findstack.c revision e0ad97e30ea0a9af63c42d71690b5f387c763420
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ctf.h>
#include <sys/types.h>
#include <sys/regset.h>
#include <sys/stack.h>
#include <sys/thread.h>
#include <sys/modctl.h>
#include "findstack.h"
#include "thread.h"
#include "sobj.h"
typedef struct findstack_info {
uintptr_t *fsi_stack; /* place to record frames */
uintptr_t fsi_sp; /* stack pointer */
uintptr_t fsi_pc; /* pc */
uintptr_t fsi_sobj_ops; /* sobj_ops */
uint_t fsi_tstate; /* t_state */
uchar_t fsi_depth; /* stack depth */
uchar_t fsi_failed; /* search failed */
uchar_t fsi_overflow; /* stack was deeper than max_depth */
uchar_t fsi_panic; /* thread called panic() */
uchar_t fsi_max_depth; /* stack frames available */
} findstack_info_t;
#define FSI_FAIL_BADTHREAD 1
#define FSI_FAIL_NOTINMEMORY 2
#define FSI_FAIL_THREADCORRUPT 3
#define FSI_FAIL_STACKNOTFOUND 4
#ifndef STACK_BIAS
#define STACK_BIAS 0
#endif
#define fs_dprintf(x) \
if (findstack_debug_on) { \
mdb_printf("findstack debug: "); \
/*CSTYLED*/ \
mdb_printf x ; \
}
static int findstack_debug_on = 0;
#if defined(__i386) || defined(__amd64)
struct rwindow {
uintptr_t rw_fp;
uintptr_t rw_rtn;
};
#endif
#define TOO_BIG_FOR_A_STACK (1024 * 1024)
#define KTOU(p) ((p) - kbase + ubase)
#define UTOK(p) ((p) - ubase + kbase)
#define CRAWL_FOUNDALL (-1)
/*
* Given a stack pointer, try to crawl down it to the bottom.
* "frame" is a VA in MDB's address space.
*
* Returns the number of frames successfully crawled down, or
* CRAWL_FOUNDALL if it got to the bottom of the stack.
*/
static int
crawl(uintptr_t frame, uintptr_t kbase, uintptr_t ktop, uintptr_t ubase,
int kill_fp, findstack_info_t *fsip)
{
int levels = 0;
fsip->fsi_depth = 0;
fsip->fsi_overflow = 0;
fs_dprintf(("<0> frame = %p, kbase = %p, ktop = %p, ubase = %p\n",
frame, kbase, ktop, ubase));
for (;;) {
uintptr_t fp;
long *fpp = (long *)&((struct rwindow *)frame)->rw_fp;
fs_dprintf(("<1> fpp = %p, frame = %p\n", fpp, frame));
if ((frame & (STACK_ALIGN - 1)) != 0)
break;
fp = ((struct rwindow *)frame)->rw_fp + STACK_BIAS;
if (fsip->fsi_depth < fsip->fsi_max_depth)
fsip->fsi_stack[fsip->fsi_depth++] =
((struct rwindow *)frame)->rw_rtn;
else
fsip->fsi_overflow = 1;
fs_dprintf(("<2> fp = %p\n", fp));
if (fp == ktop)
return (CRAWL_FOUNDALL);
fs_dprintf(("<3> not at base\n"));
#if defined(__i386) || defined(__amd64)
if (ktop - fp == sizeof (struct rwindow)) {
fs_dprintf(("<4> found base\n"));
return (CRAWL_FOUNDALL);
}
#endif
fs_dprintf(("<5> fp = %p, kbase = %p, ktop - size = %p\n",
fp, kbase, ktop - sizeof (struct rwindow)));
if (fp < kbase || fp >= (ktop - sizeof (struct rwindow)))
break;
frame = KTOU(fp);
fs_dprintf(("<6> frame = %p\n", frame));
/*
* NULL out the old %fp so we don't go down this stack
* more than once.
*/
if (kill_fp) {
fs_dprintf(("<7> fpp = %p\n", fpp));
*fpp = NULL;
}
fs_dprintf(("<8> levels = %d\n", levels));
levels++;
}
return (levels);
}
/*
* "sp" is a kernel VA.
*/
static int
print_stack(uintptr_t sp, uintptr_t pc, uintptr_t addr,
int argc, const mdb_arg_t *argv, int free_state)
{
int showargs = 0, count, err;
count = mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &showargs, NULL);
argc -= count;
argv += count;
if (argc > 1 || (argc == 1 && argv->a_type != MDB_TYPE_STRING))
return (DCMD_USAGE);
mdb_printf("stack pointer for thread %p%s: %p\n",
addr, (free_state ? " (TS_FREE)" : ""), sp);
if (pc != 0)
mdb_printf("[ %0?lr %a() ]\n", sp, pc);
mdb_inc_indent(2);
mdb_set_dot(sp);
if (argc == 1)
err = mdb_eval(argv->a_un.a_str);
else if (showargs)
err = mdb_eval("<.$C");
else
err = mdb_eval("<.$C0");
mdb_dec_indent(2);
return ((err == -1) ? DCMD_ABORT : DCMD_OK);
}
/*ARGSUSED*/
static int
do_findstack(uintptr_t addr, findstack_info_t *fsip, uint_t print_warnings)
{
kthread_t thr;
size_t stksz;
uintptr_t ubase, utop;
uintptr_t kbase, ktop;
uintptr_t win, sp;
fsip->fsi_failed = 0;
fsip->fsi_pc = 0;
fsip->fsi_sp = 0;
fsip->fsi_depth = 0;
fsip->fsi_overflow = 0;
bzero(&thr, sizeof (thr));
if (mdb_ctf_vread(&thr, "kthread_t", addr,
MDB_CTF_VREAD_IGNORE_ALL) == -1) {
if (print_warnings)
mdb_warn("couldn't read thread at %p\n", addr);
fsip->fsi_failed = FSI_FAIL_BADTHREAD;
return (DCMD_ERR);
}
fsip->fsi_sobj_ops = (uintptr_t)thr.t_sobj_ops;
fsip->fsi_tstate = thr.t_state;
fsip->fsi_panic = !!(thr.t_flag & T_PANIC);
if ((thr.t_schedflag & TS_LOAD) == 0) {
if (print_warnings)
mdb_warn("thread %p isn't in memory\n", addr);
fsip->fsi_failed = FSI_FAIL_NOTINMEMORY;
return (DCMD_ERR);
}
if (thr.t_stk < thr.t_stkbase) {
if (print_warnings)
mdb_warn(
"stack base or stack top corrupt for thread %p\n",
addr);
fsip->fsi_failed = FSI_FAIL_THREADCORRUPT;
return (DCMD_ERR);
}
kbase = (uintptr_t)thr.t_stkbase;
ktop = (uintptr_t)thr.t_stk;
stksz = ktop - kbase;
#ifdef __amd64
/*
* The stack on amd64 is intentionally misaligned, so ignore the top
* half-frame. See thread_stk_init(). When handling traps, the frame
* is automatically aligned by the hardware, so we only alter ktop if
* needed.
*/
if ((ktop & (STACK_ALIGN - 1)) != 0)
ktop -= STACK_ENTRY_ALIGN;
#endif
/*
* If the stack size is larger than a meg, assume that it's bogus.
*/
if (stksz > TOO_BIG_FOR_A_STACK) {
if (print_warnings)
mdb_warn("stack size for thread %p is too big to be "
"reasonable\n", addr);
fsip->fsi_failed = FSI_FAIL_THREADCORRUPT;
return (DCMD_ERR);
}
/*
* This could be (and was) a UM_GC allocation. Unfortunately,
* stksz tends to be very large. As currently implemented, dcmds
* invoked as part of pipelines don't have their UM_GC-allocated
* memory freed until the pipeline completes. With stksz in the
* neighborhood of 20k, the popular ::walk thread |::findstack
* pipeline can easily run memory-constrained debuggers (kmdb) out
* of memory. This can be changed back to a gc-able allocation when
* the debugger is changed to free UM_GC memory more promptly.
*/
ubase = (uintptr_t)mdb_alloc(stksz, UM_SLEEP);
utop = ubase + stksz;
if (mdb_vread((caddr_t)ubase, stksz, kbase) != stksz) {
mdb_free((void *)ubase, stksz);
if (print_warnings)
mdb_warn("couldn't read entire stack for thread %p\n",
addr);
fsip->fsi_failed = FSI_FAIL_THREADCORRUPT;
return (DCMD_ERR);
}
/*
* Try the saved %sp first, if it looks reasonable.
*/
sp = KTOU((uintptr_t)thr.t_sp + STACK_BIAS);
if (sp >= ubase && sp <= utop) {
if (crawl(sp, kbase, ktop, ubase, 0, fsip) == CRAWL_FOUNDALL) {
fsip->fsi_sp = (uintptr_t)thr.t_sp;
#if !defined(__i386)
fsip->fsi_pc = (uintptr_t)thr.t_pc;
#endif
goto found;
}
}
/*
* Now walk through the whole stack, starting at the base,
* trying every possible "window".
*/
for (win = ubase;
win + sizeof (struct rwindow) <= utop;
win += sizeof (struct rwindow *)) {
if (crawl(win, kbase, ktop, ubase, 1, fsip) == CRAWL_FOUNDALL) {
fsip->fsi_sp = UTOK(win) - STACK_BIAS;
goto found;
}
}
/*
* We didn't conclusively find the stack. So we'll take another lap,
* and print out anything that looks possible.
*/
if (print_warnings)
mdb_printf("Possible stack pointers for thread %p:\n", addr);
(void) mdb_vread((caddr_t)ubase, stksz, kbase);
for (win = ubase;
win + sizeof (struct rwindow) <= utop;
win += sizeof (struct rwindow *)) {
uintptr_t fp = ((struct rwindow *)win)->rw_fp;
int levels;
if ((levels = crawl(win, kbase, ktop, ubase, 1, fsip)) > 1) {
if (print_warnings)
mdb_printf(" %p (%d)\n", fp, levels);
} else if (levels == CRAWL_FOUNDALL) {
/*
* If this is a live system, the stack could change
* between the two mdb_vread(ubase, utop, kbase)'s,
* and we could have a fully valid stack here.
*/
fsip->fsi_sp = UTOK(win) - STACK_BIAS;
goto found;
}
}
fsip->fsi_depth = 0;
fsip->fsi_overflow = 0;
fsip->fsi_failed = FSI_FAIL_STACKNOTFOUND;
mdb_free((void *)ubase, stksz);
return (DCMD_ERR);
found:
mdb_free((void *)ubase, stksz);
return (DCMD_OK);
}
int
findstack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
findstack_info_t fsi;
int retval;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
bzero(&fsi, sizeof (fsi));
if ((retval = do_findstack(addr, &fsi, 1)) != DCMD_OK ||
fsi.fsi_failed)
return (retval);
return (print_stack(fsi.fsi_sp, fsi.fsi_pc, addr,
argc, argv, fsi.fsi_tstate == TS_FREE));
}
/*ARGSUSED*/
int
findstack_debug(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *av)
{
findstack_debug_on ^= 1;
mdb_printf("findstack: debugging is now %s\n",
findstack_debug_on ? "on" : "off");
return (DCMD_OK);
}
static void
uppercase(char *p)
{
for (; *p != '\0'; p++) {
if (*p >= 'a' && *p <= 'z')
*p += 'A' - 'a';
}
}
static void
sobj_to_text(uintptr_t addr, char *out, size_t out_sz)
{
sobj_ops_to_text(addr, out, out_sz);
uppercase(out);
}
#define SOBJ_ALL 1
static int
text_to_sobj(const char *text, uintptr_t *out)
{
if (strcasecmp(text, "ALL") == 0) {
*out = SOBJ_ALL;
return (0);
}
return (sobj_text_to_ops(text, out));
}
#define TSTATE_PANIC -2U
static int
text_to_tstate(const char *text, uint_t *out)
{
if (strcasecmp(text, "panic") == 0)
*out = TSTATE_PANIC;
else if (thread_text_to_state(text, out) != 0) {
mdb_warn("tstate \"%s\" not recognized\n", text);
return (-1);
}
return (0);
}
static void
tstate_to_text(uint_t tstate, uint_t paniced, char *out, size_t out_sz)
{
if (paniced)
mdb_snprintf(out, out_sz, "panic");
else
thread_state_to_text(tstate, out, out_sz);
uppercase(out);
}
typedef struct stacks_entry {
struct stacks_entry *se_next;
struct stacks_entry *se_dup; /* dups of this stack */
uintptr_t se_thread;
uintptr_t se_sp;
uintptr_t se_sobj_ops;
uint32_t se_tstate;
uint32_t se_count; /* # threads w/ this stack */
uint8_t se_overflow;
uint8_t se_depth;
uint8_t se_failed; /* failure reason; FSI_FAIL_* */
uint8_t se_panic;
uintptr_t se_stack[1];
} stacks_entry_t;
#define STACKS_ENTRY_SIZE(x) OFFSETOF(stacks_entry_t, se_stack[(x)])
#define STACKS_HSIZE 127
/* Maximum stack depth reported in stacks */
#define STACKS_MAX_DEPTH 254
typedef struct stacks_info {
size_t si_count; /* total stacks_entry_ts (incl dups) */
size_t si_entries; /* # entries in hash table */
stacks_entry_t **si_hash; /* hash table */
findstack_info_t si_fsi; /* transient callback state */
} stacks_info_t;
/* global state cached between invocations */
#define STACKS_STATE_CLEAN 0
#define STACKS_STATE_DIRTY 1
#define STACKS_STATE_DONE 2
static uint_t stacks_state = STACKS_STATE_CLEAN;
static stacks_entry_t **stacks_hash;
static stacks_entry_t **stacks_array;
static size_t stacks_array_size;
size_t
stacks_hash_entry(stacks_entry_t *sep)
{
size_t depth = sep->se_depth;
uintptr_t *stack = sep->se_stack;
uint64_t total = depth;
while (depth > 0) {
total += *stack;
stack++; depth--;
}
return (total % STACKS_HSIZE);
}
/*
* This is used to both compare stacks for equality and to sort the final
* list of unique stacks. forsort specifies the latter behavior, which
* additionally:
* compares se_count, and
* sorts the stacks by text function name.
*
* The equality test is independent of se_count, and doesn't care about
* relative ordering, so we don't do the extra work of looking up symbols
* for the stack addresses.
*/
int
stacks_entry_comp_impl(stacks_entry_t *l, stacks_entry_t *r,
uint_t forsort)
{
int idx;
int depth = MIN(l->se_depth, r->se_depth);
/* no matter what, panic stacks come last. */
if (l->se_panic > r->se_panic)
return (1);
if (l->se_panic < r->se_panic)
return (-1);
if (forsort) {
/* put large counts earlier */
if (l->se_count > r->se_count)
return (-1);
if (l->se_count < r->se_count)
return (1);
}
if (l->se_tstate > r->se_tstate)
return (1);
if (l->se_tstate < r->se_tstate)
return (-1);
if (l->se_failed > r->se_failed)
return (1);
if (l->se_failed < r->se_failed)
return (-1);
for (idx = 0; idx < depth; idx++) {
char lbuf[MDB_SYM_NAMLEN];
char rbuf[MDB_SYM_NAMLEN];
int rval;
uintptr_t laddr = l->se_stack[idx];
uintptr_t raddr = r->se_stack[idx];
if (laddr == raddr)
continue;
if (forsort &&
mdb_lookup_by_addr(laddr, MDB_SYM_FUZZY,
lbuf, sizeof (lbuf), NULL) != -1 &&
mdb_lookup_by_addr(raddr, MDB_SYM_FUZZY,
rbuf, sizeof (rbuf), NULL) != -1 &&
(rval = strcmp(lbuf, rbuf)) != 0)
return (rval);
if (laddr > raddr)
return (1);
return (-1);
}
if (l->se_overflow > r->se_overflow)
return (-1);
if (l->se_overflow < r->se_overflow)
return (1);
if (l->se_depth > r->se_depth)
return (1);
if (l->se_depth < r->se_depth)
return (-1);
if (l->se_sobj_ops > r->se_sobj_ops)
return (1);
if (l->se_sobj_ops < r->se_sobj_ops)
return (-1);
return (0);
}
int
stacks_entry_comp(const void *l_arg, const void *r_arg)
{
stacks_entry_t * const *lp = l_arg;
stacks_entry_t * const *rp = r_arg;
return (stacks_entry_comp_impl(*lp, *rp, 1));
}
void
stacks_cleanup(int force)
{
int idx = 0;
stacks_entry_t *cur, *next;
if (stacks_state == STACKS_STATE_CLEAN)
return;
if (!force && stacks_state == STACKS_STATE_DONE)
return;
/*
* Until the array is sorted and stable, stacks_hash will be non-NULL.
* This way, we can get at all of the data, even if qsort() was
* interrupted while mucking with the array.
*/
if (stacks_hash != NULL) {
for (idx = 0; idx < STACKS_HSIZE; idx++) {
while ((cur = stacks_hash[idx]) != NULL) {
while ((next = cur->se_dup) != NULL) {
cur->se_dup = next->se_dup;
mdb_free(next,
STACKS_ENTRY_SIZE(next->se_depth));
}
next = cur->se_next;
stacks_hash[idx] = next;
mdb_free(cur, STACKS_ENTRY_SIZE(cur->se_depth));
}
}
if (stacks_array != NULL)
mdb_free(stacks_array,
stacks_array_size * sizeof (*stacks_array));
} else if (stacks_array != NULL) {
for (idx = 0; idx < stacks_array_size; idx++) {
if ((cur = stacks_array[idx]) != NULL) {
while ((next = cur->se_dup) != NULL) {
cur->se_dup = next->se_dup;
mdb_free(next,
STACKS_ENTRY_SIZE(next->se_depth));
}
stacks_array[idx] = NULL;
mdb_free(cur, STACKS_ENTRY_SIZE(cur->se_depth));
}
}
mdb_free(stacks_array,
stacks_array_size * sizeof (*stacks_array));
}
stacks_array_size = 0;
stacks_state = STACKS_STATE_CLEAN;
}
/*ARGSUSED*/
int
stacks_thread_cb(uintptr_t addr, const void *ignored, void *cbarg)
{
stacks_info_t *sip = cbarg;
findstack_info_t *fsip = &sip->si_fsi;
stacks_entry_t **sepp, *nsep, *sep;
int idx;
size_t depth;
if (do_findstack(addr, fsip, 0) != DCMD_OK &&
fsip->fsi_failed == FSI_FAIL_BADTHREAD) {
mdb_warn("couldn't read thread at %p\n", addr);
return (WALK_NEXT);
}
sip->si_count++;
depth = fsip->fsi_depth;
nsep = mdb_zalloc(STACKS_ENTRY_SIZE(depth), UM_SLEEP);
nsep->se_thread = addr;
nsep->se_sp = fsip->fsi_sp;
nsep->se_sobj_ops = fsip->fsi_sobj_ops;
nsep->se_tstate = fsip->fsi_tstate;
nsep->se_count = 1;
nsep->se_overflow = fsip->fsi_overflow;
nsep->se_depth = depth;
nsep->se_failed = fsip->fsi_failed;
nsep->se_panic = fsip->fsi_panic;
for (idx = 0; idx < depth; idx++)
nsep->se_stack[idx] = fsip->fsi_stack[idx];
for (sepp = &sip->si_hash[stacks_hash_entry(nsep)];
(sep = *sepp) != NULL;
sepp = &sep->se_next) {
if (stacks_entry_comp_impl(sep, nsep, 0) != 0)
continue;
nsep->se_dup = sep->se_dup;
sep->se_dup = nsep;
sep->se_count++;
return (WALK_NEXT);
}
nsep->se_next = NULL;
*sepp = nsep;
sip->si_entries++;
return (WALK_NEXT);
}
int
stacks_run_tlist(mdb_pipe_t *tlist, stacks_info_t *si)
{
size_t idx;
size_t found = 0;
kthread_t kt;
int ret;
for (idx = 0; idx < tlist->pipe_len; idx++) {
uintptr_t addr = tlist->pipe_data[idx];
if (mdb_vread(&kt, sizeof (kt), addr) == -1) {
mdb_warn("unable to read kthread_t at %p", addr);
continue;
}
found++;
ret = stacks_thread_cb(addr, &kt, si);
if (ret == WALK_DONE)
break;
if (ret != WALK_NEXT)
return (-1);
}
if (found)
return (0);
return (-1);
}
int
stacks_run(int verbose, mdb_pipe_t *tlist)
{
stacks_info_t si;
findstack_info_t *fsip = &si.si_fsi;
size_t idx;
stacks_entry_t **cur;
bzero(&si, sizeof (si));
stacks_state = STACKS_STATE_DIRTY;
stacks_hash = si.si_hash =
mdb_zalloc(STACKS_HSIZE * sizeof (*si.si_hash), UM_SLEEP);
si.si_entries = 0;
si.si_count = 0;
fsip->fsi_max_depth = STACKS_MAX_DEPTH;
fsip->fsi_stack =
mdb_alloc(fsip->fsi_max_depth * sizeof (*fsip->fsi_stack),
UM_SLEEP | UM_GC);
if (verbose)
mdb_warn("stacks: processing kernel threads\n");
if (tlist != NULL) {
if (stacks_run_tlist(tlist, &si))
return (DCMD_ERR);
} else {
if (mdb_walk("thread", stacks_thread_cb, &si) != 0) {
mdb_warn("cannot walk \"thread\"");
return (DCMD_ERR);
}
}
if (verbose)
mdb_warn("stacks: %d unique stacks / %d threads\n",
si.si_entries, si.si_count);
stacks_array_size = si.si_entries;
stacks_array =
mdb_zalloc(si.si_entries * sizeof (*stacks_array), UM_SLEEP);
cur = stacks_array;
for (idx = 0; idx < STACKS_HSIZE; idx++) {
stacks_entry_t *sep;
for (sep = si.si_hash[idx]; sep != NULL; sep = sep->se_next)
*(cur++) = sep;
}
if (cur != stacks_array + si.si_entries) {
mdb_warn("stacks: miscounted array size (%d != size: %d)\n",
(cur - stacks_array), stacks_array_size);
return (DCMD_ERR);
}
qsort(stacks_array, si.si_entries, sizeof (*stacks_array),
stacks_entry_comp);
/* Now that we're done, free the hash table */
stacks_hash = NULL;
mdb_free(si.si_hash, STACKS_HSIZE * sizeof (*si.si_hash));
if (tlist == NULL)
stacks_state = STACKS_STATE_DONE;
if (verbose)
mdb_warn("stacks: done\n");
return (DCMD_OK);
}
static int
stacks_has_caller(stacks_entry_t *sep, uintptr_t addr)
{
uintptr_t laddr = addr;
uintptr_t haddr = addr + 1;
int idx;
char c[MDB_SYM_NAMLEN];
GElf_Sym sym;
if (mdb_lookup_by_addr(addr, MDB_SYM_FUZZY,
c, sizeof (c), &sym) != -1 &&
addr == (uintptr_t)sym.st_value) {
laddr = (uintptr_t)sym.st_value;
haddr = (uintptr_t)sym.st_value + sym.st_size;
}
for (idx = 0; idx < sep->se_depth; idx++)
if (sep->se_stack[idx] >= laddr && sep->se_stack[idx] < haddr)
return (1);
return (0);
}
typedef struct find_module_struct {
struct modctl *mcp;
const char *name;
} find_module_struct_t;
/*ARGSUSED*/
int
find_module_cb(uintptr_t addr, const void *modctl_arg, void *cbarg)
{
find_module_struct_t *sp = cbarg;
char mod_modname[MODMAXNAMELEN + 1];
const struct modctl *mp = modctl_arg;
if (!mp->mod_modname)
return (WALK_NEXT);
if (mdb_readstr(mod_modname, sizeof (mod_modname),
(uintptr_t)mp->mod_modname) == -1) {
mdb_warn("failed to read mod_modname in \"modctl\" walk");
return (WALK_ERR);
}
if (strcmp(sp->name, mod_modname))
return (WALK_NEXT);
sp->mcp = mdb_alloc(sizeof (*sp->mcp), UM_SLEEP | UM_GC);
bcopy(mp, sp->mcp, sizeof (*sp->mcp));
return (WALK_DONE);
}
static struct modctl *
find_module(const char *name)
{
find_module_struct_t mptr;
mptr.name = name;
mptr.mcp = NULL;
if (mdb_walk("modctl", find_module_cb, &mptr) != 0)
mdb_warn("cannot walk \"modctl\"");
return (mptr.mcp);
}
static int
stacks_has_module(stacks_entry_t *sep, struct modctl *mp)
{
int idx;
if (mp == NULL)
return (0);
for (idx = 0; idx < sep->se_depth; idx++)
if (sep->se_stack[idx] >= (uintptr_t)mp->mod_text &&
sep->se_stack[idx] <
((uintptr_t)mp->mod_text + mp->mod_text_size))
return (1);
return (0);
}
static int
uintptrcomp(const void *lp, const void *rp)
{
uintptr_t lhs = *(const uintptr_t *)lp;
uintptr_t rhs = *(const uintptr_t *)rp;
if (lhs > rhs)
return (1);
if (lhs < rhs)
return (-1);
return (0);
}
/*ARGSUSED*/
static void
print_sobj_help(int type, const char *name, const char *ops_name, void *ign)
{
mdb_printf(" %s", name);
}
/*ARGSUSED*/
static void
print_tstate_help(uint_t state, const char *name, void *ignored)
{
mdb_printf(" %s", name);
}
void
stacks_help(void)
{
mdb_printf(
"::stacks processes all of the thread stacks on the system, grouping\n"
"together threads which have the same:\n"
"\n"
" * Thread state,\n"
" * Sync object type, and\n"
" * PCs in their stack trace.\n"
"\n"
"The default output (no address or options) is just a dump of the thread\n"
"groups in the system. For a view of active threads, use \"::stacks -i\",\n"
"which filters out FREE threads (interrupt threads which are currently\n"
"inactive) and threads sleeping on a CV. (Note that those threads may still\n"
"be noteworthy; this is just for a first glance.) More general filtering\n"
"options are described below, in the \"FILTERS\" section.\n"
"\n"
"::stacks can be used in a pipeline. The input to ::stacks is one or more\n"
"thread pointers. For example, to get a summary of threads in a process,\n"
"you can do:\n"
"\n"
" %<b>procp%</b>::walk thread | ::stacks\n"
"\n"
"When output into a pipe, ::stacks prints all of the threads input,\n"
"filtered by the given filtering options. This means that multiple\n"
"::stacks invocations can be piped together to achieve more complicated\n"
"filters. For example, to get threads which have both 'fop_read' and\n"
"'cv_wait_sig_swap' in their stack trace, you could do:\n"
"\n"
" ::stacks -c fop_read | ::stacks -c cv_wait_sig_swap_core\n"
"\n"
"To get the full list of threads in each group, use the '-a' flag:\n"
"\n"
" ::stacks -a\n"
"\n");
mdb_dec_indent(2);
mdb_printf("%<b>OPTIONS%</b>\n");
mdb_inc_indent(2);
mdb_printf("%s",
" -a Print all of the grouped threads, instead of just a count.\n"
" -f Force a re-run of the thread stack gathering.\n"
" -v Be verbose about thread stack gathering.\n"
"\n");
mdb_dec_indent(2);
mdb_printf("%<b>FILTERS%</b>\n");
mdb_inc_indent(2);
mdb_printf("%s",
" -i Show active threads; equivalent to '-S CV -T FREE'.\n"
" -c func[+offset]\n"
" Only print threads whose stacks contain func/func+offset.\n"
" -C func[+offset]\n"
" Only print threads whose stacks do not contain func/func+offset.\n"
" -m module\n"
" Only print threads whose stacks contain functions from module.\n"
" -M module\n"
" Only print threads whose stacks do not contain functions from\n"
" module.\n"
" -s {type | ALL}\n"
" Only print threads which are on a 'type' synchronization object\n"
" (SOBJ).\n"
" -S {type | ALL}\n"
" Only print threads which are not on a 'type' SOBJ.\n"
" -t tstate\n"
" Only print threads which are in thread state 'tstate'.\n"
" -T tstate\n"
" Only print threads which are not in thread state 'tstate'.\n"
"\n");
mdb_printf(" SOBJ types:");
sobj_type_walk(print_sobj_help, NULL);
mdb_printf("\n");
mdb_printf("Thread states:");
thread_walk_states(print_tstate_help, NULL);
mdb_printf(" panic\n");
}
/*ARGSUSED*/
int
stacks(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
size_t idx;
char *seen = NULL;
const char *caller_str = NULL;
const char *excl_caller_str = NULL;
uintptr_t caller = 0, excl_caller = 0;
const char *module_str = NULL;
const char *excl_module_str = NULL;
struct modctl *module = NULL, *excl_module = NULL;
const char *sobj = NULL;
const char *excl_sobj = NULL;
uintptr_t sobj_ops = 0, excl_sobj_ops = 0;
const char *tstate_str = NULL;
const char *excl_tstate_str = NULL;
uint_t tstate = -1U;
uint_t excl_tstate = -1U;
uint_t printed = 0;
uint_t all = 0;
uint_t force = 0;
uint_t interesting = 0;
uint_t verbose = 0;
/*
* We have a slight behavior difference between having piped
* input and 'addr::stacks'. Without a pipe, we assume the
* thread pointer given is a representative thread, and so
* we include all similar threads in the system in our output.
*
* With a pipe, we filter down to just the threads in our
* input.
*/
uint_t addrspec = (flags & DCMD_ADDRSPEC);
uint_t only_matching = addrspec && (flags & DCMD_PIPE);
mdb_pipe_t p;
if (mdb_getopts(argc, argv,
'a', MDB_OPT_SETBITS, TRUE, &all,
'f', MDB_OPT_SETBITS, TRUE, &force,
'i', MDB_OPT_SETBITS, TRUE, &interesting,
'v', MDB_OPT_SETBITS, TRUE, &verbose,
'c', MDB_OPT_STR, &caller_str,
'C', MDB_OPT_STR, &excl_caller_str,
'm', MDB_OPT_STR, &module_str,
'M', MDB_OPT_STR, &excl_module_str,
's', MDB_OPT_STR, &sobj,
'S', MDB_OPT_STR, &excl_sobj,
't', MDB_OPT_STR, &tstate_str,
'T', MDB_OPT_STR, &excl_tstate_str,
NULL) != argc)
return (DCMD_USAGE);
if (interesting) {
if (sobj != NULL || excl_sobj != NULL ||
tstate_str != NULL || excl_tstate_str != NULL) {
mdb_warn(
"stacks: -i is incompatible with -[sStT]\n");
return (DCMD_USAGE);
}
excl_sobj = "CV";
excl_tstate_str = "FREE";
}
if (caller_str != NULL) {
mdb_set_dot(0);
if (mdb_eval(caller_str) != 0) {
mdb_warn("stacks: evaluation of \"%s\" failed",
caller_str);
return (DCMD_ABORT);
}
caller = mdb_get_dot();
}
if (excl_caller_str != NULL) {
mdb_set_dot(0);
if (mdb_eval(excl_caller_str) != 0) {
mdb_warn("stacks: evaluation of \"%s\" failed",
excl_caller_str);
return (DCMD_ABORT);
}
excl_caller = mdb_get_dot();
}
mdb_set_dot(addr);
if (module_str != NULL &&
(module = find_module(module_str)) == NULL) {
mdb_warn("stacks: module \"%s\" is unknown", module_str);
return (DCMD_ABORT);
}
if (excl_module_str != NULL &&
(excl_module = find_module(excl_module_str)) == NULL) {
mdb_warn("stacks: module \"%s\" is unknown", excl_module_str);
return (DCMD_ABORT);
}
if (sobj != NULL &&
text_to_sobj(sobj, &sobj_ops) != 0)
return (DCMD_USAGE);
if (excl_sobj != NULL &&
text_to_sobj(excl_sobj, &excl_sobj_ops) != 0)
return (DCMD_USAGE);
if (sobj_ops != 0 && excl_sobj_ops != 0) {
mdb_warn("stacks: only one of -s and -S can be specified\n");
return (DCMD_USAGE);
}
if (tstate_str != NULL &&
text_to_tstate(tstate_str, &tstate) != 0)
return (DCMD_USAGE);
if (excl_tstate_str != NULL &&
text_to_tstate(excl_tstate_str, &excl_tstate) != 0)
return (DCMD_USAGE);
if (tstate != -1U && excl_tstate != -1U) {
mdb_warn("stacks: only one of -t and -T can be specified\n");
return (DCMD_USAGE);
}
/*
* If there's an address specified, we're going to further filter
* to only entries which have an address in the input. To reduce
* overhead (and make the sorted output come out right), we
* use mdb_get_pipe() to grab the entire pipeline of input, then
* use qsort() and bsearch() to speed up the search.
*/
if (addrspec) {
mdb_get_pipe(&p);
if (p.pipe_data == NULL || p.pipe_len == 0) {
p.pipe_data = &addr;
p.pipe_len = 1;
}
qsort(p.pipe_data, p.pipe_len, sizeof (uintptr_t),
uintptrcomp);
/* remove any duplicates in the data */
idx = 0;
while (idx < p.pipe_len - 1) {
uintptr_t *data = &p.pipe_data[idx];
size_t len = p.pipe_len - idx;
if (data[0] == data[1]) {
memmove(data, data + 1,
(len - 1) * sizeof (*data));
p.pipe_len--;
continue; /* repeat without incrementing idx */
}
idx++;
}
seen = mdb_zalloc(p.pipe_len, UM_SLEEP | UM_GC);
}
/*
* Force a cleanup if we're connected to a live system. Never
* do a cleanup after the first invocation around the loop.
*/
force |= (mdb_get_state() == MDB_STATE_RUNNING);
if (force && (flags & (DCMD_LOOPFIRST|DCMD_LOOP)) == DCMD_LOOP)
force = 0;
stacks_cleanup(force);
if (stacks_state == STACKS_STATE_CLEAN) {
int res = stacks_run(verbose, addrspec ? &p : NULL);
if (res != DCMD_OK)
return (res);
}
for (idx = 0; idx < stacks_array_size; idx++) {
stacks_entry_t *sep = stacks_array[idx];
stacks_entry_t *cur = sep;
int frame;
size_t count = sep->se_count;
if (addrspec) {
stacks_entry_t *head = NULL, *tail = NULL, *sp;
size_t foundcount = 0;
/*
* We use the now-unused hash chain field se_next to
* link together the dups which match our list.
*/
for (sp = sep; sp != NULL; sp = sp->se_dup) {
uintptr_t *entry = bsearch(&sp->se_thread,
p.pipe_data, p.pipe_len, sizeof (uintptr_t),
uintptrcomp);
if (entry != NULL) {
foundcount++;
seen[entry - p.pipe_data]++;
if (head == NULL)
head = sp;
else
tail->se_next = sp;
tail = sp;
sp->se_next = NULL;
}
}
if (head == NULL)
continue; /* no match, skip entry */
if (only_matching) {
cur = sep = head;
count = foundcount;
}
}
if (caller != 0 && !stacks_has_caller(sep, caller))
continue;
if (excl_caller != 0 && stacks_has_caller(sep, excl_caller))
continue;
if (module != 0 && !stacks_has_module(sep, module))
continue;
if (excl_module != 0 && stacks_has_module(sep, excl_module))
continue;
if (tstate != -1U) {
if (tstate == TSTATE_PANIC) {
if (!sep->se_panic)
continue;
} else if (sep->se_panic || sep->se_tstate != tstate)
continue;
}
if (excl_tstate != -1U) {
if (excl_tstate == TSTATE_PANIC) {
if (sep->se_panic)
continue;
} else if (!sep->se_panic &&
sep->se_tstate == excl_tstate)
continue;
}
if (sobj_ops == SOBJ_ALL) {
if (sep->se_sobj_ops == 0)
continue;
} else if (sobj_ops != 0) {
if (sobj_ops != sep->se_sobj_ops)
continue;
}
if (!(interesting && sep->se_panic)) {
if (excl_sobj_ops == SOBJ_ALL) {
if (sep->se_sobj_ops != 0)
continue;
} else if (excl_sobj_ops != 0) {
if (excl_sobj_ops == sep->se_sobj_ops)
continue;
}
}
if (flags & DCMD_PIPE_OUT) {
while (sep != NULL) {
mdb_printf("%lr\n", sep->se_thread);
sep = only_matching ?
sep->se_next : sep->se_dup;
}
continue;
}
if (all || !printed) {
mdb_printf("%<u>%-?s %-8s %-?s %8s%</u>\n",
"THREAD", "STATE", "SOBJ", "COUNT");
printed = 1;
}
do {
char state[20];
char sobj[100];
tstate_to_text(cur->se_tstate, cur->se_panic,
state, sizeof (state));
sobj_to_text(cur->se_sobj_ops,
sobj, sizeof (sobj));
if (cur == sep)
mdb_printf("%?p %-8s %-?s %8d\n",
cur->se_thread, state, sobj, count);
else
mdb_printf("%?p %-8s %-?s %8s\n",
cur->se_thread, state, sobj, "-");
cur = only_matching ? cur->se_next : cur->se_dup;
} while (all && cur != NULL);
if (sep->se_failed != 0) {
char *reason;
switch (sep->se_failed) {
case FSI_FAIL_NOTINMEMORY:
reason = "thread not in memory";
break;
case FSI_FAIL_THREADCORRUPT:
reason = "thread structure stack info corrupt";
break;
case FSI_FAIL_STACKNOTFOUND:
reason = "no consistent stack found";
break;
default:
reason = "unknown failure";
break;
}
mdb_printf("%?s <%s>\n", "", reason);
}
for (frame = 0; frame < sep->se_depth; frame++)
mdb_printf("%?s %a\n", "", sep->se_stack[frame]);
if (sep->se_overflow)
mdb_printf("%?s ... truncated ...\n", "");
mdb_printf("\n");
}
if (flags & DCMD_ADDRSPEC) {
for (idx = 0; idx < p.pipe_len; idx++)
if (seen[idx] == 0)
mdb_warn("stacks: %p not in thread list\n",
p.pipe_data[idx]);
}
return (DCMD_OK);
}