dtrace.c revision b8fac8e162eda7e98db13dfa3e439e43f90f41d9
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* explicitly define DTRACE_ERRDEBUG to pull in definition of dtrace_errhash_t
* explicitly define _STDARG_H to avoid stdarg.h/varargs.h u/k defn conflict
*/
#define DTRACE_ERRDEBUG
#define _STDARG_H
#include <mdb/mdb_param.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ks.h>
#include <sys/dtrace_impl.h>
#include <sys/vmem_impl.h>
#include <sys/ddi_impldefs.h>
#include <sys/sysmacros.h>
#include <sys/kobj.h>
#include <dtrace.h>
#include <alloca.h>
#include <ctype.h>
#include <errno.h>
#include <math.h>
/*ARGSUSED*/
int
id2probe(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t probe = NULL;
uintptr_t probes;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (addr == DTRACE_IDNONE || addr > UINT32_MAX)
goto out;
if (mdb_readvar(&probes, "dtrace_probes") == -1) {
mdb_warn("failed to read 'dtrace_probes'");
return (DCMD_ERR);
}
probes += (addr - 1) * sizeof (dtrace_probe_t *);
if (mdb_vread(&probe, sizeof (uintptr_t), probes) == -1) {
mdb_warn("failed to read dtrace_probes[%d]", addr - 1);
return (DCMD_ERR);
}
out:
mdb_printf("%p\n", probe);
return (DCMD_OK);
}
void
dtrace_help(void)
{
mdb_printf("Given a dtrace_state_t structure that represents a "
"DTrace consumer, prints\n"
"dtrace(1M)-like output for in-kernel DTrace data. (The "
"dtrace_state_t\n"
"structures for all DTrace consumers may be obtained by running "
"the \n"
"::dtrace_state dcmd.) When data is present on multiple CPUs, "
"data are\n"
"presented in CPU order, with records within each CPU ordered "
"oldest to \n"
"youngest. Options:\n\n"
"-c cpu Only provide output for specified CPU.\n");
}
static int
dtracemdb_eprobe(dtrace_state_t *state, dtrace_eprobedesc_t *epd)
{
dtrace_epid_t epid = epd->dtepd_epid;
dtrace_probe_t probe;
dtrace_ecb_t ecb;
uintptr_t addr, paddr, ap;
dtrace_action_t act;
int nactions, nrecs;
addr = (uintptr_t)state->dts_ecbs +
(epid - 1) * sizeof (dtrace_ecb_t *);
if (mdb_vread(&addr, sizeof (addr), addr) == -1) {
mdb_warn("failed to read ecb for epid %d", epid);
return (-1);
}
if (addr == NULL) {
mdb_warn("epid %d doesn't match an ecb\n", epid);
return (-1);
}
if (mdb_vread(&ecb, sizeof (ecb), addr) == -1) {
mdb_warn("failed to read ecb at %p", addr);
return (-1);
}
paddr = (uintptr_t)ecb.dte_probe;
if (mdb_vread(&probe, sizeof (probe), paddr) == -1) {
mdb_warn("failed to read probe for ecb %p", addr);
return (-1);
}
/*
* This is a little painful: in order to find the number of actions,
* we need to first walk through them.
*/
for (ap = (uintptr_t)ecb.dte_action, nactions = 0; ap != NULL; ) {
if (mdb_vread(&act, sizeof (act), ap) == -1) {
mdb_warn("failed to read action %p on ecb %p",
ap, addr);
return (-1);
}
if (!DTRACEACT_ISAGG(act.dta_kind) && !act.dta_intuple)
nactions++;
ap = (uintptr_t)act.dta_next;
}
nrecs = epd->dtepd_nrecs;
epd->dtepd_nrecs = nactions;
epd->dtepd_probeid = probe.dtpr_id;
epd->dtepd_uarg = ecb.dte_uarg;
epd->dtepd_size = ecb.dte_size;
for (ap = (uintptr_t)ecb.dte_action, nactions = 0; ap != NULL; ) {
if (mdb_vread(&act, sizeof (act), ap) == -1) {
mdb_warn("failed to read action %p on ecb %p",
ap, addr);
return (-1);
}
if (!DTRACEACT_ISAGG(act.dta_kind) && !act.dta_intuple) {
if (nrecs-- == 0)
break;
epd->dtepd_rec[nactions++] = act.dta_rec;
}
ap = (uintptr_t)act.dta_next;
}
return (0);
}
/*ARGSUSED*/
static int
dtracemdb_probe(dtrace_state_t *state, dtrace_probedesc_t *pd)
{
uintptr_t base, addr, paddr, praddr;
int nprobes, i;
dtrace_probe_t probe;
dtrace_provider_t prov;
if (pd->dtpd_id == DTRACE_IDNONE)
pd->dtpd_id++;
if (mdb_readvar(&base, "dtrace_probes") == -1) {
mdb_warn("failed to read 'dtrace_probes'");
return (-1);
}
if (mdb_readvar(&nprobes, "dtrace_nprobes") == -1) {
mdb_warn("failed to read 'dtrace_nprobes'");
return (-1);
}
for (i = pd->dtpd_id; i <= nprobes; i++) {
addr = base + (i - 1) * sizeof (dtrace_probe_t *);
if (mdb_vread(&paddr, sizeof (paddr), addr) == -1) {
mdb_warn("couldn't read probe pointer at %p", addr);
return (-1);
}
if (paddr != NULL)
break;
}
if (paddr == NULL) {
errno = ESRCH;
return (-1);
}
if (mdb_vread(&probe, sizeof (probe), paddr) == -1) {
mdb_warn("couldn't read probe at %p", paddr);
return (-1);
}
pd->dtpd_id = probe.dtpr_id;
if (mdb_vread(pd->dtpd_name, DTRACE_NAMELEN,
(uintptr_t)probe.dtpr_name) == -1) {
mdb_warn("failed to read probe name for probe %p", paddr);
return (-1);
}
if (mdb_vread(pd->dtpd_func, DTRACE_FUNCNAMELEN,
(uintptr_t)probe.dtpr_func) == -1) {
mdb_warn("failed to read function name for probe %p", paddr);
return (-1);
}
if (mdb_vread(pd->dtpd_mod, DTRACE_MODNAMELEN,
(uintptr_t)probe.dtpr_mod) == -1) {
mdb_warn("failed to read module name for probe %p", paddr);
return (-1);
}
praddr = (uintptr_t)probe.dtpr_provider;
if (mdb_vread(&prov, sizeof (prov), praddr) == -1) {
mdb_warn("failed to read provider for probe %p", paddr);
return (-1);
}
if (mdb_vread(pd->dtpd_provider, DTRACE_PROVNAMELEN,
(uintptr_t)prov.dtpv_name) == -1) {
mdb_warn("failed to read provider name for probe %p", paddr);
return (-1);
}
return (0);
}
/*ARGSUSED*/
static int
dtracemdb_aggdesc(dtrace_state_t *state, dtrace_aggdesc_t *agd)
{
dtrace_aggid_t aggid = agd->dtagd_id;
dtrace_aggregation_t agg;
dtrace_ecb_t ecb;
uintptr_t addr, eaddr, ap, last;
dtrace_action_t act;
dtrace_recdesc_t *lrec;
int nactions, nrecs;
addr = (uintptr_t)state->dts_aggregations +
(aggid - 1) * sizeof (dtrace_aggregation_t *);
if (mdb_vread(&addr, sizeof (addr), addr) == -1) {
mdb_warn("failed to read aggregation for aggid %d", aggid);
return (-1);
}
if (addr == NULL) {
mdb_warn("aggid %d doesn't match an aggregation\n", aggid);
return (-1);
}
if (mdb_vread(&agg, sizeof (agg), addr) == -1) {
mdb_warn("failed to read aggregation at %p", addr);
return (-1);
}
eaddr = (uintptr_t)agg.dtag_ecb;
if (mdb_vread(&ecb, sizeof (ecb), eaddr) == -1) {
mdb_warn("failed to read ecb for aggregation %p", addr);
return (-1);
}
last = (uintptr_t)addr + offsetof(dtrace_aggregation_t, dtag_action);
/*
* This is a little painful: in order to find the number of actions,
* we need to first walk through them.
*/
ap = (uintptr_t)agg.dtag_first;
nactions = 0;
for (;;) {
if (mdb_vread(&act, sizeof (act), ap) == -1) {
mdb_warn("failed to read action %p on aggregation %p",
ap, addr);
return (-1);
}
nactions++;
if (ap == last)
break;
ap = (uintptr_t)act.dta_next;
}
lrec = &act.dta_rec;
agd->dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - agg.dtag_base;
nrecs = agd->dtagd_nrecs;
agd->dtagd_nrecs = nactions;
agd->dtagd_epid = ecb.dte_epid;
ap = (uintptr_t)agg.dtag_first;
nactions = 0;
for (;;) {
dtrace_recdesc_t rec;
if (mdb_vread(&act, sizeof (act), ap) == -1) {
mdb_warn("failed to read action %p on aggregation %p",
ap, addr);
return (-1);
}
if (nrecs-- == 0)
break;
rec = act.dta_rec;
rec.dtrd_offset -= agg.dtag_base;
rec.dtrd_uarg = 0;
agd->dtagd_rec[nactions++] = rec;
if (ap == last)
break;
ap = (uintptr_t)act.dta_next;
}
return (0);
}
static int
dtracemdb_bufsnap(dtrace_buffer_t *which, dtrace_bufdesc_t *desc)
{
uintptr_t addr;
size_t bufsize;
dtrace_buffer_t buf;
caddr_t data = desc->dtbd_data;
processorid_t max_cpuid, cpu = desc->dtbd_cpu;
if (mdb_readvar(&max_cpuid, "max_cpuid") == -1) {
mdb_warn("failed to read 'max_cpuid'");
errno = EIO;
return (-1);
}
if (cpu < 0 || cpu > max_cpuid) {
errno = EINVAL;
return (-1);
}
addr = (uintptr_t)which + cpu * sizeof (dtrace_buffer_t);
if (mdb_vread(&buf, sizeof (buf), addr) == -1) {
mdb_warn("failed to read buffer description at %p", addr);
errno = EIO;
return (-1);
}
if (buf.dtb_tomax == NULL) {
errno = ENOENT;
return (-1);
}
if (buf.dtb_flags & DTRACEBUF_WRAPPED) {
bufsize = buf.dtb_size;
} else {
bufsize = buf.dtb_offset;
}
if (mdb_vread(data, bufsize, (uintptr_t)buf.dtb_tomax) == -1) {
mdb_warn("couldn't read buffer for CPU %d", cpu);
errno = EIO;
return (-1);
}
if (buf.dtb_offset > buf.dtb_size) {
mdb_warn("buffer for CPU %d has corrupt offset\n", cpu);
errno = EIO;
return (-1);
}
if (buf.dtb_flags & DTRACEBUF_WRAPPED) {
if (buf.dtb_xamot_offset > buf.dtb_size) {
mdb_warn("ringbuffer for CPU %d has corrupt "
"wrapped offset\n", cpu);
errno = EIO;
return (-1);
}
/*
* If the ring buffer has wrapped, it needs to be polished.
* See the comment in dtrace_buffer_polish() for details.
*/
if (buf.dtb_offset < buf.dtb_xamot_offset) {
bzero(data + buf.dtb_offset,
buf.dtb_xamot_offset - buf.dtb_offset);
}
if (buf.dtb_offset > buf.dtb_xamot_offset) {
bzero(data + buf.dtb_offset,
buf.dtb_size - buf.dtb_offset);
bzero(data, buf.dtb_xamot_offset);
}
desc->dtbd_oldest = buf.dtb_xamot_offset;
} else {
desc->dtbd_oldest = 0;
}
desc->dtbd_size = bufsize;
desc->dtbd_drops = buf.dtb_drops;
desc->dtbd_errors = buf.dtb_errors;
return (0);
}
/*
* This is essentially identical to its cousin in the kernel.
*/
static dof_hdr_t *
dtracemdb_dof_create(dtrace_state_t *state)
{
dof_hdr_t *dof;
dof_sec_t *sec;
dof_optdesc_t *opt;
int i, len = sizeof (dof_hdr_t) +
roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
dof = mdb_zalloc(len, UM_SLEEP);
dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
dof->dofh_flags = 0;
dof->dofh_hdrsize = sizeof (dof_hdr_t);
dof->dofh_secsize = sizeof (dof_sec_t);
dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
dof->dofh_secoff = sizeof (dof_hdr_t);
dof->dofh_loadsz = len;
dof->dofh_filesz = len;
dof->dofh_pad = 0;
/*
* Fill in the option section header...
*/
sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
sec->dofs_type = DOF_SECT_OPTDESC;
sec->dofs_align = sizeof (uint64_t);
sec->dofs_flags = DOF_SECF_LOAD;
sec->dofs_entsize = sizeof (dof_optdesc_t);
opt = (dof_optdesc_t *)((uintptr_t)sec +
roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
for (i = 0; i < DTRACEOPT_MAX; i++) {
opt[i].dofo_option = i;
opt[i].dofo_strtab = DOF_SECIDX_NONE;
opt[i].dofo_value = state->dts_options[i];
}
return (dof);
}
static int
dtracemdb_format(dtrace_state_t *state, dtrace_fmtdesc_t *desc)
{
uintptr_t addr, faddr;
char c;
int len = 0;
if (desc->dtfd_format == 0 || desc->dtfd_format > state->dts_nformats) {
errno = EINVAL;
return (-1);
}
faddr = (uintptr_t)state->dts_formats +
(desc->dtfd_format - 1) * sizeof (char *);
if (mdb_vread(&addr, sizeof (addr), faddr) == -1) {
mdb_warn("failed to read format string pointer at %p", faddr);
return (-1);
}
do {
if (mdb_vread(&c, sizeof (c), addr + len++) == -1) {
mdb_warn("failed to read format string at %p", addr);
return (-1);
}
} while (c != '\0');
if (len > desc->dtfd_length) {
desc->dtfd_length = len;
return (0);
}
if (mdb_vread(desc->dtfd_string, len, addr) == -1) {
mdb_warn("failed to reread format string at %p", addr);
return (-1);
}
return (0);
}
static int
dtracemdb_status(dtrace_state_t *state, dtrace_status_t *status)
{
dtrace_dstate_t *dstate;
int i, j;
uint64_t nerrs;
uintptr_t addr;
int ncpu;
if (mdb_readvar(&ncpu, "_ncpu") == -1) {
mdb_warn("failed to read '_ncpu'");
return (DCMD_ERR);
}
bzero(status, sizeof (dtrace_status_t));
if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
errno = ENOENT;
return (-1);
}
/*
* For the MDB backend, we never set dtst_exiting or dtst_filled. This
* is by design: we don't want the library to try to stop tracing,
* because it doesn't particularly mean anything.
*/
nerrs = state->dts_errors;
dstate = &state->dts_vstate.dtvs_dynvars;
for (i = 0; i < ncpu; i++) {
dtrace_dstate_percpu_t dcpu;
dtrace_buffer_t buf;
addr = (uintptr_t)&dstate->dtds_percpu[i];
if (mdb_vread(&dcpu, sizeof (dcpu), addr) == -1) {
mdb_warn("failed to read per-CPU dstate at %p", addr);
return (-1);
}
status->dtst_dyndrops += dcpu.dtdsc_drops;
status->dtst_dyndrops_dirty += dcpu.dtdsc_dirty_drops;
status->dtst_dyndrops_rinsing += dcpu.dtdsc_rinsing_drops;
addr = (uintptr_t)&state->dts_buffer[i];
if (mdb_vread(&buf, sizeof (buf), addr) == -1) {
mdb_warn("failed to read per-CPU buffer at %p", addr);
return (-1);
}
nerrs += buf.dtb_errors;
for (j = 0; j < state->dts_nspeculations; j++) {
dtrace_speculation_t spec;
addr = (uintptr_t)&state->dts_speculations[j];
if (mdb_vread(&spec, sizeof (spec), addr) == -1) {
mdb_warn("failed to read "
"speculation at %p", addr);
return (-1);
}
addr = (uintptr_t)&spec.dtsp_buffer[i];
if (mdb_vread(&buf, sizeof (buf), addr) == -1) {
mdb_warn("failed to read "
"speculative buffer at %p", addr);
return (-1);
}
status->dtst_specdrops += buf.dtb_xamot_drops;
}
}
status->dtst_specdrops_busy = state->dts_speculations_busy;
status->dtst_specdrops_unavail = state->dts_speculations_unavail;
status->dtst_errors = nerrs;
return (0);
}
typedef struct dtracemdb_data {
dtrace_state_t *dtmd_state;
char *dtmd_symstr;
char *dtmd_modstr;
uintptr_t dtmd_addr;
} dtracemdb_data_t;
static int
dtracemdb_ioctl(void *varg, int cmd, void *arg)
{
dtracemdb_data_t *data = varg;
dtrace_state_t *state = data->dtmd_state;
switch (cmd) {
case DTRACEIOC_CONF: {
dtrace_conf_t *conf = arg;
bzero(conf, sizeof (conf));
conf->dtc_difversion = DIF_VERSION;
conf->dtc_difintregs = DIF_DIR_NREGS;
conf->dtc_diftupregs = DIF_DTR_NREGS;
conf->dtc_ctfmodel = CTF_MODEL_NATIVE;
return (0);
}
case DTRACEIOC_DOFGET: {
dof_hdr_t *hdr = arg, *dof;
dof = dtracemdb_dof_create(state);
bcopy(dof, hdr, MIN(hdr->dofh_loadsz, dof->dofh_loadsz));
mdb_free(dof, dof->dofh_loadsz);
return (0);
}
case DTRACEIOC_BUFSNAP:
return (dtracemdb_bufsnap(state->dts_buffer, arg));
case DTRACEIOC_AGGSNAP:
return (dtracemdb_bufsnap(state->dts_aggbuffer, arg));
case DTRACEIOC_AGGDESC:
return (dtracemdb_aggdesc(state, arg));
case DTRACEIOC_EPROBE:
return (dtracemdb_eprobe(state, arg));
case DTRACEIOC_PROBES:
return (dtracemdb_probe(state, arg));
case DTRACEIOC_FORMAT:
return (dtracemdb_format(state, arg));
case DTRACEIOC_STATUS:
return (dtracemdb_status(state, arg));
case DTRACEIOC_GO:
*(processorid_t *)arg = -1;
return (0);
case DTRACEIOC_ENABLE:
errno = ENOTTY; /* see dt_open.c:dtrace_go() */
return (-1);
case DTRACEIOC_PROVIDER:
case DTRACEIOC_PROBEMATCH:
errno = ESRCH;
return (-1);
default:
mdb_warn("unexpected ioctl 0x%x (%s)\n", cmd,
cmd == DTRACEIOC_PROVIDER ? "DTRACEIOC_PROVIDER" :
cmd == DTRACEIOC_PROBES ? "DTRACEIOC_PROBES" :
cmd == DTRACEIOC_BUFSNAP ? "DTRACEIOC_BUFSNAP" :
cmd == DTRACEIOC_PROBEMATCH ? "DTRACEIOC_PROBEMATCH" :
cmd == DTRACEIOC_ENABLE ? "DTRACEIOC_ENABLE" :
cmd == DTRACEIOC_AGGSNAP ? "DTRACEIOC_AGGSNAP" :
cmd == DTRACEIOC_EPROBE ? "DTRACEIOC_EPROBE" :
cmd == DTRACEIOC_PROBEARG ? "DTRACEIOC_PROBEARG" :
cmd == DTRACEIOC_CONF ? "DTRACEIOC_CONF" :
cmd == DTRACEIOC_STATUS ? "DTRACEIOC_STATUS" :
cmd == DTRACEIOC_GO ? "DTRACEIOC_GO" :
cmd == DTRACEIOC_STOP ? "DTRACEIOC_STOP" :
cmd == DTRACEIOC_AGGDESC ? "DTRACEIOC_AGGDESC" :
cmd == DTRACEIOC_FORMAT ? "DTRACEIOC_FORMAT" :
cmd == DTRACEIOC_DOFGET ? "DTRACEIOC_DOFGET" :
cmd == DTRACEIOC_REPLICATE ? "DTRACEIOC_REPLICATE" :
"???");
errno = ENXIO;
return (-1);
}
}
static int
dtracemdb_modctl(uintptr_t addr, const struct modctl *m, dtracemdb_data_t *data)
{
struct module mod;
if (m->mod_mp == NULL)
return (WALK_NEXT);
if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
mdb_warn("couldn't read modctl %p's module", addr);
return (WALK_NEXT);
}
if ((uintptr_t)mod.text > data->dtmd_addr)
return (WALK_NEXT);
if ((uintptr_t)mod.text + mod.text_size <= data->dtmd_addr)
return (WALK_NEXT);
if (mdb_readstr(data->dtmd_modstr, MDB_SYM_NAMLEN,
(uintptr_t)m->mod_modname) == -1)
return (WALK_ERR);
return (WALK_DONE);
}
static int
dtracemdb_lookup_by_addr(void *varg, GElf_Addr addr, GElf_Sym *symp,
dtrace_syminfo_t *sip)
{
dtracemdb_data_t *data = varg;
if (data->dtmd_symstr == NULL) {
data->dtmd_symstr = mdb_zalloc(MDB_SYM_NAMLEN,
UM_SLEEP | UM_GC);
}
if (data->dtmd_modstr == NULL) {
data->dtmd_modstr = mdb_zalloc(MDB_SYM_NAMLEN,
UM_SLEEP | UM_GC);
}
if (symp != NULL) {
if (mdb_lookup_by_addr(addr, MDB_SYM_FUZZY, data->dtmd_symstr,
MDB_SYM_NAMLEN, symp) == -1)
return (-1);
}
if (sip != NULL) {
data->dtmd_addr = addr;
(void) strcpy(data->dtmd_modstr, "???");
if (mdb_walk("modctl",
(mdb_walk_cb_t)dtracemdb_modctl, varg) == -1) {
mdb_warn("couldn't walk 'modctl'");
return (-1);
}
sip->dts_object = data->dtmd_modstr;
sip->dts_id = 0;
sip->dts_name = symp != NULL ? data->dtmd_symstr : NULL;
}
return (0);
}
/*ARGSUSED*/
static int
dtracemdb_stat(void *varg, processorid_t cpu)
{
GElf_Sym sym;
cpu_t c;
uintptr_t caddr, addr;
if (mdb_lookup_by_name("cpu", &sym) == -1) {
mdb_warn("failed to find symbol for 'cpu'");
return (-1);
}
if (cpu * sizeof (uintptr_t) > sym.st_size)
return (-1);
addr = (uintptr_t)sym.st_value + cpu * sizeof (uintptr_t);
if (mdb_vread(&caddr, sizeof (caddr), addr) == -1) {
mdb_warn("failed to read cpu[%d]", cpu);
return (-1);
}
if (caddr == NULL)
return (-1);
if (mdb_vread(&c, sizeof (c), caddr) == -1) {
mdb_warn("failed to read cpu at %p", caddr);
return (-1);
}
if (c.cpu_flags & CPU_POWEROFF) {
return (P_POWEROFF);
} else if (c.cpu_flags & CPU_SPARE) {
return (P_SPARE);
} else if (c.cpu_flags & CPU_FAULTED) {
return (P_FAULTED);
} else if ((c.cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) {
return (P_OFFLINE);
} else if (c.cpu_flags & CPU_ENABLE) {
return (P_ONLINE);
} else {
return (P_NOINTR);
}
}
/*ARGSUSED*/
static long
dtracemdb_sysconf(void *varg, int name)
{
int max_ncpus;
processorid_t max_cpuid;
switch (name) {
case _SC_CPUID_MAX:
if (mdb_readvar(&max_cpuid, "max_cpuid") == -1) {
mdb_warn("failed to read 'max_cpuid'");
return (-1);
}
return (max_cpuid);
case _SC_NPROCESSORS_MAX:
if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
mdb_warn("failed to read 'max_ncpus'");
return (-1);
}
return (max_ncpus);
default:
mdb_warn("unexpected sysconf code %d\n", name);
return (-1);
}
}
const dtrace_vector_t dtrace_mdbops = {
dtracemdb_ioctl,
dtracemdb_lookup_by_addr,
dtracemdb_stat,
dtracemdb_sysconf
};
typedef struct dtrace_dcmddata {
dtrace_hdl_t *dtdd_dtp;
int dtdd_cpu;
int dtdd_quiet;
int dtdd_flowindent;
int dtdd_heading;
} dtrace_dcmddata_t;
/*ARGSUSED*/
static int
dtrace_dcmdrec(const dtrace_probedata_t *data,
const dtrace_recdesc_t *rec, void *arg)
{
dtrace_dcmddata_t *dd = arg;
if (rec == NULL) {
/*
* We have processed the final record; output the newline if
* we're not in quiet mode.
*/
if (!dd->dtdd_quiet)
mdb_printf("\n");
return (DTRACE_CONSUME_NEXT);
}
return (DTRACE_CONSUME_THIS);
}
/*ARGSUSED*/
static int
dtrace_dcmdprobe(const dtrace_probedata_t *data, void *arg)
{
dtrace_probedesc_t *pd = data->dtpda_pdesc;
processorid_t cpu = data->dtpda_cpu;
dtrace_dcmddata_t *dd = arg;
char name[DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 2];
if (dd->dtdd_cpu != -1UL && dd->dtdd_cpu != cpu)
return (DTRACE_CONSUME_NEXT);
if (dd->dtdd_heading == 0) {
if (!dd->dtdd_flowindent) {
if (!dd->dtdd_quiet) {
mdb_printf("%3s %6s %32s\n",
"CPU", "ID", "FUNCTION:NAME");
}
} else {
mdb_printf("%3s %-41s\n", "CPU", "FUNCTION");
}
dd->dtdd_heading = 1;
}
if (!dd->dtdd_flowindent) {
if (!dd->dtdd_quiet) {
(void) mdb_snprintf(name, sizeof (name), "%s:%s",
pd->dtpd_func, pd->dtpd_name);
mdb_printf("%3d %6d %32s ", cpu, pd->dtpd_id, name);
}
} else {
int indent = data->dtpda_indent;
if (data->dtpda_flow == DTRACEFLOW_NONE) {
(void) mdb_snprintf(name, sizeof (name), "%*s%s%s:%s",
indent, "", data->dtpda_prefix, pd->dtpd_func,
pd->dtpd_name);
} else {
(void) mdb_snprintf(name, sizeof (name), "%*s%s%s",
indent, "", data->dtpda_prefix, pd->dtpd_func);
}
mdb_printf("%3d %-41s ", cpu, name);
}
return (DTRACE_CONSUME_THIS);
}
/*ARGSUSED*/
static int
dtrace_dcmderr(const dtrace_errdata_t *data, void *arg)
{
mdb_warn(data->dteda_msg);
return (DTRACE_HANDLE_OK);
}
/*ARGSUSED*/
static int
dtrace_dcmddrop(const dtrace_dropdata_t *data, void *arg)
{
mdb_warn(data->dtdda_msg);
return (DTRACE_HANDLE_OK);
}
/*ARGSUSED*/
static int
dtrace_dcmdbuffered(const dtrace_bufdata_t *bufdata, void *arg)
{
mdb_printf("%s", bufdata->dtbda_buffered);
return (DTRACE_HANDLE_OK);
}
/*ARGSUSED*/
int
dtrace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
dtrace_state_t state;
dtrace_hdl_t *dtp;
int ncpu, err;
uintptr_t c = -1UL;
dtrace_dcmddata_t dd;
dtrace_optval_t val;
dtracemdb_data_t md;
int rval = DCMD_ERR;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv, 'c', MDB_OPT_UINTPTR, &c, NULL) != argc)
return (DCMD_USAGE);
if (mdb_readvar(&ncpu, "_ncpu") == -1) {
mdb_warn("failed to read '_ncpu'");
return (DCMD_ERR);
}
if (mdb_vread(&state, sizeof (state), addr) == -1) {
mdb_warn("couldn't read dtrace_state_t at %p", addr);
return (DCMD_ERR);
}
bzero(&md, sizeof (md));
md.dtmd_state = &state;
if ((dtp = dtrace_vopen(DTRACE_VERSION, DTRACE_O_NOSYS, &err,
&dtrace_mdbops, &md)) == NULL) {
mdb_warn("failed to initialize dtrace: %s\n",
dtrace_errmsg(NULL, err));
return (DCMD_ERR);
}
if (dtrace_go(dtp) != 0) {
mdb_warn("failed to initialize dtrace: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
bzero(&dd, sizeof (dd));
dd.dtdd_dtp = dtp;
dd.dtdd_cpu = c;
if (dtrace_getopt(dtp, "flowindent", &val) == -1) {
mdb_warn("couldn't get 'flowindent' option: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
dd.dtdd_flowindent = (val != DTRACEOPT_UNSET);
if (dtrace_getopt(dtp, "quiet", &val) == -1) {
mdb_warn("couldn't get 'quiet' option: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
dd.dtdd_quiet = (val != DTRACEOPT_UNSET);
if (dtrace_handle_err(dtp, dtrace_dcmderr, NULL) == -1) {
mdb_warn("couldn't add err handler: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
if (dtrace_handle_drop(dtp, dtrace_dcmddrop, NULL) == -1) {
mdb_warn("couldn't add drop handler: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
if (dtrace_handle_buffered(dtp, dtrace_dcmdbuffered, NULL) == -1) {
mdb_warn("couldn't add buffered handler: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
if (dtrace_status(dtp) == -1) {
mdb_warn("couldn't get status: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
if (dtrace_aggregate_snap(dtp) == -1) {
mdb_warn("couldn't snapshot aggregation: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
if (dtrace_consume(dtp, NULL,
dtrace_dcmdprobe, dtrace_dcmdrec, &dd) == -1) {
mdb_warn("couldn't consume DTrace buffers: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
}
if (dtrace_aggregate_print(dtp, NULL, NULL) == -1) {
mdb_warn("couldn't print aggregation: %s\n",
dtrace_errmsg(dtp, dtrace_errno(dtp)));
goto err;
}
rval = DCMD_OK;
err:
dtrace_close(dtp);
return (rval);
}
static int
dtrace_errhash_cmp(const void *l, const void *r)
{
uintptr_t lhs = *((uintptr_t *)l);
uintptr_t rhs = *((uintptr_t *)r);
dtrace_errhash_t lerr, rerr;
char lmsg[256], rmsg[256];
(void) mdb_vread(&lerr, sizeof (lerr), lhs);
(void) mdb_vread(&rerr, sizeof (rerr), rhs);
if (lerr.dter_msg == NULL)
return (-1);
if (rerr.dter_msg == NULL)
return (1);
(void) mdb_readstr(lmsg, sizeof (lmsg), (uintptr_t)lerr.dter_msg);
(void) mdb_readstr(rmsg, sizeof (rmsg), (uintptr_t)rerr.dter_msg);
return (strcmp(lmsg, rmsg));
}
int
dtrace_errhash_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
uintptr_t *hash, addr;
int i;
if (wsp->walk_addr != NULL) {
mdb_warn("dtrace_errhash walk only supports global walks\n");
return (WALK_ERR);
}
if (mdb_lookup_by_name("dtrace_errhash", &sym) == -1) {
mdb_warn("couldn't find 'dtrace_errhash' (non-DEBUG kernel?)");
return (WALK_ERR);
}
addr = (uintptr_t)sym.st_value;
hash = mdb_alloc(DTRACE_ERRHASHSZ * sizeof (uintptr_t),
UM_SLEEP | UM_GC);
for (i = 0; i < DTRACE_ERRHASHSZ; i++)
hash[i] = addr + i * sizeof (dtrace_errhash_t);
qsort(hash, DTRACE_ERRHASHSZ, sizeof (uintptr_t), dtrace_errhash_cmp);
wsp->walk_addr = 0;
wsp->walk_data = hash;
return (WALK_NEXT);
}
int
dtrace_errhash_step(mdb_walk_state_t *wsp)
{
int ndx = (int)wsp->walk_addr;
uintptr_t *hash = wsp->walk_data;
dtrace_errhash_t err;
uintptr_t addr;
if (ndx >= DTRACE_ERRHASHSZ)
return (WALK_DONE);
wsp->walk_addr = ndx + 1;
addr = hash[ndx];
if (mdb_vread(&err, sizeof (err), addr) == -1) {
mdb_warn("failed to read dtrace_errhash_t at %p", addr);
return (WALK_DONE);
}
if (err.dter_msg == NULL)
return (WALK_NEXT);
return (wsp->walk_callback(addr, &err, wsp->walk_cbdata));
}
/*ARGSUSED*/
int
dtrace_errhash(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
dtrace_errhash_t err;
char msg[256];
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("dtrace_errhash", "dtrace_errhash",
argc, argv) == -1) {
mdb_warn("can't walk 'dtrace_errhash'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags))
mdb_printf("%8s %s\n", "COUNT", "ERROR");
if (mdb_vread(&err, sizeof (err), addr) == -1) {
mdb_warn("failed to read dtrace_errhash_t at %p", addr);
return (DCMD_ERR);
}
addr = (uintptr_t)err.dter_msg;
if (mdb_readstr(msg, sizeof (msg), addr) == -1) {
mdb_warn("failed to read error msg at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%8d %s", err.dter_count, msg);
/*
* Some error messages include a newline -- only print the newline
* if the message doesn't have one.
*/
if (msg[strlen(msg) - 1] != '\n')
mdb_printf("\n");
return (DCMD_OK);
}
int
dtrace_helptrace_init(mdb_walk_state_t *wsp)
{
uint32_t next;
int enabled;
if (wsp->walk_addr != NULL) {
mdb_warn("dtrace_helptrace only supports global walks\n");
return (WALK_ERR);
}
if (mdb_readvar(&enabled, "dtrace_helptrace_enabled") == -1) {
mdb_warn("couldn't read 'dtrace_helptrace_enabled'");
return (WALK_ERR);
}
if (!enabled) {
mdb_warn("helper tracing is not enabled\n");
return (WALK_ERR);
}
if (mdb_readvar(&next, "dtrace_helptrace_next") == -1) {
mdb_warn("couldn't read 'dtrace_helptrace_next'");
return (WALK_ERR);
}
wsp->walk_addr = next;
return (WALK_NEXT);
}
int
dtrace_helptrace_step(mdb_walk_state_t *wsp)
{
uint32_t next, size, nlocals, bufsize;
uintptr_t buffer, addr;
dtrace_helptrace_t *ht;
int rval;
if (mdb_readvar(&next, "dtrace_helptrace_next") == -1) {
mdb_warn("couldn't read 'dtrace_helptrace_next'");
return (WALK_ERR);
}
if (mdb_readvar(&bufsize, "dtrace_helptrace_bufsize") == -1) {
mdb_warn("couldn't read 'dtrace_helptrace_bufsize'");
return (WALK_ERR);
}
if (mdb_readvar(&buffer, "dtrace_helptrace_buffer") == -1) {
mdb_warn("couldn't read 'dtrace_helptrace_buffer'");
return (WALK_ERR);
}
if (mdb_readvar(&nlocals, "dtrace_helptrace_nlocals") == -1) {
mdb_warn("couldn't read 'dtrace_helptrace_nlocals'");
return (WALK_ERR);
}
size = sizeof (dtrace_helptrace_t) +
nlocals * sizeof (uint64_t) - sizeof (uint64_t);
if (wsp->walk_addr + size > bufsize) {
if (next == 0)
return (WALK_DONE);
wsp->walk_addr = 0;
}
addr = buffer + wsp->walk_addr;
ht = alloca(size);
if (mdb_vread(ht, size, addr) == -1) {
mdb_warn("couldn't read entry at %p", addr);
return (WALK_ERR);
}
if (ht->dtht_helper != NULL) {
rval = wsp->walk_callback(addr, ht, wsp->walk_cbdata);
if (rval != WALK_NEXT)
return (rval);
}
if (wsp->walk_addr < next && wsp->walk_addr + size >= next)
return (WALK_DONE);
wsp->walk_addr += size;
return (WALK_NEXT);
}
int
dtrace_helptrace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
dtrace_helptrace_t help;
dtrace_helper_action_t helper;
char where[30];
uint_t opt_v = FALSE;
uintptr_t haddr;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("dtrace_helptrace", "dtrace_helptrace",
argc, argv) == -1) {
mdb_warn("can't walk 'dtrace_helptrace'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv, 'v',
MDB_OPT_SETBITS, TRUE, &opt_v, NULL) != argc)
return (DCMD_USAGE);
if (DCMD_HDRSPEC(flags)) {
mdb_printf(" %?s %?s %12s %s\n",
"ADDR", "HELPER", "WHERE", "DIFO");
}
if (mdb_vread(&help, sizeof (help), addr) == -1) {
mdb_warn("failed to read dtrace_helptrace_t at %p", addr);
return (DCMD_ERR);
}
switch (help.dtht_where) {
case 0:
(void) mdb_snprintf(where, sizeof (where), "predicate");
break;
case DTRACE_HELPTRACE_NEXT:
(void) mdb_snprintf(where, sizeof (where), "next");
break;
case DTRACE_HELPTRACE_DONE:
(void) mdb_snprintf(where, sizeof (where), "done");
break;
case DTRACE_HELPTRACE_ERR:
(void) mdb_snprintf(where, sizeof (where), "err");
break;
default:
(void) mdb_snprintf(where, sizeof (where),
"action #%d", help.dtht_where);
break;
}
mdb_printf(" %?p %?p %12s ", addr, help.dtht_helper, where);
haddr = (uintptr_t)help.dtht_helper;
if (mdb_vread(&helper, sizeof (helper), haddr) == -1) {
/*
* We're not going to warn in this case -- we're just not going
* to print anything exciting.
*/
mdb_printf("???\n");
} else {
switch (help.dtht_where) {
case 0:
mdb_printf("%p\n", helper.dtha_predicate);
break;
case DTRACE_HELPTRACE_NEXT:
case DTRACE_HELPTRACE_DONE:
case DTRACE_HELPTRACE_ERR:
mdb_printf("-\n");
break;
default:
haddr = (uintptr_t)helper.dtha_actions +
(help.dtht_where - 1) * sizeof (uintptr_t);
if (mdb_vread(&haddr, sizeof (haddr), haddr) == -1) {
mdb_printf("???\n");
} else {
mdb_printf("%p\n", haddr);
}
}
}
if (opt_v) {
int i;
if (help.dtht_where == DTRACE_HELPTRACE_ERR) {
int f = help.dtht_fault;
mdb_printf("%?s| %?s %10s |\n", "", "", "");
mdb_printf("%?s| %?s %10s +-> fault: %s\n", "", "", "",
f == DTRACEFLT_BADADDR ? "BADADDR" :
f == DTRACEFLT_BADALIGN ? "BADALIGN" :
f == DTRACEFLT_ILLOP ? "ILLOP" :
f == DTRACEFLT_DIVZERO ? "DIVZERO" :
f == DTRACEFLT_NOSCRATCH ? "NOSCRATCH" :
f == DTRACEFLT_KPRIV ? "KPRIV" :
f == DTRACEFLT_UPRIV ? "UPRIV" :
f == DTRACEFLT_TUPOFLOW ? "TUPOFLOW" :
f == DTRACEFLT_BADSTACK ? "BADSTACK" :
"DTRACEFLT_UNKNOWN");
mdb_printf("%?s| %?s %12s addr: 0x%x\n", "", "", "",
help.dtht_illval);
mdb_printf("%?s| %?s %12s offset: %d\n", "", "", "",
help.dtht_fltoffs);
}
mdb_printf("%?s|\n%?s+--> %?s %4s %s\n", "", "",
"ADDR", "NDX", "VALUE");
addr += sizeof (help) - sizeof (uint64_t);
for (i = 0; i < help.dtht_nlocals; i++) {
uint64_t val;
if (mdb_vread(&val, sizeof (val), addr) == -1) {
mdb_warn("couldn't read local at %p", addr);
continue;
}
mdb_printf("%?s %?p %4d %p\n", "", addr, i, val);
addr += sizeof (uint64_t);
}
mdb_printf("\n");
}
return (DCMD_OK);
}
/*ARGSUSED*/
static int
dtrace_state_walk(uintptr_t addr, const vmem_seg_t *seg, minor_t *highest)
{
if (seg->vs_end > *highest)
*highest = seg->vs_end;
return (WALK_NEXT);
}
typedef struct dtrace_state_walk {
uintptr_t dtsw_softstate;
minor_t dtsw_max;
minor_t dtsw_current;
} dtrace_state_walk_t;
int
dtrace_state_init(mdb_walk_state_t *wsp)
{
uintptr_t dtrace_minor;
minor_t max = 0;
dtrace_state_walk_t *dw;
if (wsp->walk_addr != NULL) {
mdb_warn("dtrace_state only supports global walks\n");
return (WALK_ERR);
}
/*
* Find the dtrace_minor vmem arena and walk it to get the maximum
* minor number.
*/
if (mdb_readvar(&dtrace_minor, "dtrace_minor") == -1) {
mdb_warn("failed to read 'dtrace_minor'");
return (WALK_ERR);
}
if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)dtrace_state_walk,
&max, dtrace_minor) == -1) {
mdb_warn("couldn't walk 'vmem_alloc'");
return (WALK_ERR);
}
dw = mdb_zalloc(sizeof (dtrace_state_walk_t), UM_SLEEP | UM_GC);
dw->dtsw_current = 0;
dw->dtsw_max = max;
if (mdb_readvar(&dw->dtsw_softstate, "dtrace_softstate") == -1) {
mdb_warn("failed to read 'dtrace_softstate'");
return (DCMD_ERR);
}
wsp->walk_data = dw;
return (WALK_NEXT);
}
int
dtrace_state_step(mdb_walk_state_t *wsp)
{
dtrace_state_walk_t *dw = wsp->walk_data;
uintptr_t statep;
dtrace_state_t state;
int rval;
while (mdb_get_soft_state_byaddr(dw->dtsw_softstate, dw->dtsw_current,
&statep, NULL, 0) == -1) {
if (dw->dtsw_current >= dw->dtsw_max)
return (WALK_DONE);
dw->dtsw_current++;
}
if (mdb_vread(&state, sizeof (state), statep) == -1) {
mdb_warn("couldn't read dtrace_state_t at %p", statep);
return (WALK_NEXT);
}
rval = wsp->walk_callback(statep, &state, wsp->walk_cbdata);
dw->dtsw_current++;
return (rval);
}
typedef struct dtrace_state_data {
int dtsd_major;
uintptr_t dtsd_proc;
uintptr_t dtsd_softstate;
uintptr_t dtsd_state;
} dtrace_state_data_t;
static int
dtrace_state_file(uintptr_t addr, struct file *f, dtrace_state_data_t *data)
{
vnode_t vnode;
proc_t proc;
minor_t minor;
uintptr_t statep;
if (mdb_vread(&vnode, sizeof (vnode), (uintptr_t)f->f_vnode) == -1) {
mdb_warn("couldn't read vnode at %p", (uintptr_t)f->f_vnode);
return (WALK_NEXT);
}
if (getmajor(vnode.v_rdev) != data->dtsd_major)
return (WALK_NEXT);
minor = getminor(vnode.v_rdev);
if (mdb_vread(&proc, sizeof (proc), data->dtsd_proc) == -1) {
mdb_warn("failed to read proc at %p", data->dtsd_proc);
return (WALK_NEXT);
}
if (mdb_get_soft_state_byaddr(data->dtsd_softstate, minor,
&statep, NULL, 0) == -1) {
mdb_warn("failed to read softstate for minor %d", minor);
return (WALK_NEXT);
}
if (statep != data->dtsd_state)
return (WALK_NEXT);
mdb_printf("%?p %5d %?p %-*s %?p\n", statep, minor,
data->dtsd_proc, MAXCOMLEN, proc.p_user.u_comm, addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
dtrace_state_proc(uintptr_t addr, void *ignored, dtrace_state_data_t *data)
{
data->dtsd_proc = addr;
if (mdb_pwalk("file",
(mdb_walk_cb_t)dtrace_state_file, data, addr) == -1) {
mdb_warn("couldn't walk 'file' for proc %p", addr);
return (WALK_ERR);
}
return (WALK_NEXT);
}
void
dtrace_state_help(void)
{
mdb_printf("Given a dtrace_state_t structure, displays all "
/*CSTYLED*/
"consumers, or \"<anonymous>\"\nif the consumer is anonymous. If "
"no state structure is provided, iterates\nover all state "
"structures.\n\n"
"Addresses in ADDR column may be provided to ::dtrace to obtain\n"
"dtrace(1M)-like output for in-kernel DTrace data.\n");
}
int
dtrace_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t devi;
struct dev_info info;
dtrace_state_data_t data;
dtrace_anon_t anon;
dtrace_state_t state;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("dtrace_state",
"dtrace_state", argc, argv) == -1) {
mdb_warn("can't walk dtrace_state");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%?s %5s %?s %-*s %?s\n", "ADDR", "MINOR", "PROC",
MAXCOMLEN, "NAME", "FILE");
}
/*
* First determine if this is anonymous state.
*/
if (mdb_readvar(&anon, "dtrace_anon") == -1) {
mdb_warn("failed to read 'dtrace_anon'");
return (DCMD_ERR);
}
if ((uintptr_t)anon.dta_state == addr) {
if (mdb_vread(&state, sizeof (state), addr) == -1) {
mdb_warn("failed to read anon at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%?p %5d %?s %-*s %?s\n", addr,
getminor(state.dts_dev), "-", MAXCOMLEN,
"<anonymous>", "-");
return (DCMD_OK);
}
if (mdb_readvar(&devi, "dtrace_devi") == -1) {
mdb_warn("failed to read 'dtrace_devi'");
return (DCMD_ERR);
}
if (mdb_vread(&info, sizeof (struct dev_info), devi) == -1) {
mdb_warn("failed to read 'dev_info'");
return (DCMD_ERR);
}
data.dtsd_major = info.devi_major;
if (mdb_readvar(&data.dtsd_softstate, "dtrace_softstate") == -1) {
mdb_warn("failed to read 'dtrace_softstate'");
return (DCMD_ERR);
}
data.dtsd_state = addr;
/*
* Walk through all processes and all open files looking for this
* state. It must be open somewhere...
*/
if (mdb_walk("proc", (mdb_walk_cb_t)dtrace_state_proc, &data) == -1) {
mdb_warn("couldn't walk 'proc'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct dtrace_aggkey_data {
uintptr_t *dtakd_hash;
uintptr_t dtakd_hashsize;
uintptr_t dtakd_next;
uintptr_t dtakd_ndx;
} dtrace_aggkey_data_t;
int
dtrace_aggkey_init(mdb_walk_state_t *wsp)
{
dtrace_buffer_t buf;
uintptr_t addr;
dtrace_aggbuffer_t agb;
dtrace_aggkey_data_t *data;
size_t hsize;
if ((addr = wsp->walk_addr) == NULL) {
mdb_warn("dtrace_aggkey walk needs aggregation buffer\n");
return (WALK_ERR);
}
if (mdb_vread(&buf, sizeof (buf), addr) == -1) {
mdb_warn("failed to read aggregation buffer at %p", addr);
return (WALK_ERR);
}
addr = (uintptr_t)buf.dtb_tomax +
buf.dtb_size - sizeof (dtrace_aggbuffer_t);
if (mdb_vread(&agb, sizeof (agb), addr) == -1) {
mdb_warn("failed to read dtrace_aggbuffer_t at %p", addr);
return (WALK_ERR);
}
data = mdb_zalloc(sizeof (dtrace_aggkey_data_t), UM_SLEEP);
data->dtakd_hashsize = agb.dtagb_hashsize;
hsize = agb.dtagb_hashsize * sizeof (dtrace_aggkey_t *);
data->dtakd_hash = mdb_alloc(hsize, UM_SLEEP);
if (mdb_vread(data->dtakd_hash, hsize,
(uintptr_t)agb.dtagb_hash) == -1) {
mdb_warn("failed to read hash at %p",
(uintptr_t)agb.dtagb_hash);
mdb_free(data->dtakd_hash, hsize);
mdb_free(data, sizeof (dtrace_aggkey_data_t));
return (WALK_ERR);
}
wsp->walk_data = data;
return (WALK_NEXT);
}
int
dtrace_aggkey_step(mdb_walk_state_t *wsp)
{
dtrace_aggkey_data_t *data = wsp->walk_data;
dtrace_aggkey_t key;
uintptr_t addr;
while ((addr = data->dtakd_next) == NULL) {
if (data->dtakd_ndx == data->dtakd_hashsize)
return (WALK_DONE);
data->dtakd_next = data->dtakd_hash[data->dtakd_ndx++];
}
if (mdb_vread(&key, sizeof (key), addr) == -1) {
mdb_warn("failed to read dtrace_aggkey_t at %p", addr);
return (WALK_ERR);
}
data->dtakd_next = (uintptr_t)key.dtak_next;
return (wsp->walk_callback(addr, &key, wsp->walk_cbdata));
}
void
dtrace_aggkey_fini(mdb_walk_state_t *wsp)
{
dtrace_aggkey_data_t *data = wsp->walk_data;
size_t hsize;
hsize = data->dtakd_hashsize * sizeof (dtrace_aggkey_t *);
mdb_free(data->dtakd_hash, hsize);
mdb_free(data, sizeof (dtrace_aggkey_data_t));
}
typedef struct dtrace_dynvar_data {
dtrace_dynhash_t *dtdvd_hash;
uintptr_t dtdvd_hashsize;
uintptr_t dtdvd_next;
uintptr_t dtdvd_ndx;
} dtrace_dynvar_data_t;
int
dtrace_dynvar_init(mdb_walk_state_t *wsp)
{
uintptr_t addr;
dtrace_dstate_t dstate;
dtrace_dynvar_data_t *data;
size_t hsize;
if ((addr = wsp->walk_addr) == NULL) {
mdb_warn("dtrace_dynvar walk needs dtrace_dstate_t\n");
return (WALK_ERR);
}
if (mdb_vread(&dstate, sizeof (dstate), addr) == -1) {
mdb_warn("failed to read dynamic state at %p", addr);
return (WALK_ERR);
}
data = mdb_zalloc(sizeof (dtrace_dynvar_data_t), UM_SLEEP);
data->dtdvd_hashsize = dstate.dtds_hashsize;
hsize = dstate.dtds_hashsize * sizeof (dtrace_dynhash_t);
data->dtdvd_hash = mdb_alloc(hsize, UM_SLEEP);
if (mdb_vread(data->dtdvd_hash, hsize,
(uintptr_t)dstate.dtds_hash) == -1) {
mdb_warn("failed to read hash at %p",
(uintptr_t)dstate.dtds_hash);
mdb_free(data->dtdvd_hash, hsize);
mdb_free(data, sizeof (dtrace_dynvar_data_t));
return (WALK_ERR);
}
wsp->walk_data = data;
return (WALK_NEXT);
}
int
dtrace_dynvar_step(mdb_walk_state_t *wsp)
{
dtrace_dynvar_data_t *data = wsp->walk_data;
dtrace_dynvar_t dynvar, *dvar;
size_t dvarsize;
uintptr_t addr;
int nkeys;
while ((addr = data->dtdvd_next) == NULL) {
if (data->dtdvd_ndx == data->dtdvd_hashsize)
return (WALK_DONE);
data->dtdvd_next =
(uintptr_t)data->dtdvd_hash[data->dtdvd_ndx++].dtdh_chain;
}
if (mdb_vread(&dynvar, sizeof (dynvar), addr) == -1) {
mdb_warn("failed to read dtrace_dynvar_t at %p", addr);
return (WALK_ERR);
}
/*
* Now we need to allocate the correct size.
*/
nkeys = dynvar.dtdv_tuple.dtt_nkeys;
dvarsize = (uintptr_t)&dynvar.dtdv_tuple.dtt_key[nkeys] -
(uintptr_t)&dynvar;
dvar = alloca(dvarsize);
if (mdb_vread(dvar, dvarsize, addr) == -1) {
mdb_warn("failed to read dtrace_dynvar_t at %p", addr);
return (WALK_ERR);
}
data->dtdvd_next = (uintptr_t)dynvar.dtdv_next;
return (wsp->walk_callback(addr, dvar, wsp->walk_cbdata));
}
void
dtrace_dynvar_fini(mdb_walk_state_t *wsp)
{
dtrace_dynvar_data_t *data = wsp->walk_data;
size_t hsize;
hsize = data->dtdvd_hashsize * sizeof (dtrace_dynvar_t *);
mdb_free(data->dtdvd_hash, hsize);
mdb_free(data, sizeof (dtrace_dynvar_data_t));
}
typedef struct dtrace_hashstat_data {
size_t *dthsd_counts;
size_t dthsd_hashsize;
char *dthsd_data;
size_t dthsd_size;
int dthsd_header;
} dtrace_hashstat_data_t;
typedef void (*dtrace_hashstat_func_t)(dtrace_hashstat_data_t *);
static void
dtrace_hashstat_additive(dtrace_hashstat_data_t *data)
{
int i;
int hval = 0;
for (i = 0; i < data->dthsd_size; i++)
hval += data->dthsd_data[i];
data->dthsd_counts[hval % data->dthsd_hashsize]++;
}
static void
dtrace_hashstat_shifty(dtrace_hashstat_data_t *data)
{
uint64_t hval = 0;
int i;
if (data->dthsd_size < sizeof (uint64_t)) {
dtrace_hashstat_additive(data);
return;
}
for (i = 0; i < data->dthsd_size; i += sizeof (uint64_t)) {
/* LINTED - alignment */
uint64_t val = *((uint64_t *)&data->dthsd_data[i]);
hval += (val & ((1 << NBBY) - 1)) +
((val >> NBBY) & ((1 << NBBY) - 1)) +
((val >> (NBBY << 1)) & ((1 << NBBY) - 1)) +
((val >> (NBBY << 2)) & ((1 << NBBY) - 1)) +
(val & USHRT_MAX) + (val >> (NBBY << 1) & USHRT_MAX);
}
data->dthsd_counts[hval % data->dthsd_hashsize]++;
}
static void
dtrace_hashstat_knuth(dtrace_hashstat_data_t *data)
{
int i;
int hval = data->dthsd_size;
for (i = 0; i < data->dthsd_size; i++)
hval = (hval << 4) ^ (hval >> 28) ^ data->dthsd_data[i];
data->dthsd_counts[hval % data->dthsd_hashsize]++;
}
static void
dtrace_hashstat_oneatatime(dtrace_hashstat_data_t *data)
{
int i;
uint32_t hval = 0;
for (i = 0; i < data->dthsd_size; i++) {
hval += data->dthsd_data[i];
hval += (hval << 10);
hval ^= (hval >> 6);
}
hval += (hval << 3);
hval ^= (hval >> 11);
hval += (hval << 15);
data->dthsd_counts[hval % data->dthsd_hashsize]++;
}
static void
dtrace_hashstat_fnv(dtrace_hashstat_data_t *data)
{
static const uint32_t prime = 0x01000193;
uint32_t hval = 0;
int i;
for (i = 0; i < data->dthsd_size; i++) {
hval *= prime;
hval ^= data->dthsd_data[i];
}
data->dthsd_counts[hval % data->dthsd_hashsize]++;
}
static void
dtrace_hashstat_stats(char *name, dtrace_hashstat_data_t *data)
{
size_t nz = 0, i;
int longest = 0;
size_t ttl = 0;
double sum = 0.0;
double avg;
uint_t util, stddev;
if (!data->dthsd_header) {
mdb_printf("%15s %11s %11s %11s %11s %11s\n", "NAME",
"HASHSIZE", "%UTIL", "LONGEST", "AVERAGE", "STDDEV");
data->dthsd_header = 1;
}
for (i = 0; i < data->dthsd_hashsize; i++) {
if (data->dthsd_counts[i] != 0) {
nz++;
if (data->dthsd_counts[i] > longest)
longest = data->dthsd_counts[i];
ttl += data->dthsd_counts[i];
}
}
if (nz == 0) {
mdb_printf("%15s %11d %11s %11s %11s %11s\n", name,
data->dthsd_hashsize, "-", "-", "-", "-");
return;
}
avg = (double)ttl / (double)nz;
for (i = 0; i < data->dthsd_hashsize; i++) {
double delta = (double)data->dthsd_counts[i] - avg;
if (data->dthsd_counts[i] == 0)
continue;
sum += delta * delta;
}
util = (nz * 1000) / data->dthsd_hashsize;
stddev = (uint_t)sqrt(sum / (double)nz) * 10;
mdb_printf("%15s %11d %9u.%1u %11d %11d %9u.%1u\n", name,
data->dthsd_hashsize, util / 10, util % 10, longest, ttl / nz,
stddev / 10, stddev % 10);
}
static struct dtrace_hashstat {
char *dths_name;
dtrace_hashstat_func_t dths_func;
} _dtrace_hashstat[] = {
{ "<actual>", NULL },
{ "additive", dtrace_hashstat_additive },
{ "shifty", dtrace_hashstat_shifty },
{ "knuth", dtrace_hashstat_knuth },
{ "one-at-a-time", dtrace_hashstat_oneatatime },
{ "fnv", dtrace_hashstat_fnv },
{ NULL, 0 }
};
typedef struct dtrace_aggstat_data {
dtrace_hashstat_data_t dtagsd_hash;
dtrace_hashstat_func_t dtagsd_func;
} dtrace_aggstat_data_t;
static int
dtrace_aggstat_walk(uintptr_t addr, dtrace_aggkey_t *key,
dtrace_aggstat_data_t *data)
{
dtrace_hashstat_data_t *hdata = &data->dtagsd_hash;
size_t size;
if (data->dtagsd_func == NULL) {
size_t bucket = key->dtak_hashval % hdata->dthsd_hashsize;
hdata->dthsd_counts[bucket]++;
return (WALK_NEXT);
}
/*
* We need to read the data.
*/
size = key->dtak_size - sizeof (dtrace_aggid_t);
addr = (uintptr_t)key->dtak_data + sizeof (dtrace_aggid_t);
hdata->dthsd_data = alloca(size);
hdata->dthsd_size = size;
if (mdb_vread(hdata->dthsd_data, size, addr) == -1) {
mdb_warn("couldn't read data at %p", addr);
return (WALK_ERR);
}
data->dtagsd_func(hdata);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
dtrace_aggstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
dtrace_buffer_t buf;
uintptr_t aaddr;
dtrace_aggbuffer_t agb;
size_t hsize, i, actual, prime, evenpow;
dtrace_aggstat_data_t data;
dtrace_hashstat_data_t *hdata = &data.dtagsd_hash;
bzero(&data, sizeof (data));
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_vread(&buf, sizeof (buf), addr) == -1) {
mdb_warn("failed to read aggregation buffer at %p", addr);
return (DCMD_ERR);
}
aaddr = (uintptr_t)buf.dtb_tomax +
buf.dtb_size - sizeof (dtrace_aggbuffer_t);
if (mdb_vread(&agb, sizeof (agb), aaddr) == -1) {
mdb_warn("failed to read dtrace_aggbuffer_t at %p", aaddr);
return (DCMD_ERR);
}
hsize = (actual = agb.dtagb_hashsize) * sizeof (size_t);
hdata->dthsd_counts = mdb_alloc(hsize, UM_SLEEP | UM_GC);
/*
* Now pick the largest prime smaller than the hash size. (If the
* existing size is prime, we'll pick a smaller prime just for the
* hell of it.)
*/
for (prime = agb.dtagb_hashsize - 1; prime > 7; prime--) {
size_t limit = prime / 7;
for (i = 2; i < limit; i++) {
if ((prime % i) == 0)
break;
}
if (i == limit)
break;
}
/*
* And now we want to pick the largest power of two smaller than the
* hashsize.
*/
for (i = 0; (1 << i) < agb.dtagb_hashsize; i++)
continue;
evenpow = (1 << (i - 1));
for (i = 0; _dtrace_hashstat[i].dths_name != NULL; i++) {
data.dtagsd_func = _dtrace_hashstat[i].dths_func;
hdata->dthsd_hashsize = actual;
hsize = hdata->dthsd_hashsize * sizeof (size_t);
bzero(hdata->dthsd_counts, hsize);
if (mdb_pwalk("dtrace_aggkey",
(mdb_walk_cb_t)dtrace_aggstat_walk, &data, addr) == -1) {
mdb_warn("failed to walk dtrace_aggkey at %p", addr);
return (DCMD_ERR);
}
dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata);
/*
* If we were just printing the actual value, we won't try
* any of the sizing experiments.
*/
if (data.dtagsd_func == NULL)
continue;
hdata->dthsd_hashsize = prime;
hsize = hdata->dthsd_hashsize * sizeof (size_t);
bzero(hdata->dthsd_counts, hsize);
if (mdb_pwalk("dtrace_aggkey",
(mdb_walk_cb_t)dtrace_aggstat_walk, &data, addr) == -1) {
mdb_warn("failed to walk dtrace_aggkey at %p", addr);
return (DCMD_ERR);
}
dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata);
hdata->dthsd_hashsize = evenpow;
hsize = hdata->dthsd_hashsize * sizeof (size_t);
bzero(hdata->dthsd_counts, hsize);
if (mdb_pwalk("dtrace_aggkey",
(mdb_walk_cb_t)dtrace_aggstat_walk, &data, addr) == -1) {
mdb_warn("failed to walk dtrace_aggkey at %p", addr);
return (DCMD_ERR);
}
dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata);
}
return (DCMD_OK);
}
/*ARGSUSED*/
static int
dtrace_dynstat_walk(uintptr_t addr, dtrace_dynvar_t *dynvar,
dtrace_aggstat_data_t *data)
{
dtrace_hashstat_data_t *hdata = &data->dtagsd_hash;
dtrace_tuple_t *tuple = &dynvar->dtdv_tuple;
dtrace_key_t *key = tuple->dtt_key;
size_t size = 0, offs = 0;
int i, nkeys = tuple->dtt_nkeys;
char *buf;
if (data->dtagsd_func == NULL) {
size_t bucket = dynvar->dtdv_hashval % hdata->dthsd_hashsize;
hdata->dthsd_counts[bucket]++;
return (WALK_NEXT);
}
/*
* We want to hand the hashing algorithm a contiguous buffer. First
* run through the tuple and determine the size.
*/
for (i = 0; i < nkeys; i++) {
if (key[i].dttk_size == 0) {
size += sizeof (uint64_t);
} else {
size += key[i].dttk_size;
}
}
buf = alloca(size);
/*
* Now go back through the tuple and copy the data into the buffer.
*/
for (i = 0; i < nkeys; i++) {
if (key[i].dttk_size == 0) {
bcopy(&key[i].dttk_value, &buf[offs],
sizeof (uint64_t));
offs += sizeof (uint64_t);
} else {
if (mdb_vread(&buf[offs], key[i].dttk_size,
key[i].dttk_value) == -1) {
mdb_warn("couldn't read tuple data at %p",
key[i].dttk_value);
return (WALK_ERR);
}
offs += key[i].dttk_size;
}
}
hdata->dthsd_data = buf;
hdata->dthsd_size = size;
data->dtagsd_func(hdata);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
dtrace_dynstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
dtrace_dstate_t dstate;
size_t hsize, i, actual, prime;
dtrace_aggstat_data_t data;
dtrace_hashstat_data_t *hdata = &data.dtagsd_hash;
bzero(&data, sizeof (data));
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_vread(&dstate, sizeof (dstate), addr) == -1) {
mdb_warn("failed to read dynamic variable state at %p", addr);
return (DCMD_ERR);
}
hsize = (actual = dstate.dtds_hashsize) * sizeof (size_t);
hdata->dthsd_counts = mdb_alloc(hsize, UM_SLEEP | UM_GC);
/*
* Now pick the largest prime smaller than the hash size. (If the
* existing size is prime, we'll pick a smaller prime just for the
* hell of it.)
*/
for (prime = dstate.dtds_hashsize - 1; prime > 7; prime--) {
size_t limit = prime / 7;
for (i = 2; i < limit; i++) {
if ((prime % i) == 0)
break;
}
if (i == limit)
break;
}
for (i = 0; _dtrace_hashstat[i].dths_name != NULL; i++) {
data.dtagsd_func = _dtrace_hashstat[i].dths_func;
hdata->dthsd_hashsize = actual;
hsize = hdata->dthsd_hashsize * sizeof (size_t);
bzero(hdata->dthsd_counts, hsize);
if (mdb_pwalk("dtrace_dynvar",
(mdb_walk_cb_t)dtrace_dynstat_walk, &data, addr) == -1) {
mdb_warn("failed to walk dtrace_dynvar at %p", addr);
return (DCMD_ERR);
}
dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata);
/*
* If we were just printing the actual value, we won't try
* any of the sizing experiments.
*/
if (data.dtagsd_func == NULL)
continue;
hdata->dthsd_hashsize = prime;
hsize = hdata->dthsd_hashsize * sizeof (size_t);
bzero(hdata->dthsd_counts, hsize);
if (mdb_pwalk("dtrace_dynvar",
(mdb_walk_cb_t)dtrace_dynstat_walk, &data, addr) == -1) {
mdb_warn("failed to walk dtrace_aggkey at %p", addr);
return (DCMD_ERR);
}
dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata);
}
return (DCMD_OK);
}
typedef struct dtrace_ecb_walk {
dtrace_ecb_t **dtew_ecbs;
int dtew_necbs;
int dtew_curecb;
} dtrace_ecb_walk_t;
static int
dtrace_ecb_init(mdb_walk_state_t *wsp)
{
uintptr_t addr;
dtrace_state_t state;
dtrace_ecb_walk_t *ecbwp;
if ((addr = wsp->walk_addr) == NULL) {
mdb_warn("dtrace_ecb walk needs dtrace_state_t\n");
return (WALK_ERR);
}
if (mdb_vread(&state, sizeof (state), addr) == -1) {
mdb_warn("failed to read dtrace state pointer at %p", addr);
return (WALK_ERR);
}
ecbwp = mdb_zalloc(sizeof (dtrace_ecb_walk_t), UM_SLEEP | UM_GC);
ecbwp->dtew_ecbs = state.dts_ecbs;
ecbwp->dtew_necbs = state.dts_necbs;
ecbwp->dtew_curecb = 0;
wsp->walk_data = ecbwp;
return (WALK_NEXT);
}
static int
dtrace_ecb_step(mdb_walk_state_t *wsp)
{
uintptr_t ecbp, addr;
dtrace_ecb_walk_t *ecbwp = wsp->walk_data;
addr = (uintptr_t)ecbwp->dtew_ecbs +
ecbwp->dtew_curecb * sizeof (dtrace_ecb_t *);
if (ecbwp->dtew_curecb++ == ecbwp->dtew_necbs)
return (WALK_DONE);
if (mdb_vread(&ecbp, sizeof (addr), addr) == -1) {
mdb_warn("failed to read ecb at entry %d\n",
ecbwp->dtew_curecb);
return (WALK_ERR);
}
if (ecbp == NULL)
return (WALK_NEXT);
return (wsp->walk_callback(ecbp, NULL, wsp->walk_cbdata));
}
const mdb_dcmd_t kernel_dcmds[] = {
{ "id2probe", ":", "translate a dtrace_id_t to a dtrace_probe_t",
id2probe },
{ "dtrace", ":[-c cpu]", "print dtrace(1M)-like output",
dtrace, dtrace_help },
{ "dtrace_errhash", ":", "print DTrace error hash", dtrace_errhash },
{ "dtrace_helptrace", ":", "print DTrace helper trace",
dtrace_helptrace },
{ "dtrace_state", ":", "print active DTrace consumers", dtrace_state,
dtrace_state_help },
{ "dtrace_aggstat", ":",
"print DTrace aggregation hash statistics", dtrace_aggstat },
{ "dtrace_dynstat", ":",
"print DTrace dynamic variable hash statistics", dtrace_dynstat },
{ NULL }
};
const mdb_walker_t kernel_walkers[] = {
{ "dtrace_errhash", "walk hash of DTrace error messasges",
dtrace_errhash_init, dtrace_errhash_step },
{ "dtrace_helptrace", "walk DTrace helper trace entries",
dtrace_helptrace_init, dtrace_helptrace_step },
{ "dtrace_state", "walk DTrace per-consumer softstate",
dtrace_state_init, dtrace_state_step },
{ "dtrace_aggkey", "walk DTrace aggregation keys",
dtrace_aggkey_init, dtrace_aggkey_step, dtrace_aggkey_fini },
{ "dtrace_dynvar", "walk DTrace dynamic variables",
dtrace_dynvar_init, dtrace_dynvar_step, dtrace_dynvar_fini },
{ "dtrace_ecb", "walk a DTrace consumer's enabling control blocks",
dtrace_ecb_init, dtrace_ecb_step },
{ NULL }
};