uintptr_t)cp->cache_arena)
goto out;
}
kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
kv->kv_next = *kvp;
kv->kv_addr = (uintptr_t)cp->cache_arena;
*kvp = kv;
out:
kv->kv_meminuse += meminuse;
kv->kv_alloc += alloc;
kv->kv_fail += cp->cache_alloc_fail;
mdb_printf((dfp++)->fmt, cp->cache_name);
mdb_printf((dfp++)->fmt, cp->cache_bufsize);
mdb_printf((dfp++)->fmt, total - avail);
mdb_printf((dfp++)->fmt, total);
mdb_printf((dfp++)->fmt, meminuse);
mdb_printf((dfp++)->fmt, alloc);
mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
mdb_printf("\n");
return (WALK_NEXT);
}
static int
kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv)
{
size_t len;
while (kv != NULL && kv->kv_addr != addr)
kv = kv->kv_next;
if (kv == NULL || kv->kv_alloc == 0)
return (WALK_NEXT);
len = MIN(17, strlen(v->vm_name));
mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name,
17 - len, "", "", "", "",
kv->kv_meminuse, kv->kv_alloc, kv->kv_fail);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored)
{
datafmt_t *dfp = vmemfmt;
const vmem_kstat_t *vkp = &v->vm_kstat;
uintptr_t paddr;
vmem_t parent;
int ident = 0;
for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
mdb_warn("couldn't trace %p's ancestry", addr);
ident = 0;
break;
}
paddr = (uintptr_t)parent.vm_source;
}
mdb_printf("%*s", ident, "");
mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
mdb_printf("\n");
return (WALK_NEXT);
}
/*ARGSUSED*/
int
kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kmastat_vmem_t *kv = NULL;
datafmt_t *dfp;
if (argc != 0)
return (DCMD_USAGE);
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr1);
mdb_printf("\n");
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr2);
mdb_printf("\n");
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) {
mdb_warn("can't walk 'kmem_cache'");
return (DCMD_ERR);
}
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) {
mdb_warn("can't walk 'vmem'");
return (DCMD_ERR);
}
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr1);
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr2);
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) {
mdb_warn("can't walk 'vmem'");
return (DCMD_ERR);
}
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
return (DCMD_OK);
}
/*
* Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
* up of a set of 'struct seg's. We could just scan each seg en masse, but
* unfortunately, a few of the segs are both large and sparse, so we could
* spend quite a bit of time scanning VAs which have no backing pages.
*
* So for the few very sparse segs, we skip the segment itself, and scan
* the allocated vmem_segs in the vmem arena which manages that part of kas.
* Currently, we do this for:
*
* SEG VMEM ARENA
* kvseg heap_arena
* kvseg32 heap32_arena
* kvseg_core heap_core_arena
*
* In addition, we skip the segkpm segment in its entirety, since it is very
* sparse, and contains no new kernel data.
*/
typedef struct kgrep_walk_data {
kgrep_cb_func *kg_cb;
void *kg_cbdata;
uintptr_t kg_kvseg;
uintptr_t kg_kvseg32;
uintptr_t kg_kvseg_core;
uintptr_t kg_segkpm;
} kgrep_walk_data_t;
static int
kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
{
uintptr_t base = (uintptr_t)seg->s_base;
if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
addr == kg->kg_kvseg_core)
return (WALK_NEXT);
if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
return (WALK_NEXT);
return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
}
/*ARGSUSED*/
static int
kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
{
return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
}
static int
kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
{
if (strcmp(vmem->vm_name, "heap") != 0 &&
strcmp(vmem->vm_name, "heap32") != 0 &&
strcmp(vmem->vm_name, "heap_core") != 0)
return (WALK_NEXT);
if (mdb_pwalk("vmem_alloc",
(mdb_walk_cb_t)kgrep_walk_vseg, kg, addr) == -1) {
mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
return (WALK_ERR);
}
return (WALK_NEXT);
}
int
kgrep_subr(kgrep_cb_func *cb, void *cbdata)
{
GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
kgrep_walk_data_t kg;
if (mdb_get_state() == MDB_STATE_RUNNING) {
mdb_warn("kgrep can only be run on a system "
"dump or under kmdb; see dumpadm(1M)\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kas", &kas) == -1) {
mdb_warn("failed to locate 'kas' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
mdb_warn("failed to locate 'kvseg' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
mdb_warn("failed to locate 'kvseg32' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
mdb_warn("failed to locate 'kvseg_core' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
mdb_warn("failed to locate 'segkpm_ops' symbol\n");
return (DCMD_ERR);
}
kg.kg_cb = cb;
kg.kg_cbdata = cbdata;
kg.kg_kvseg = (uintptr_t)kvseg.st_value;
kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
kg.kg_segkpm = (uintptr_t)segkpm.st_value;
if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
&kg, kas.st_value) == -1) {
mdb_warn("failed to walk kas segments");
return (DCMD_ERR);
}
if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
mdb_warn("failed to walk heap/heap32 vmem arenas");
return (DCMD_ERR);
}
return (DCMD_OK);
}
size_t
kgrep_subr_pagesize(void)
{
return (PAGESIZE);
}
typedef struct file_walk_data {
struct uf_entry *fw_flist;
int fw_flistsz;
int fw_ndx;
int fw_nofiles;
} file_walk_data_t;
int
file_walk_init(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw;
proc_t p;
if (wsp->walk_addr == NULL) {
mdb_warn("file walk doesn't support global walks\n");
return (WALK_ERR);
}
fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
mdb_free(fw, sizeof (file_walk_data_t));
mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
return (WALK_ERR);
}
if (p.p_user.u_finfo.fi_nfiles == 0) {
mdb_free(fw, sizeof (file_walk_data_t));
return (WALK_DONE);
}
fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
(uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
mdb_warn("failed to read file array at %p",
p.p_user.u_finfo.fi_list);
mdb_free(fw->fw_flist, fw->fw_flistsz);
mdb_free(fw, sizeof (file_walk_data_t));
return (WALK_ERR);
}
fw->fw_ndx = 0;
wsp->walk_data = fw;
return (WALK_NEXT);
}
int
file_walk_step(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
struct file file;
uintptr_t fp;
again:
if (fw->fw_ndx == fw->fw_nofiles)
return (WALK_DONE);
if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
goto again;
(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
}
int
allfile_walk_step(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
struct file file;
uintptr_t fp;
if (fw->fw_ndx == fw->fw_nofiles)
return (WALK_DONE);
if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
else
bzero(&file, sizeof (file));
return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
}
void
file_walk_fini(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
mdb_free(fw->fw_flist, fw->fw_flistsz);
mdb_free(fw, sizeof (file_walk_data_t));
}
int
port_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("port walk doesn't support global walks\n");
return (WALK_ERR);
}
if (mdb_layered_walk("file", wsp) == -1) {
mdb_warn("couldn't walk 'file'");
return (WALK_ERR);
}
return (WALK_NEXT);
}
int
port_walk_step(mdb_walk_state_t *wsp)
{
struct vnode vn;
uintptr_t vp;
uintptr_t pp;
struct port port;
vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
mdb_warn("failed to read vnode_t at %p", vp);
return (WALK_ERR);
}
if (vn.v_type != VPORT)
return (WALK_NEXT);
pp = (uintptr_t)vn.v_data;
if (mdb_vread(&port, sizeof (port), pp) == -1) {
mdb_warn("failed to read port_t at %p", pp);
return (WALK_ERR);
}
return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
}
typedef struct portev_walk_data {
list_node_t *pev_node;
list_node_t *pev_last;
size_t pev_offset;
} portev_walk_data_t;
int
portev_walk_init(mdb_walk_state_t *wsp)
{
portev_walk_data_t *pevd;
struct port port;
struct vnode vn;
struct list *list;
uintptr_t vp;
if (wsp->walk_addr == NULL) {
mdb_warn("portev walk doesn't support global walks\n");
return (WALK_ERR);
}
pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
mdb_free(pevd, sizeof (portev_walk_data_t));
mdb_warn("failed to read port structure at %p", wsp->walk_addr);
return (WALK_ERR);
}
vp = (uintptr_t)port.port_vnode;
if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
mdb_free(pevd, sizeof (portev_walk_data_t));
mdb_warn("failed to read vnode_t at %p", vp);
return (WALK_ERR);
}
if (vn.v_type != VPORT) {
mdb_free(pevd, sizeof (portev_walk_data_t));
mdb_warn("input address (%p) does not point to an event port",
wsp->walk_addr);
return (WALK_ERR);
}
if (port.port_queue.portq_nent == 0) {
mdb_free(pevd, sizeof (portev_walk_data_t));
return (WALK_DONE);
}
list = &port.port_queue.portq_list;
pevd->pev_offset = list->list_offset;
pevd->pev_last = list->list_head.list_prev;
pevd->pev_node = list->list_head.list_next;
wsp->walk_data = pevd;
return (WALK_NEXT);
}
int
portev_walk_step(mdb_walk_state_t *wsp)
{
portev_walk_data_t *pevd;
struct port_kevent ev;
uintptr_t evp;
pevd = (portev_walk_data_t *)wsp->walk_data;
if (pevd->pev_last == NULL)
return (WALK_DONE);
if (pevd->pev_node == pevd->pev_last)
pevd->pev_last = NULL; /* last round */
evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
mdb_warn("failed to read port_kevent at %p", evp);
return (WALK_DONE);
}
pevd->pev_node = ev.portkev_node.list_next;
return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
}
void
portev_walk_fini(mdb_walk_state_t *wsp)
{
portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
if (pevd != NULL)
mdb_free(pevd, sizeof (portev_walk_data_t));
}
typedef struct proc_walk_data {
uintptr_t *pw_stack;
int pw_depth;
int pw_max;
} proc_walk_data_t;
int
proc_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
proc_walk_data_t *pw;
if (wsp->walk_addr == NULL) {
if (mdb_lookup_by_name("p0", &sym) == -1) {
mdb_warn("failed to read 'practive'");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)sym.st_value;
}
pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
mdb_warn("failed to read 'nproc'");
mdb_free(pw, sizeof (pw));
return (WALK_ERR);
}
pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
wsp->walk_data = pw;
return (WALK_NEXT);
}
int
proc_walk_step(mdb_walk_state_t *wsp)
{
proc_walk_data_t *pw = wsp->walk_data;
uintptr_t addr = wsp->walk_addr;
uintptr_t cld, sib;
int status;
proc_t pr;
if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
mdb_warn("failed to read proc at %p", addr);
return (WALK_DONE);
}
cld = (uintptr_t)pr.p_child;
sib = (uintptr_t)pr.p_sibling;
if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
pw->pw_depth--;
goto sib;
}
status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
if ((wsp->walk_addr = cld) != NULL) {
if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
mdb_warn("proc %p has invalid p_child %p; skipping\n",
addr, cld);
goto sib;
}
pw->pw_stack[pw->pw_depth++] = addr;
if (pw->pw_depth == pw->pw_max) {
mdb_warn("depth %d exceeds max depth; try again\n",
pw->pw_depth);
return (WALK_DONE);
}
return (WALK_NEXT);
}
sib:
/*
* We know that p0 has no siblings, and if another starting proc
* was given, we don't want to walk its siblings anyway.
*/
if (pw->pw_depth == 0)
return (WALK_DONE);
if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
addr, sib);
sib = NULL;
}
if ((wsp->walk_addr = sib) == NULL) {
if (pw->pw_depth > 0) {
wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
return (WALK_NEXT);
}
return (WALK_DONE);
}
return (WALK_NEXT);
}
void
proc_walk_fini(mdb_walk_state_t *wsp)
{
proc_walk_data_t *pw = wsp->walk_data;
mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
mdb_free(pw, sizeof (proc_walk_data_t));
}
int
task_walk_init(mdb_walk_state_t *wsp)
{
task_t task;
if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read task at %p", wsp->walk_addr);
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)task.tk_memb_list;
wsp->walk_data = task.tk_memb_list;
return (WALK_NEXT);
}
int
task_walk_step(mdb_walk_state_t *wsp)
{
proc_t proc;
int status;
if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read proc at %p", wsp->walk_addr);
return (WALK_DONE);
}
status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
if (proc.p_tasknext == wsp->walk_data)
return (WALK_DONE);
wsp->walk_addr = (uintptr_t)proc.p_tasknext;
return (status);
}
int
project_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
mdb_warn("failed to read 'proj0p'");
return (WALK_ERR);
}
}
wsp->walk_data = (void *)wsp->walk_addr;
return (WALK_NEXT);
}
int
project_walk_step(mdb_walk_state_t *wsp)
{
uintptr_t addr = wsp->walk_addr;
kproject_t pj;
int status;
if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
mdb_warn("failed to read project at %p", addr);
return (WALK_DONE);
}
status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
wsp->walk_addr = (uintptr_t)pj.kpj_next;
if ((void *)wsp->walk_addr == wsp->walk_data)
return (WALK_DONE);
return (WALK_NEXT);
}
static int
generic_walk_step(mdb_walk_state_t *wsp)
{
return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
wsp->walk_cbdata));
}
struct aw_info {
void *aw_buff; /* buffer to hold the tree's data structure */
avl_tree_t aw_tree; /* copy of avl_tree_t being walked */
};
/*
* common code used to find the addr of the the leftmost child below
* an AVL node
*/
static uintptr_t
avl_leftmostchild(uintptr_t addr, void * buff, size_t offset, size_t size)
{
avl_node_t *node = (avl_node_t *)((uintptr_t)buff + offset);
for (;;) {
addr -= offset;
if (mdb_vread(buff, size, addr) == -1) {
mdb_warn("read of avl_node_t failed: %p", addr);
return ((uintptr_t)-1L);
}
if (node->avl_child[0] == NULL)
break;
addr = (uintptr_t)node->avl_child[0];
}
return (addr);
}
/*
* initialize a forward walk thru an avl tree.
*/
int
avl_walk_init(mdb_walk_state_t *wsp)
{
struct aw_info *aw;
avl_tree_t *tree;
uintptr_t addr;
/*
* allocate the AVL walk data
*/
wsp->walk_data = aw = mdb_zalloc(sizeof (struct aw_info), UM_SLEEP);
/*
* get an mdb copy of the avl_tree_t being walked
*/
tree = &aw->aw_tree;
if (mdb_vread(tree, sizeof (avl_tree_t), wsp->walk_addr) == -1) {
mdb_warn("read of avl_tree_t failed: %p", wsp->walk_addr);
goto error;
}
if (tree->avl_size < tree->avl_offset + sizeof (avl_node_t)) {
mdb_warn("invalid avl_tree_t at %p, avl_size:%d, avl_offset:%d",
wsp->walk_addr, tree->avl_size, tree->avl_offset);
goto error;
}
/*
* allocate a buffer to hold the mdb copy of tree's structs
* "node" always points at the avl_node_t field inside the struct
*/
aw->aw_buff = mdb_zalloc(tree->avl_size, UM_SLEEP);
/*
* get the first avl_node_t address, use same algorithm
* as avl_start() -- leftmost child in tree from root
*/
addr = (uintptr_t)tree->avl_root;
if (addr == NULL) {
wsp->walk_addr = NULL;
return (WALK_NEXT);
}
addr = avl_leftmostchild(addr, aw->aw_buff, tree->avl_offset,
tree->avl_size);
if (addr == (uintptr_t)-1L)
goto error;
wsp->walk_addr = addr;
return (WALK_NEXT);
error:
if (aw->aw_buff != NULL)
mdb_free(aw->aw_buff, sizeof (tree->avl_size));
mdb_free(aw, sizeof (struct aw_info));
return (WALK_ERR);
}
/*
* At each step, visit (callback) the current node, then move to the next
* in the AVL tree. Uses the same algorithm as avl_walk().
*/
int
avl_walk_step(mdb_walk_state_t *wsp)
{
struct aw_info *aw;
size_t offset;
size_t size;
uintptr_t addr;
avl_node_t *node;
int status;
int was_child;
/*
* don't walk past the end of the tree!
*/
addr = wsp->walk_addr;
if (addr == NULL)
return (WALK_DONE);
aw = (struct aw_info *)wsp->walk_data;
size = aw->aw_tree.avl_size;
offset = aw->aw_tree.avl_offset;
node = (avl_node_t *)((uintptr_t)aw->aw_buff + offset);
/*
* must read the current node for the call back to use
*/
if (mdb_vread(aw->aw_buff, size, addr) == -1) {
mdb_warn("read of avl_node_t failed: %p", addr);
return (WALK_ERR);
}
/*
* do the call back
*/
status = wsp->walk_callback(addr, aw->aw_buff, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
/*
* move to the next node....
* note we read in new nodes, so the pointer to the buffer is fixed
*/
/*
* if the node has a right child then go to it and then all the way
* thru as many left children as possible
*/
addr = (uintptr_t)node->avl_child[1];
if (addr != NULL) {
addr = avl_leftmostchild(addr, aw->aw_buff, offset, size);
if (addr == (uintptr_t)-1L)
return (WALK_ERR);
/*
* othewise return to parent nodes, stopping if we ever return from
* a left child
*/
} else {
for (;;) {
was_child = AVL_XCHILD(node);
addr = (uintptr_t)AVL_XPARENT(node);
if (addr == NULL)
break;
addr -= offset;
if (was_child == 0) /* stop on return from left child */
break;
if (mdb_vread(aw->aw_buff, size, addr) == -1) {
mdb_warn("read of avl_node_t failed: %p", addr);
return (WALK_ERR);
}
}
}
wsp->walk_addr = addr;
return (WALK_NEXT);
}
/*
* Release the memory allocated for the walk
*/
void
avl_walk_fini(mdb_walk_state_t *wsp)
{
struct aw_info *aw;
aw = (struct aw_info *)wsp->walk_data;
if (aw == NULL)
return;
if (aw->aw_buff != NULL)
mdb_free(aw->aw_buff, aw->aw_tree.avl_size);
mdb_free(aw, sizeof (struct aw_info));
}
int
seg_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("seg walk must begin at struct as *\n");
return (WALK_ERR);
}
/*
* this is really just a wrapper to AVL tree walk
*/
wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
return (avl_walk_init(wsp));
}
static int
cpu_walk_cmp(const void *l, const void *r)
{
uintptr_t lhs = *((uintptr_t *)l);
uintptr_t rhs = *((uintptr_t *)r);
cpu_t lcpu, rcpu;
(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
if (lcpu.cpu_id < rcpu.cpu_id)
return (-1);
if (lcpu.cpu_id > rcpu.cpu_id)
return (1);
return (0);
}
typedef struct cpu_walk {
uintptr_t *cw_array;
int cw_ndx;
} cpu_walk_t;
int
cpu_walk_init(mdb_walk_state_t *wsp)
{
cpu_walk_t *cw;
int max_ncpus, i = 0;
uintptr_t current, first;
cpu_t cpu, panic_cpu;
uintptr_t panicstr, addr;
GElf_Sym sym;
cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
mdb_warn("failed to read 'max_ncpus'");
return (WALK_ERR);
}
if (mdb_readvar(&panicstr, "panicstr") == -1) {
mdb_warn("failed to read 'panicstr'");
return (WALK_ERR);
}
if (panicstr != NULL) {
if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
mdb_warn("failed to find 'panic_cpu'");
return (WALK_ERR);
}
addr = (uintptr_t)sym.st_value;
if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
mdb_warn("failed to read 'panic_cpu'");
return (WALK_ERR);
}
}
/*
* Unfortunately, there is no platform-independent way to walk
* CPUs in ID order. We therefore loop through in cpu_next order,
* building an array of CPU pointers which will subsequently be
* sorted.
*/
cw->cw_array =
mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
if (mdb_readvar(&first, "cpu_list") == -1) {
mdb_warn("failed to read 'cpu_list'");
return (WALK_ERR);
}
current = first;
do {
if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
mdb_warn("failed to read cpu at %p", current);
return (WALK_ERR);
}
if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
cw->cw_array[i++] = addr;
} else {
cw->cw_array[i++] = current;
}
} while ((current = (uintptr_t)cpu.cpu_next) != first);
qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
wsp->walk_data = cw;
return (WALK_NEXT);
}
int
cpu_walk_step(mdb_walk_state_t *wsp)
{
cpu_walk_t *cw = wsp->walk_data;
cpu_t cpu;
uintptr_t addr = cw->cw_array[cw->cw_ndx++];
if (addr == NULL)
return (WALK_DONE);
if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
mdb_warn("failed to read cpu at %p", addr);
return (WALK_DONE);
}
return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
}
typedef struct cpuinfo_data {
intptr_t cid_cpu;
uintptr_t cid_lbolt;
uintptr_t **cid_ithr;
char cid_print_head;
char cid_print_thr;
char cid_print_ithr;
char cid_print_flags;
} cpuinfo_data_t;
int
cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
{
cpu_t c;
int id;
uint8_t pil;
if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
return (WALK_NEXT);
if (thr->t_bound_cpu == NULL) {
mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
return (WALK_NEXT);
}
(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
if ((id = c.cpu_id) >= NCPU) {
mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
thr->t_bound_cpu, id, NCPU);
return (WALK_NEXT);
}
if ((pil = thr->t_pil) >= NINTR) {
mdb_warn("thread %p has pil (%d) greater than %d\n",
addr, pil, NINTR);
return (WALK_NEXT);
}
if (cid->cid_ithr[id][pil] != NULL) {
mdb_warn("CPU %d has multiple threads at pil %d (at least "
"%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
return (WALK_NEXT);
}
cid->cid_ithr[id][pil] = addr;
return (WALK_NEXT);
}
#define CPUINFO_IDWIDTH 3
#define CPUINFO_FLAGWIDTH 9
#ifdef _LP64
#define CPUINFO_CPUWIDTH 11
#define CPUINFO_TWIDTH 11
#else
#define CPUINFO_CPUWIDTH 8
#define CPUINFO_TWIDTH 8
#endif
#define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
#define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
#define CPUINFO_ITHRDELT 4
#define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
flagline < nflaglines ? flagbuf[flagline++] : "")
int
cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
{
kthread_t t;
disp_t disp;
proc_t p;
uintptr_t pinned;
char **flagbuf;
int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
const char *flags[] = {
"RUNNING", "READY", "QUIESCED", "EXISTS",
"ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
"SPARE", "FAULTED", NULL
};
if (cid->cid_cpu != -1) {
if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
return (WALK_NEXT);
/*
* Set cid_cpu to -1 to indicate that we found a matching CPU.
*/
cid->cid_cpu = -1;
rval = WALK_DONE;
}
if (cid->cid_print_head) {
mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
"ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
"PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
"PROC");
cid->cid_print_head = FALSE;
}
bspl = cpu->cpu_base_spl;
if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
return (WALK_ERR);
}
mdb_printf("%3d %0*p %3x %4d %4d ",
cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
disp.disp_nrunnable, bspl);
if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
mdb_printf("%3d ", t.t_pri);
} else {
mdb_printf("%3s ", "-");
}
mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
cpu->cpu_kprunrun ? "yes" : "no");
if (cpu->cpu_last_swtch) {
clock_t lbolt;
if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
return (WALK_ERR);
}
mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
} else {
mdb_printf("%-6s ", "-");
}
mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
if (cpu->cpu_thread == cpu->cpu_idle_thread)
mdb_printf(" (idle)\n");
else if (cpu->cpu_thread == NULL)
mdb_printf(" -\n");
else {
if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
mdb_printf(" %s\n", p.p_user.u_comm);
} else {
mdb_printf(" ?\n");
}
}
flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
if (cid->cid_print_flags) {
int first = 1, i, j, k;
char *s;
cid->cid_print_head = TRUE;
for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
if (!(cpu->cpu_flags & i))
continue;
if (first) {
s = mdb_alloc(CPUINFO_THRDELT + 1,
UM_GC | UM_SLEEP);
(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
"%*s|%*s", CPUINFO_FLAGDELT, "",
CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
flagbuf[nflaglines++] = s;
}
s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
first ? "<--+" : "");
for (k = strlen(s); k < CPUINFO_THRDELT; k++)
s[k] = ' ';
s[k] = '\0';
flagbuf[nflaglines++] = s;
first = 0;
}
}
if (cid->cid_print_ithr) {
int i, found_one = FALSE;
int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
for (i = NINTR - 1; i >= 0; i--) {
uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
if (iaddr == NULL)
continue;
if (!found_one) {
found_one = TRUE;
CPUINFO_INDENT;
mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
CPUINFO_ITHRDELT, "");
CPUINFO_INDENT;
mdb_printf("%c%*s+--> %3s %s\n",
print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
"", "PIL", "THREAD");
}
if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
mdb_warn("failed to read kthread_t at %p",
iaddr);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf("%c%*s %3d %0*p\n",
print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
t.t_pil, CPUINFO_TWIDTH, iaddr);
pinned = (uintptr_t)t.t_intr;
}
if (found_one && pinned != NULL) {
cid->cid_print_head = TRUE;
(void) strcpy(p.p_user.u_comm, "?");
if (mdb_vread(&t, sizeof (t),
(uintptr_t)pinned) == -1) {
mdb_warn("failed to read kthread_t at %p",
pinned);
return (WALK_ERR);
}
if (mdb_vread(&p, sizeof (p),
(uintptr_t)t.t_procp) == -1) {
mdb_warn("failed to read proc_t at %p",
t.t_procp);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf("%c%*s %3s %0*p %s\n",
print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
CPUINFO_TWIDTH, pinned,
pinned == (uintptr_t)cpu->cpu_idle_thread ?
"(idle)" : p.p_user.u_comm);
}
}
if (disp.disp_nrunnable && cid->cid_print_thr) {
dispq_t *dq;
int i, npri = disp.disp_npri;
dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
if (mdb_vread(dq, sizeof (dispq_t) * npri,
(uintptr_t)disp.disp_q) == -1) {
mdb_warn("failed to read dispq_t at %p", disp.disp_q);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf("|\n");
CPUINFO_INDENT;
mdb_printf("+--> %3s %-*s %s\n", "PRI",
CPUINFO_TWIDTH, "THREAD", "PROC");
for (i = npri - 1; i >= 0; i--) {
uintptr_t taddr = (uintptr_t)dq[i].dq_first;
while (taddr != NULL) {
if (mdb_vread(&t, sizeof (t), taddr) == -1) {
mdb_warn("failed to read kthread_t "
"at %p", taddr);
return (WALK_ERR);
}
if (mdb_vread(&p, sizeof (p),
(uintptr_t)t.t_procp) == -1) {
mdb_warn("failed to read proc_t at %p",
t.t_procp);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf(" %3d %0*p %s\n", t.t_pri,
CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
taddr = (uintptr_t)t.t_link;
}
}
cid->cid_print_head = TRUE;
}
while (flagline < nflaglines)
mdb_printf("%s\n", flagbuf[flagline++]);
if (cid->cid_print_head)
mdb_printf("\n");
return (rval);
}
int
cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint_t verbose = FALSE;
cpuinfo_data_t cid;
GElf_Sym sym;
clock_t lbolt;
cid.cid_print_ithr = FALSE;
cid.cid_print_thr = FALSE;
cid.cid_print_flags = FALSE;
cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
cid.cid_cpu = -1;
if (flags & DCMD_ADDRSPEC)
cid.cid_cpu = addr;
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
return (DCMD_USAGE);
if (verbose) {
cid.cid_print_ithr = TRUE;
cid.cid_print_thr = TRUE;
cid.cid_print_flags = TRUE;
cid.cid_print_head = TRUE;
}
if (cid.cid_print_ithr) {
int i;
cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
* NCPU, UM_SLEEP | UM_GC);
for (i = 0; i < NCPU; i++)
cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
NINTR, UM_SLEEP | UM_GC);
if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
&cid) == -1) {
mdb_warn("couldn't walk thread");
return (DCMD_ERR);
}
}
if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
mdb_warn("failed to find panic_lbolt");
return (DCMD_ERR);
}
cid.cid_lbolt = (uintptr_t)sym.st_value;
if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
mdb_warn("failed to read panic_lbolt");
return (DCMD_ERR);
}
if (lbolt == 0) {
if (mdb_lookup_by_name("lbolt", &sym) == -1) {
mdb_warn("failed to find lbolt");
return (DCMD_ERR);
}
cid.cid_lbolt = (uintptr_t)sym.st_value;
}
if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
mdb_warn("can't walk cpus");
return (DCMD_ERR);
}
if (cid.cid_cpu != -1) {
/*
* We didn't find this CPU when we walked through the CPUs
* (i.e. the address specified doesn't show up in the "cpu"
* walk). However, the specified address may still correspond
* to a valid cpu_t (for example, if the specified address is
* the actual panicking cpu_t and not the cached panic_cpu).
* Point is: even if we didn't find it, we still want to try
* to print the specified address as a cpu_t.
*/
cpu_t cpu;
if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
mdb_warn("%p is neither a valid CPU ID nor a "
"valid cpu_t address\n", cid.cid_cpu);
return (DCMD_ERR);
}
(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
}
return (DCMD_OK);
}
/*ARGSUSED*/
int
flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int i;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
for (i = 0; i < sizeof (addr) * NBBY; i++)
mdb_printf("%p\n", addr ^ (1UL << i));
return (DCMD_OK);
}
/*
* Grumble, grumble.
*/
#define SMAP_HASHFUNC(vp, off) \
((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
((off) >> MAXBSHIFT)) & smd_hashmsk)
int
vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
long smd_hashmsk;
int hash;
uintptr_t offset = 0;
struct smap smp;
uintptr_t saddr, kaddr;
uintptr_t smd_hash, smd_smap;
struct seg seg;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
mdb_warn("failed to read smd_hashmsk");
return (DCMD_ERR);
}
if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
mdb_warn("failed to read smd_hash");
return (DCMD_ERR);
}
if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
mdb_warn("failed to read smd_hash");
return (DCMD_ERR);
}
if (mdb_readvar(&kaddr, "segkmap") == -1) {
mdb_warn("failed to read segkmap");
return (DCMD_ERR);
}
if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
mdb_warn("failed to read segkmap at %p", kaddr);
return (DCMD_ERR);
}
if (argc != 0) {
const mdb_arg_t *arg = &argv[0];
if (arg->a_type == MDB_TYPE_IMMEDIATE)
offset = arg->a_un.a_val;
else
offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
}
hash = SMAP_HASHFUNC(addr, offset);
if (mdb_vread(&saddr, sizeof (saddr),
smd_hash + hash * sizeof (uintptr_t)) == -1) {
mdb_warn("couldn't read smap at %p",
smd_hash + hash * sizeof (uintptr_t));
return (DCMD_ERR);
}
do {
if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
mdb_warn("couldn't read smap at %p", saddr);
return (DCMD_ERR);
}
if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
addr, offset, saddr, ((saddr - smd_smap) /
sizeof (smp)) * MAXBSIZE + seg.s_base);
return (DCMD_OK);
}
saddr = (uintptr_t)smp.sm_hash;
} while (saddr != NULL);
mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
return (DCMD_OK);
}
/*ARGSUSED*/
int
addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t kaddr;
struct seg seg;
struct segmap_data sd;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_readvar(&kaddr, "segkmap") == -1) {
mdb_warn("failed to read segkmap");
return (DCMD_ERR);
}
if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
mdb_warn("failed to read segkmap at %p", kaddr);
return (DCMD_ERR);
}
if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
mdb_warn("failed to read segmap_data at %p", seg.s_data);
return (DCMD_ERR);
}
mdb_printf("%p is smap %p\n", addr,
((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
sizeof (struct smap) + (uintptr_t)sd.smd_sm);
return (DCMD_OK);
}
int
as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
{
if (p->p_as == *asp)
mdb_printf("%p\n", addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (!(flags & DCMD_ADDRSPEC) || argc != 0)
return (DCMD_USAGE);
if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
mdb_warn("failed to walk proc");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*ARGSUSED*/
int
ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
{
proc_t parent;
int ident = 0;
uintptr_t paddr;
for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
mdb_vread(&parent, sizeof (parent), paddr);
paddr = (uintptr_t)parent.p_parent;
}
mdb_inc_indent(ident);
mdb_printf("%0?p %s\n", addr, p->p_user.u_comm);
mdb_dec_indent(ident);
return (WALK_NEXT);
}
void
ptree_ancestors(uintptr_t addr, uintptr_t start)
{
proc_t p;
if (mdb_vread(&p, sizeof (p), addr) == -1) {
mdb_warn("couldn't read ancestor at %p", addr);
return;
}
if (p.p_parent != NULL)
ptree_ancestors((uintptr_t)p.p_parent, start);
if (addr != start)
(void) ptree_walk(addr, &p, NULL);
}
/*ARGSUSED*/
int
ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (!(flags & DCMD_ADDRSPEC))
addr = NULL;
else
ptree_ancestors(addr, addr);
if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
mdb_warn("couldn't walk 'proc'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*ARGSUSED*/
static int
fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int fdnum;
const mdb_arg_t *argp = &argv[0];
proc_t p;
uf_entry_t uf;
if ((flags & DCMD_ADDRSPEC) == 0) {
mdb_warn("fd doesn't give global information\n");
return (DCMD_ERR);
}
if (argc != 1)
return (DCMD_USAGE);
if (argp->a_type == MDB_TYPE_IMMEDIATE)
fdnum = argp->a_un.a_val;
else
fdnum = mdb_strtoull(argp->a_un.a_str);
if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
mdb_warn("couldn't read proc_t at %p", addr);
return (DCMD_ERR);
}
if (fdnum > p.p_user.u_finfo.fi_nfiles) {
mdb_warn("process %p only has %d files open.\n",
addr, p.p_user.u_finfo.fi_nfiles);
return (DCMD_ERR);
}
if (mdb_vread(&uf, sizeof (uf_entry_t),
(uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
mdb_warn("couldn't read uf_entry_t at %p",
&p.p_user.u_finfo.fi_list[fdnum]);
return (DCMD_ERR);
}
mdb_printf("%p\n", uf.uf_file);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
pid_t pid = (pid_t)addr;
if (argc != 0)
return (DCMD_USAGE);
if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
mdb_warn("PID 0t%d not found\n", pid);
return (DCMD_ERR);
}
mdb_printf("%p\n", addr);
return (DCMD_OK);
}
static char *sysfile_cmd[] = {
"exclude:",
"include:",
"forceload:",
"rootdev:",
"rootfs:",
"swapdev:",
"swapfs:",
"moddir:",
"set",
"unknown",
};
static char *sysfile_ops[] = { "", "=", "&", "|" };
/*ARGSUSED*/
static int
sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
{
if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
*target = NULL;
return (WALK_DONE);
}
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
struct sysparam *sysp, sys;
char var[256];
char modname[256];
char val[256];
char strval[256];
vmem_t *mod_sysfile_arena;
void *straddr;
if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
mdb_warn("failed to read sysparam_hd");
return (DCMD_ERR);
}
if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
mdb_warn("failed to read mod_sysfile_arena");
return (DCMD_ERR);
}
while (sysp != NULL) {
var[0] = '\0';
val[0] = '\0';
modname[0] = '\0';
if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
mdb_warn("couldn't read sysparam %p", sysp);
return (DCMD_ERR);
}
if (sys.sys_modnam != NULL &&
mdb_readstr(modname, 256,
(uintptr_t)sys.sys_modnam) == -1) {
mdb_warn("couldn't read modname in %p", sysp);
return (DCMD_ERR);
}
if (sys.sys_ptr != NULL &&
mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
mdb_warn("couldn't read ptr in %p", sysp);
return (DCMD_ERR);
}
if (sys.sys_op != SETOP_NONE) {
/*
* Is this an int or a string? We determine this
* by checking whether straddr is contained in
* mod_sysfile_arena. If so, the walker will set
* straddr to NULL.
*/
straddr = (void *)(uintptr_t)sys.sys_info;
if (sys.sys_op == SETOP_ASSIGN &&
sys.sys_info != 0 &&
mdb_pwalk("vmem_seg",
(mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
(uintptr_t)mod_sysfile_arena) == 0 &&
straddr == NULL &&
mdb_readstr(strval, 256,
(uintptr_t)sys.sys_info) != -1) {
(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
strval);
} else {
(void) mdb_snprintf(val, sizeof (val),
"0x%llx [0t%llu]", sys.sys_info,
sys.sys_info);
}
}
mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
modname, modname[0] == '\0' ? "" : ":",
var, sysfile_ops[sys.sys_op], val);
sysp = sys.sys_next;
}
return (DCMD_OK);
}
/*
* Dump a taskq_ent_t given its address.
*/
/*ARGSUSED*/
int
taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
taskq_ent_t taskq_ent;
GElf_Sym sym;
char buf[MDB_SYM_NAMLEN+1];
if (!(flags & DCMD_ADDRSPEC)) {
mdb_warn("expected explicit taskq_ent_t address before ::\n");
return (DCMD_USAGE);
}
if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) {
mdb_warn("failed to read taskq_ent_t at %p", addr);
return (DCMD_ERR);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%-?s %-?s %-s%</u>\n",
"ENTRY", "ARG", "FUNCTION");
}
if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT,
buf, sizeof (buf), &sym) == -1) {
(void) strcpy(buf, "????");
}
mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf);
return (DCMD_OK);
}
/*
* Given the address of the (taskq_t) task queue head, walk the queue listing
* the address of every taskq_ent_t.
*/
int
taskq_walk_init(mdb_walk_state_t *wsp)
{
taskq_t tq_head;
if (wsp->walk_addr == NULL) {
mdb_warn("start address required\n");
return (WALK_ERR);
}
/*
* Save the address of the list head entry. This terminates the list.
*/
wsp->walk_data = (void *)
((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task));
/*
* Read in taskq head, set walk_addr to point to first taskq_ent_t.
*/
if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) ==
-1) {
mdb_warn("failed to read taskq list head at %p",
wsp->walk_addr);
}
wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next;
/*
* Check for null list (next=head)
*/
if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
return (WALK_DONE);
}
return (WALK_NEXT);
}
int
taskq_walk_step(mdb_walk_state_t *wsp)
{
taskq_ent_t tq_ent;
int status;
if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) ==
-1) {
mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr);
return (DCMD_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent,
wsp->walk_cbdata);
wsp->walk_addr = (uintptr_t)tq_ent.tqent_next;
/* Check if we're at the last element (next=head) */
if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
return (WALK_DONE);
}
return (status);
}
int
didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
{
if (*didp == thr->t_did) {
mdb_printf("%p\n", addr);
return (WALK_DONE);
} else
return (WALK_NEXT);
}
/*ARGSUSED*/
int
did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
const mdb_arg_t *argp = &argv[0];
kt_did_t did;
if (argc != 1)
return (DCMD_USAGE);
did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
mdb_warn("failed to walk thread");
return (DCMD_ERR);
}
return (DCMD_OK);
}
static int
errorq_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL &&
mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
mdb_warn("failed to read errorq_list");
return (WALK_ERR);
}
return (WALK_NEXT);
}
static int
errorq_walk_step(mdb_walk_state_t *wsp)
{
uintptr_t addr = wsp->walk_addr;
errorq_t eq;
if (addr == NULL)
return (WALK_DONE);
if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
mdb_warn("failed to read errorq at %p", addr);
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)eq.eq_next;
return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
}
typedef struct eqd_walk_data {
uintptr_t *eqd_stack;
void *eqd_buf;
ulong_t eqd_qpos;
ulong_t eqd_qlen;
size_t eqd_size;
} eqd_walk_data_t;
/*
* In order to walk the list of pending error queue elements, we push the
* addresses of the corresponding data buffers in to the eqd_stack array.
* The error lists are in reverse chronological order when iterating using
* eqe_prev, so we then pop things off the top in eqd_walk_step so that the
* walker client gets addresses in order from oldest error to newest error.
*/
static void
eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
{
errorq_elem_t eqe;
while (addr != NULL) {
if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
mdb_warn("failed to read errorq element at %p", addr);
break;
}
if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
mdb_warn("errorq is overfull -- more than %lu "
"elems found\n", eqdp->eqd_qlen);
break;
}
eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
addr = (uintptr_t)eqe.eqe_prev;
}
}
static int
eqd_walk_init(mdb_walk_state_t *wsp)
{
eqd_walk_data_t *eqdp;
errorq_elem_t eqe, *addr;
errorq_t eq;
ulong_t i;
if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
mdb_warn("failed to read errorq at %p", wsp->walk_addr);
return (WALK_ERR);
}
if (eq.eq_ptail != NULL &&
mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
return (WALK_ERR);
}
eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
wsp->walk_data = eqdp;
eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
eqdp->eqd_qlen = eq.eq_qlen;
eqdp->eqd_qpos = 0;
eqdp->eqd_size = eq.eq_size;
/*
* The newest elements in the queue are on the pending list, so we
* push those on to our stack first.
*/
eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
/*
* If eq_ptail is set, it may point to a subset of the errors on the
* pending list in the event a casptr() failed; if ptail's data is
* already in our stack, NULL out eq_ptail and ignore it.
*/
if (eq.eq_ptail != NULL) {
for (i = 0; i < eqdp->eqd_qpos; i++) {
if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
eq.eq_ptail = NULL;
break;
}
}
}
/*
* If eq_phead is set, it has the processing list in order from oldest
* to newest. Use this to recompute eq_ptail as best we can and then
* we nicely fall into eqd_push_list() of eq_ptail below.
*/
for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
(uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
eq.eq_ptail = addr;
/*
* The oldest elements in the queue are on the processing list, subject
* to machinations in the if-clauses above. Push any such elements.
*/
eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
return (WALK_NEXT);
}
static int
eqd_walk_step(mdb_walk_state_t *wsp)
{
eqd_walk_data_t *eqdp = wsp->walk_data;
uintptr_t addr;
if (eqdp->eqd_qpos == 0)
return (WALK_DONE);
addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
mdb_warn("failed to read errorq data at %p", addr);
return (WALK_ERR);
}
return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
}
static void
eqd_walk_fini(mdb_walk_state_t *wsp)
{
eqd_walk_data_t *eqdp = wsp->walk_data;
mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
mdb_free(eqdp, sizeof (eqd_walk_data_t));
}
#define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
static int
errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int i;
errorq_t eq;
uint_t opt_v = FALSE;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
mdb_warn("can't walk 'errorq'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
argc -= i;
argv += i;
if (argc != 0)
return (DCMD_USAGE);
if (opt_v || DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
"ADDR", "NAME", "S", "V", "N");
if (!opt_v) {
mdb_printf("%7s %7s %7s%</u>\n",
"ACCEPT", "DROP", "LOG");
} else {
mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
"KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
}
}
if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
mdb_warn("failed to read errorq at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
(eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
(eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
(eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
if (!opt_v) {
mdb_printf("%7llu %7llu %7llu\n",
EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
} else {
mdb_printf("%5s %6lu %6lu %3u %a\n",
" | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
mdb_printf("%38s\n%41s"
"%12s %llu\n"
"%53s %llu\n"
"%53s %llu\n"
"%53s %llu\n"
"%53s %llu\n"
"%53s %llu\n"
"%53s %llu\n"
"%53s %llu\n\n",
"|", "+-> ",
"DISPATCHED", EQKSVAL(eq, eqk_dispatched),
"DROPPED", EQKSVAL(eq, eqk_dropped),
"LOGGED", EQKSVAL(eq, eqk_logged),
"RESERVED", EQKSVAL(eq, eqk_reserved),
"RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
"COMMITTED", EQKSVAL(eq, eqk_committed),
"COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
"CANCELLED", EQKSVAL(eq, eqk_cancelled));
}
return (DCMD_OK);
}
/*ARGSUSED*/
static int
panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
cpu_t panic_cpu;
kthread_t *panic_thread;
void *panicbuf;
panic_data_t *pd;
int i, n;
if (!mdb_prop_postmortem) {
mdb_warn("panicinfo can only be run on a system "
"dump; see dumpadm(1M)\n");
return (DCMD_ERR);
}
if (flags & DCMD_ADDRSPEC || argc != 0)
return (DCMD_USAGE);
if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
mdb_warn("failed to read 'panic_cpu'");
else
mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
if (mdb_readvar(&panic_thread, "panic_thread") == -1)
mdb_warn("failed to read 'panic_thread'");
else
mdb_printf("%16s %?p\n", "thread", panic_thread);
panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
pd = (panic_data_t *)panicbuf;
if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 ||
pd->pd_version != PANICBUFVERS) {
mdb_warn("failed to read 'panicbuf'");
mdb_free(panicbuf, PANICBUFSIZE);
return (DCMD_ERR);
}
mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff);
n = (pd->pd_msgoff - (sizeof (panic_data_t) -
sizeof (panic_nv_t))) / sizeof (panic_nv_t);
for (i = 0; i < n; i++)
mdb_printf("%16s %?llx\n",
pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
mdb_free(panicbuf, PANICBUFSIZE);
return (DCMD_OK);
}
static const mdb_dcmd_t dcmds[] = {
/* from genunix.c */
{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
{ "as2proc", ":", "convert as to proc_t address", as2proc },
{ "binding_hash_entry", ":", "print driver names hash table entry",
binding_hash_entry },
{ "callout", NULL, "print callout table", callout },
{ "class", NULL, "print process scheduler classes", class },
{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
{ "did2thread", "? kt_did", "find kernel thread for this id",
did2thread },
{ "errorq", "?[-v]", "display kernel error queues", errorq },
{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
{ "flipone", ":", "the vik_rev_level 2 special", flipone },
{ "lminfo", NULL, "print lock manager information", lminfo },
{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
{ "panicinfo", NULL, "print panic information", panicinfo },
{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
{ "pmap", ":[-q]", "print process memory map", pmap },
{ "project", NULL, "display kernel project(s)", project },
{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
{ "pgrep", "[-n | -o] pattern", "pattern match against all processes",
pgrep },
{ "ptree", NULL, "print process tree", ptree },
{ "seg", ":", "print address space segment", seg },
{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
sysevent},
{ "sysevent_channel", "?", "print sysevent channel database",
sysevent_channel},
{ "sysevent_class_list", ":", "print sysevent class list",
sysevent_class_list},
{ "sysevent_subclass_list", ":",
"print sysevent subclass list", sysevent_subclass_list},
{ "system", NULL, "print contents of /etc/system file", sysfile },
{ "task", NULL, "display kernel task(s)", task },
{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
{ "whereopen", ":", "given a vnode, dumps procs which have it open",
whereopen },
/* from zone.c */
{ "zone", "?", "display kernel zone(s)", zoneprt },
{ "zsd", ":[zsd key]", "lookup zsd value from a key", zsd },
/* from bio.c */
{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
/* from contract.c */
{ "contract", "?", "display a contract", cmd_contract },
{ "ctevent", ":", "display a contract event", cmd_ctevent },
{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
/* from cpupart.c */
{ "cpupart", "?", "print cpu partition info", cpupart },
/* from cyclic.c */
{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
{ "cycid", "?", "dump a cyclic id", cycid },
{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
{ "cyclic", ":", "developer information", cyclic },
{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
/* from devinfo.c */
{ "devbindings", "?[-qs] [device-name | major-num]",
"print devinfo nodes bound to device-name or major-num",
devbindings, devinfo_help },
{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
devinfo_help },
{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
devinfo_audit },
{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
devinfo_audit_log },
{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
devinfo_audit_node },
{ "devinfo2driver", ":", "find driver name for this devinfo node",
devinfo2driver },
{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
dev2major },
{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
dev2minor },
{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
devt },
{ "major2name", "?<major-num>", "convert major number to dev name",
major2name },
{ "minornodes", ":", "given a devinfo node, print its minor nodes",
minornodes },
{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
modctl2devinfo },
{ "name2major", "<dev-name>", "convert dev name to major number",
name2major },
{ "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
{ "softstate", ":<instance>", "retrieve soft-state pointer",
softstate },
{ "devinfo_fm", ":", "devinfo fault managment configuration",
devinfo_fm },
{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
devinfo_fmce},
/* from findstack.c */
{ "findstack", ":[-v]", "find kernel thread stack", findstack },
{ "findstack_debug", NULL, "toggle findstack debugging",
findstack_debug },
/* from kgrep.c + genunix.c */
{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep },
/* from kmem.c */
{ "allocdby", ":", "given a thread, print its allocated buffers",
allocdby },
{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
{ "freedby", ":", "given a thread, print its freed buffers", freedby },
{ "kmalog", "?[ fail | slab ]",
"display kmem transaction log and stack traces", kmalog },
{ "kmastat", NULL, "kernel memory allocator stats", kmastat },
{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
"of the kmem allocator", kmausers, kmausers_help },
{ "kmem_cache", "?", "print kernel memory caches", kmem_cache },
{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
{ "kmem_verify", "?", "check integrity of kmem-managed memory",
kmem_verify },
{ "vmem", "?", "print a vmem_t", vmem },
{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
"[-m minsize] [-M maxsize] [-t thread] [-T type]",
"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
{ "whatis", ":[-abiv]", "given an address, return information", whatis,
whatis_help },
{ "whatthread", ":[-v]", "print threads whose stack contains the "
"given address", whatthread },
/* from ldi.c */
{ "ldi_handle", "?[-i]", "display a layered driver handle",
ldi_handle, ldi_handle_help },
{ "ldi_ident", NULL, "display a layered driver identifier",
ldi_ident, ldi_ident_help },
/* from leaky.c + leaky_subr.c */
{ "findleaks", FINDLEAKS_USAGE,
"search for potential kernel memory leaks", findleaks,
findleaks_help },
/* from lgrp.c */
{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
/* from log.c */
{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
/* from memory.c */
{ "page", "?", "display a summarized page_t", page },
{ "memstat", NULL, "display memory usage summary", memstat },
{ "memlist", "?[-iav]", "display a struct memlist", memlist },
{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
/* from mmd.c */
{ "multidata", ":[-sv]", "display a summarized multidata_t",
multidata },
{ "pattbl", ":", "display a summarized multidata attribute table",
pattbl },
{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
pattr2multidata },
{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
pdesc2slab },
{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
slab2multidata },
/* from modhash.c */
{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
"display information about one or all mod_hash structures",
modhash, modhash_help },
{ "modent", ":[-k | -v | -t type]",
"display information about a mod_hash_entry", modent,
modent_help },
/* from net.c */
{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
mi },
{ "netstat", "[-av] [-f inet | inet6 | unix] [-P tcp | udp]",
"show network statistics", netstat },
{ "sonode", "?[-f inet | inet6 | unix | #] "
"[-t stream | dgram | raw | #] [-p #]",
"filter and display sonode", sonode },
/* from nvpair.c */
{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
nvpair_print },
/* from rctl.c */
{ "rctl_dict", "?", "print systemwide default rctl definitions",
rctl_dict },
{ "rctl_list", ":[handle]", "print rctls for the given proc",
rctl_list },
{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
rctl },
{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
"sequence", rctl_validate },
/* from sobj.c */
{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
mutex_help },
{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
{ "turnstile", "?", "display a turnstile", turnstile },
/* from stream.c */
{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
"print an mblk", mblk_prt, mblk_help },
{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
mblk2dblk },
{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
"filter and display STREAM queue", queue, queue_help },
{ "stdata", ":[-q|v] [-f flag] [-F flag]",
"filter and display STREAM head", stdata, stdata_help },
{ "str2mate", ":", "print mate of this stream", str2mate },
{ "str2wrq", ":", "print write queue of this stream", str2wrq },
{ "stream", ":", "display STREAM", stream },
{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
"filter and display STREAM sync queue", syncq, syncq_help },
{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
/* from thread.c */
{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
thread_help },
{ "threadlist", "?[-v [count]]",
"display threads and associated C stack traces", threadlist,
threadlist_help },
/* from tsd.c */
{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
{ "tsdtot", ":", "find thread with this tsd", tsdtot },
/*
* typegraph does not work under kmdb, as it requires too much memory
* for its internal data structures.
*/
#ifndef _KMDB
/* from typegraph.c */
{ "findlocks", ":", "find locks held by specified thread", findlocks },
{ "findfalse", "?[-v]", "find potentially falsely shared structures",
findfalse },
{ "typegraph", NULL, "build type graph", typegraph },
{ "istype", ":type", "manually set object type", istype },
{ "notype", ":", "manually clear object type", notype },
{ "whattype", ":", "determine object type", whattype },
#endif
/* from vfs.c */
{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
{ "pfiles", ":[-fp]", "print process file information", pfiles,
pfiles_help },
{ NULL }
};
static const mdb_walker_t walkers[] = {
/* from genunix.c */
{ "avl", "given any avl_tree_t *, forward walk all entries in tree",
avl_walk_init, avl_walk_step, avl_walk_fini },
{ "anon", "given an amp, list of anon structures",
anon_walk_init, anon_walk_step, anon_walk_fini },
{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
{ "errorq", "walk list of system error queues",
errorq_walk_init, errorq_walk_step, NULL },
{ "errorq_data", "walk pending error queue data buffers",
eqd_walk_init, eqd_walk_step, eqd_walk_fini },
{ "allfile", "given a proc pointer, list all file pointers",
file_walk_init, allfile_walk_step, file_walk_fini },
{ "file", "given a proc pointer, list of open file pointers",
file_walk_init, file_walk_step, file_walk_fini },
{ "lock_descriptor", "walk lock_descriptor_t structures",
ld_walk_init, ld_walk_step, NULL },
{ "lock_graph", "walk lock graph",
lg_walk_init, lg_walk_step, NULL },
{ "port", "given a proc pointer, list of created event ports",
port_walk_init, port_walk_step, NULL },
{ "portev", "given a port pointer, list of events in the queue",
portev_walk_init, portev_walk_step, portev_walk_fini },
{ "proc", "list of active proc_t structures",
proc_walk_init, proc_walk_step, proc_walk_fini },
{ "projects", "walk a list of kernel projects",
project_walk_init, project_walk_step, NULL },
{ "seg", "given an as, list of segments",
seg_walk_init, avl_walk_step, avl_walk_fini },
{ "sysevent_pend", "walk sysevent pending queue",
sysevent_pend_walk_init, sysevent_walk_step,
sysevent_walk_fini},
{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
sysevent_walk_step, sysevent_walk_fini},
{ "sysevent_channel", "walk sysevent channel subscriptions",
sysevent_channel_walk_init, sysevent_channel_walk_step,
sysevent_channel_walk_fini},
{ "sysevent_class_list", "walk sysevent subscription's class list",
sysevent_class_list_walk_init, sysevent_class_list_walk_step,
sysevent_class_list_walk_fini},
{ "sysevent_subclass_list",
"walk sysevent subscription's subclass list",
sysevent_subclass_list_walk_init,
sysevent_subclass_list_walk_step,
sysevent_subclass_list_walk_fini},
{ "task", "given a task pointer, walk its processes",
task_walk_init, task_walk_step, NULL },
{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
taskq_walk_init, taskq_walk_step, NULL, NULL },
/* from zone.c */
{ "zone", "walk a list of kernel zones",
zone_walk_init, zone_walk_step, NULL },
{ "zsd", "walk list of zsd entries for a zone",
zsd_walk_init, zsd_walk_step, NULL },
/* from bio.c */
{ "buf", "walk the bio buf hash",
buf_walk_init, buf_walk_step, buf_walk_fini },
/* from contract.c */
{ "contract", "walk all contracts, or those of the specified type",
ct_walk_init, generic_walk_step, NULL },
{ "ct_event", "walk events on a contract event queue",
ct_event_walk_init, generic_walk_step, NULL },
{ "ct_listener", "walk contract event queue listeners",
ct_listener_walk_init, generic_walk_step, NULL },
/* from cpupart.c */
{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
NULL },
{ "cpupart_walk", "walk the set of cpu partitions",
cpupart_walk_init, cpupart_walk_step, NULL },
/* from ctxop.c */
{ "ctxop", "walk list of context ops on a thread",
ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
/* from cyclic.c */
{ "cyccpu", "walk per-CPU cyc_cpu structures",
cyccpu_walk_init, cyccpu_walk_step, NULL },
{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
cycomni_walk_init, cycomni_walk_step, NULL },
{ "cyctrace", "walk cyclic trace buffer",
cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
/* from devinfo.c */
{ "binding_hash", "walk all entries in binding hash table",
binding_hash_walk_init, binding_hash_walk_step, NULL },
{ "devinfo", "walk devinfo tree or subtree",
devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
{ "devinfo_audit_log", "walk devinfo audit system-wide log",
devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
devinfo_audit_log_walk_fini},
{ "devinfo_audit_node", "walk per-devinfo audit history",
devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
devinfo_audit_node_walk_fini},
{ "devinfo_children", "walk children of devinfo node",
devinfo_children_walk_init, devinfo_children_walk_step,
devinfo_children_walk_fini },
{ "devinfo_parents", "walk ancestors of devinfo node",
devinfo_parents_walk_init, devinfo_parents_walk_step,
devinfo_parents_walk_fini },
{ "devinfo_siblings", "walk siblings of devinfo node",
devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
{ "devi_next", "walk devinfo list",
NULL, devi_next_walk_step, NULL },
{ "devnames", "walk devnames array",
devnames_walk_init, devnames_walk_step, devnames_walk_fini },
{ "minornode", "given a devinfo node, walk minor nodes",
minornode_walk_init, minornode_walk_step, NULL },
{ "softstate",
"given an i_ddi_soft_state*, list all in-use driver stateps",
soft_state_walk_init, soft_state_walk_step,
NULL, NULL },
{ "softstate_all",
"given an i_ddi_soft_state*, list all driver stateps",
soft_state_walk_init, soft_state_all_walk_step,
NULL, NULL },
{ "devinfo_fmc",
"walk a fault management handle cache active list",
devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
/* from kmem.c */
{ "allocdby", "given a thread, walk its allocated bufctls",
allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
{ "bufctl", "walk a kmem cache's bufctls",
bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
{ "bufctl_history", "walk the available history of a bufctl",
bufctl_history_walk_init, bufctl_history_walk_step,
bufctl_history_walk_fini },
{ "freedby", "given a thread, walk its freed bufctls",
freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
{ "freectl", "walk a kmem cache's free bufctls",
freectl_walk_init, kmem_walk_step, kmem_walk_fini },
{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
{ "freemem", "walk a kmem cache's free memory",
freemem_walk_init, kmem_walk_step, kmem_walk_fini },
{ "freemem_constructed", "walk a kmem cache's constructed free memory",
freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
{ "kmem", "walk a kmem cache",
kmem_walk_init, kmem_walk_step, kmem_walk_fini },
{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
{ "kmem_log", "walk the kmem transaction log",
kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
{ "kmem_slab", "given a kmem cache, walk its slabs",
kmem_slab_walk_init, kmem_slab_walk_step, NULL },
{ "kmem_slab_partial",
"given a kmem cache, walk its partially allocated slabs (min 1)",
kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL },
{ "vmem", "walk vmem structures in pre-fix, depth-first order",
vmem_walk_init, vmem_walk_step, vmem_walk_fini },
{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
/* from ldi.c */
{ "ldi_handle", "walk the layered driver handle hash",
ldi_handle_walk_init, ldi_handle_walk_step, NULL },
{ "ldi_ident", "walk the layered driver identifier hash",
ldi_ident_walk_init, ldi_ident_walk_step, NULL },
/* from leaky.c + leaky_subr.c */
{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
"stack trace",
leaky_walk_init, leaky_walk_step, leaky_walk_fini },
{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
"leaks w/ same stack trace",
leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
/* from lgrp.c */
{ "lgrp_cpulist", "given an lgrp, walk cpus",
lgrp_cpulist_walk_init, lgrp_cpulist_walk_step,
NULL },
{ "lgrptbl", "walk the lgrp table",
lgrp_walk_init, lgrp_walk_step, NULL },
/* from list.c */
{ "list", "walk a linked list",
list_walk_init, list_walk_step, list_walk_fini },
/* from memory.c */
{ "page", "walk all pages, or those from the specified vnode",
page_walk_init, page_walk_step, page_walk_fini },
{ "memlist", "walk specified memlist",
NULL, memlist_walk_step, NULL },
{ "swapinfo", "walk swapinfo structures",
swap_walk_init, swap_walk_step, NULL },
/* from mmd.c */
{ "pattr", "walk pattr_t structures", pattr_walk_init,
mmdq_walk_step, mmdq_walk_fini },
{ "pdesc", "walk pdesc_t structures",
pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
{ "pdesc_slab", "walk pdesc_slab_t structures",
pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
/* from modhash.c */
{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
modhash_walk_step, NULL },
{ "modent", "walk list of entries in a given mod_hash",
modent_walk_init, modent_walk_step, modent_walk_fini },
{ "modchain", "walk list of entries in a given mod_hash_entry",
NULL, modchain_walk_step, NULL },
/* from net.c */
{ "ar", "walk ar_t structures using MI",
mi_payload_walk_init, mi_payload_walk_step,
mi_payload_walk_fini, &mi_ar_arg },
{ "icmp", "walk ICMP control structures using MI",
mi_payload_walk_init, mi_payload_walk_step,
mi_payload_walk_fini, &mi_icmp_arg },
{ "ill", "walk ill_t structures using MI",
mi_payload_walk_init, mi_payload_walk_step,
mi_payload_walk_fini, &mi_ill_arg },
{ "mi", "given a MI_O, walk the MI",
mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
{ "sonode", "given a sonode, walk its children",
sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
{ "udp", "walk UDP connections using MI",
mi_payload_walk_init, mi_payload_walk_step,
mi_payload_walk_fini, &mi_udp_arg },
/* from nvpair.c */
{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
nvpair_walk_init, nvpair_walk_step, NULL },
/* from rctl.c */
{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
rctl_dict_walk_init, rctl_dict_walk_step, NULL },
{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
rctl_set_walk_step, NULL },
{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
rctl_val_walk_init, rctl_val_walk_step },
/* from sobj.c */
{ "blocked", "walk threads blocked on a given sobj",
blocked_walk_init, blocked_walk_step, NULL },
{ "wchan", "given a wchan, list of blocked threads",
wchan_walk_init, wchan_walk_step, wchan_walk_fini },
/* from stream.c */
{ "b_cont", "walk mblk_t list using b_cont",
mblk_walk_init, b_cont_step, mblk_walk_fini },
{ "b_next", "walk mblk_t list using b_next",
mblk_walk_init, b_next_step, mblk_walk_fini },
{ "qlink", "walk queue_t list using q_link",
queue_walk_init, queue_link_step, queue_walk_fini },
{ "qnext", "walk queue_t list using q_next",
queue_walk_init, queue_next_step, queue_walk_fini },
{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
strftblk_walk_init, strftblk_step, strftblk_walk_fini },
{ "readq", "walk read queue side of stdata",
str_walk_init, strr_walk_step, str_walk_fini },
{ "writeq", "walk write queue side of stdata",
str_walk_init, strw_walk_step, str_walk_fini },
/* from thread.c */
{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
deathrow_walk_init, deathrow_walk_step, NULL },
{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
{ "cpupart_dispq",
"given a cpupart_t, walk threads in dispatcher queues",
cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
{ "lwp_deathrow", "walk lwp_deathrow",
lwp_deathrow_walk_init, deathrow_walk_step, NULL },
{ "thread", "global or per-process kthread_t structures",
thread_walk_init, thread_walk_step, thread_walk_fini },
{ "thread_deathrow", "walk threads on thread_deathrow",
thread_deathrow_walk_init, deathrow_walk_step, NULL },
/* from tsd.c */
{ "tsd", "walk list of thread-specific data",
tsd_walk_init, tsd_walk_step, tsd_walk_fini },
/*
* typegraph does not work under kmdb, as it requires too much memory
* for its internal data structures.
*/
#ifndef _KMDB
/* from typegraph.c */
{ "typeconflict", "walk buffers with conflicting type inferences",
typegraph_walk_init, typeconflict_walk_step },
{ "typeunknown", "walk buffers with unknown types",
typegraph_walk_init, typeunknown_walk_step },
#endif
/* from vfs.c */
{ "vfs", "walk file system list",
vfs_walk_init, vfs_walk_step },
{ NULL }
};
static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
const mdb_modinfo_t *
_mdb_init(void)
{
if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) {
mdb_warn("failed to read 'top_devinfo'");
return (NULL);
}
if (findstack_init() != DCMD_OK)
return (NULL);
kmem_init();
return (&modinfo);
}
void
_mdb_fini(void)
{
/*
* Force ::findleaks to let go any cached memory
*/
leaky_cleanup(1);
}