mdb_target.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* MDB Target Layer
*
* The *target* is the program being inspected by the debugger. The MDB target
* layer provides a set of functions that insulate common debugger code,
* including the MDB Module API, from the implementation details of how the
* debugger accesses information from a given target. Each target exports a
* standard set of properties, including one or more address spaces, one or
* more symbol tables, a set of load objects, and a set of threads that can be
* examined using the interfaces in <mdb/mdb_target.h>. This technique has
* been employed successfully in other debuggers, including [1], primarily
* to improve portability, although the term "target" often refers to the
* encapsulation of architectural or operating system-specific details. The
* target abstraction is useful for MDB because it allows us to easily extend
* the debugger to examine a variety of different program forms. Primarily,
* the target functions validate input arguments and then call an appropriate
* function in the target ops vector, defined in <mdb/mdb_target_impl.h>.
* However, this interface layer provides a very high level of flexibility for
* separating the debugger interface from instrumentation details. Experience
* has shown this kind of design can facilitate separating out debugger
* instrumentation into an external agent [2] and enable the development of
* advanced instrumentation frameworks [3]. We want MDB to be an ideal
* extensible framework for the development of such applications.
*
* Aside from a set of wrapper functions, the target layer also provides event
* management for targets that represent live executing programs. Our model of
* events is also extensible, and is based upon work in [3] and [4]. We define
* a *software event* as a state transition in the target program (for example,
* the transition of the program counter to a location of interest) that is
* observed by the debugger or its agent. A *software event specifier* is a
* description of a class of software events that is used by the debugger to
* instrument the target so that the corresponding software events can be
* observed. In MDB, software event specifiers are represented by the
* mdb_sespec_t structure, defined in <mdb/mdb_target_impl.h>. As the user,
* the internal debugger code, and MDB modules may all wish to observe software
* events and receive appropriate notification and callbacks, we do not expose
* software event specifiers directly as part of the user interface. Instead,
* clients of the target layer request that events be observed by creating
* new *virtual event specifiers*. Each virtual specifier is named by a unique
* non-zero integer (the VID), and is represented by a mdb_vespec_t structure.
* One or more virtual specifiers are then associated with each underlying
* software event specifier. This design enforces the constraint that the
* target must only insert one set of instrumentation, regardless of how many
* times the target layer was asked to trace a given event. For example, if
* multiple clients request a breakpoint at a particular address, the virtual
* specifiers will map to the same sespec, ensuring that only one breakpoint
* trap instruction is actually planted at the given target address. When no
* virtual specifiers refer to an sespec, it is no longer needed and can be
* removed, along with the corresponding instrumentation.
*
* The following state transition diagram illustrates the life cycle of a
* software event specifier and example transitions:
*
* cont/
* +--------+ delete +--------+ stop +-------+
* (|( DEAD )|) <------- ( ACTIVE ) <------> ( ARMED )
* +--------+ +--------+ +-------+
* ^ load/unload ^ ^ failure/ |
* delete | object / \ reset | failure
* | v v |
* | +--------+ +-------+ |
* +---- ( IDLE ) ( ERR ) <----+
* | +--------+ +-------+
* | |
* +------------------------------+
*
* The MDB execution control model is based upon the synchronous debugging
* model exported by Solaris proc(4). A target program is set running or the
* debugger is attached to a running target. On ISTOP (stop on event of
* interest), one target thread is selected as the representative. The
* algorithm for selecting the representative is target-specific, but we assume
* that if an observed software event has occurred, the target will select the
* thread that triggered the state transition of interest. The other threads
* are stopped in sympathy with the representative as soon as possible. Prior
* to continuing the target, we plant our instrumentation, transitioning event
* specifiers from the ACTIVE to the ARMED state, and then back again when the
* target stops. We then query each active event specifier to learn which ones
* are matched, and then invoke the callbacks associated with their vespecs.
* If an OS error occurs while attempting to arm or disarm a specifier, the
* specifier is transitioned to the ERROR state; we will attempt to arm it
* again at the next continue. If no target process is under our control or
* if an event is not currently applicable (e.g. a deferred breakpoint on an
* object that is not yet loaded), it remains in the IDLE state. The target
* implementation should intercept object load events and then transition the
* specifier to the ACTIVE state when the corresponding object is loaded.
*
* To simplify the debugger implementation and allow targets to easily provide
* new types of observable events, most of the event specifier management is
* done by the target layer. Each software event specifier provides an ops
* vector of subroutines that the target layer can call to perform the
* various state transitions described above. The target maintains two lists
* of mdb_sespec_t's: the t_idle list (IDLE state) and the t_active list
* (ACTIVE, ARMED, and ERROR states). Each mdb_sespec_t maintains a list of
* associated mdb_vespec_t's. If an sespec is IDLE or ERROR, its se_errno
* field will have an errno value specifying the reason for its inactivity.
* The vespec stores the client's callback function and private data, and the
* arguments used to construct the sespec. All objects are reference counted
* so we can destroy an object when it is no longer needed. The mdb_sespec_t
* invariants for the respective states are as follows:
*
* IDLE: on t_idle list, se_data == NULL, se_errno != 0, se_ctor not called
* ACTIVE: on t_active list, se_data valid, se_errno == 0, se_ctor called
* ARMED: on t_active list, se_data valid, se_errno == 0, se_ctor called
* ERROR: on t_active list, se_data valid, se_errno != 0, se_ctor called
*
* Additional commentary on specific state transitions and issues involving
* event management can be found below near the target layer functions.
*
* References
*
* [1] John Gilmore, "Working in GDB", Technical Report, Cygnus Support,
* 1.84 edition, 1994.
*
* [2] David R. Hanson and Mukund Raghavachari, "A Machine-Independent
* Debugger", Software--Practice and Experience, 26(11), 1277-1299(1996).
*
* [3] Michael W. Shapiro, "RDB: A System for Incremental Replay Debugging",
* Technical Report CS-97-12, Department of Computer Science,
* Brown University.
*
* [4] Daniel B. Price, "New Techniques for Replay Debugging", Technical
* Report CS-98-05, Department of Computer Science, Brown University.
*/
#include <mdb/mdb_target_impl.h>
#include <mdb/mdb_debug.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_callb.h>
#include <mdb/mdb_gelf.h>
#include <mdb/mdb_io_impl.h>
#include <mdb/mdb_string.h>
#include <mdb/mdb_signal.h>
#include <mdb/mdb_frame.h>
#include <mdb/mdb.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <sys/signal.h>
#include <strings.h>
#include <stdlib.h>
#include <errno.h>
/*
* Define convenience macros for referencing the set of vespec flag bits that
* are preserved by the target implementation, and the set of bits that
* determine automatic ve_hits == ve_limit behavior.
*/
#define T_IMPL_BITS \
(MDB_TGT_SPEC_INTERNAL | MDB_TGT_SPEC_SILENT | MDB_TGT_SPEC_MATCHED | \
MDB_TGT_SPEC_DELETED)
#define T_AUTO_BITS \
(MDB_TGT_SPEC_AUTOSTOP | MDB_TGT_SPEC_AUTODEL | MDB_TGT_SPEC_AUTODIS)
/*
* Define convenience macro for referencing target flag pending continue bits.
*/
#define T_CONT_BITS \
(MDB_TGT_F_STEP | MDB_TGT_F_STEP_OUT | MDB_TGT_F_STEP_BRANCH | \
MDB_TGT_F_NEXT | MDB_TGT_F_CONT)
mdb_tgt_t *
mdb_tgt_create(mdb_tgt_ctor_f *ctor, int flags, int argc, const char *argv[])
{
mdb_module_t *mp;
mdb_tgt_t *t;
if (flags & ~MDB_TGT_F_ALL) {
(void) set_errno(EINVAL);
return (NULL);
}
t = mdb_zalloc(sizeof (mdb_tgt_t), UM_SLEEP);
mdb_list_append(&mdb.m_tgtlist, t);
t->t_module = &mdb.m_rmod;
t->t_matched = T_SE_END;
t->t_flags = flags;
t->t_vepos = 1;
t->t_veneg = 1;
for (mp = mdb.m_mhead; mp != NULL; mp = mp->mod_next) {
if (ctor == mp->mod_tgt_ctor) {
t->t_module = mp;
break;
}
}
if (ctor(t, argc, argv) != 0) {
mdb_list_delete(&mdb.m_tgtlist, t);
mdb_free(t, sizeof (mdb_tgt_t));
return (NULL);
}
mdb_dprintf(MDB_DBG_TGT, "t_create %s (%p)\n",
t->t_module->mod_name, (void *)t);
(void) t->t_ops->t_status(t, &t->t_status);
return (t);
}
int
mdb_tgt_getflags(mdb_tgt_t *t)
{
return (t->t_flags);
}
int
mdb_tgt_setflags(mdb_tgt_t *t, int flags)
{
if (flags & ~MDB_TGT_F_ALL)
return (set_errno(EINVAL));
return (t->t_ops->t_setflags(t, flags));
}
int
mdb_tgt_setcontext(mdb_tgt_t *t, void *context)
{
return (t->t_ops->t_setcontext(t, context));
}
/*ARGSUSED*/
static int
tgt_delete_vespec(mdb_tgt_t *t, void *private, int vid, void *data)
{
(void) mdb_tgt_vespec_delete(t, vid);
return (0);
}
void
mdb_tgt_destroy(mdb_tgt_t *t)
{
mdb_xdata_t *xdp, *nxdp;
if (mdb.m_target == t) {
mdb_dprintf(MDB_DBG_TGT, "t_deactivate %s (%p)\n",
t->t_module->mod_name, (void *)t);
t->t_ops->t_deactivate(t);
mdb.m_target = NULL;
}
mdb_dprintf(MDB_DBG_TGT, "t_destroy %s (%p)\n",
t->t_module->mod_name, (void *)t);
for (xdp = mdb_list_next(&t->t_xdlist); xdp != NULL; xdp = nxdp) {
nxdp = mdb_list_next(xdp);
mdb_list_delete(&t->t_xdlist, xdp);
mdb_free(xdp, sizeof (mdb_xdata_t));
}
mdb_tgt_sespec_idle_all(t, EBUSY, TRUE);
(void) mdb_tgt_vespec_iter(t, tgt_delete_vespec, NULL);
t->t_ops->t_destroy(t);
mdb_list_delete(&mdb.m_tgtlist, t);
mdb_free(t, sizeof (mdb_tgt_t));
if (mdb.m_target == NULL)
mdb_tgt_activate(mdb_list_prev(&mdb.m_tgtlist));
}
void
mdb_tgt_activate(mdb_tgt_t *t)
{
mdb_tgt_t *otgt = mdb.m_target;
if (mdb.m_target != NULL) {
mdb_dprintf(MDB_DBG_TGT, "t_deactivate %s (%p)\n",
mdb.m_target->t_module->mod_name, (void *)mdb.m_target);
mdb.m_target->t_ops->t_deactivate(mdb.m_target);
}
if ((mdb.m_target = t) != NULL) {
const char *v = strstr(mdb.m_root, "%V");
mdb_dprintf(MDB_DBG_TGT, "t_activate %s (%p)\n",
t->t_module->mod_name, (void *)t);
/*
* If the root was explicitly set with -R and contains %V,
* expand it like a path. If the resulting directory is
* not present, then replace %V with "latest" and re-evaluate.
*/
if (v != NULL) {
char old_root[MAXPATHLEN];
const char **p;
#ifndef _KMDB
struct stat s;
#endif
size_t len;
p = mdb_path_alloc(mdb.m_root, &len);
(void) strcpy(old_root, mdb.m_root);
(void) strncpy(mdb.m_root, p[0], MAXPATHLEN);
mdb.m_root[MAXPATHLEN - 1] = '\0';
mdb_path_free(p, len);
#ifndef _KMDB
if (stat(mdb.m_root, &s) == -1 && errno == ENOENT) {
mdb.m_flags |= MDB_FL_LATEST;
p = mdb_path_alloc(old_root, &len);
(void) strncpy(mdb.m_root, p[0], MAXPATHLEN);
mdb.m_root[MAXPATHLEN - 1] = '\0';
mdb_path_free(p, len);
}
#endif
}
/*
* Re-evaluate the macro and dmod paths now that we have the
* new target set and m_root figured out.
*/
if (otgt == NULL) {
mdb_set_ipath(mdb.m_ipathstr);
mdb_set_lpath(mdb.m_lpathstr);
}
t->t_ops->t_activate(t);
}
}
void
mdb_tgt_periodic(mdb_tgt_t *t)
{
t->t_ops->t_periodic(t);
}
const char *
mdb_tgt_name(mdb_tgt_t *t)
{
return (t->t_ops->t_name(t));
}
const char *
mdb_tgt_isa(mdb_tgt_t *t)
{
return (t->t_ops->t_isa(t));
}
const char *
mdb_tgt_platform(mdb_tgt_t *t)
{
return (t->t_ops->t_platform(t));
}
int
mdb_tgt_uname(mdb_tgt_t *t, struct utsname *utsp)
{
return (t->t_ops->t_uname(t, utsp));
}
int
mdb_tgt_dmodel(mdb_tgt_t *t)
{
return (t->t_ops->t_dmodel(t));
}
ssize_t
mdb_tgt_aread(mdb_tgt_t *t, mdb_tgt_as_t as,
void *buf, size_t n, mdb_tgt_addr_t addr)
{
if (t->t_flags & MDB_TGT_F_ASIO)
return (t->t_ops->t_aread(t, as, buf, n, addr));
switch ((uintptr_t)as) {
case (uintptr_t)MDB_TGT_AS_VIRT:
return (t->t_ops->t_vread(t, buf, n, addr));
case (uintptr_t)MDB_TGT_AS_PHYS:
return (t->t_ops->t_pread(t, buf, n, addr));
case (uintptr_t)MDB_TGT_AS_FILE:
return (t->t_ops->t_fread(t, buf, n, addr));
case (uintptr_t)MDB_TGT_AS_IO:
return (t->t_ops->t_ioread(t, buf, n, addr));
}
return (t->t_ops->t_aread(t, as, buf, n, addr));
}
ssize_t
mdb_tgt_awrite(mdb_tgt_t *t, mdb_tgt_as_t as,
const void *buf, size_t n, mdb_tgt_addr_t addr)
{
if (!(t->t_flags & MDB_TGT_F_RDWR))
return (set_errno(EMDB_TGTRDONLY));
if (t->t_flags & MDB_TGT_F_ASIO)
return (t->t_ops->t_awrite(t, as, buf, n, addr));
switch ((uintptr_t)as) {
case (uintptr_t)MDB_TGT_AS_VIRT:
return (t->t_ops->t_vwrite(t, buf, n, addr));
case (uintptr_t)MDB_TGT_AS_PHYS:
return (t->t_ops->t_pwrite(t, buf, n, addr));
case (uintptr_t)MDB_TGT_AS_FILE:
return (t->t_ops->t_fwrite(t, buf, n, addr));
case (uintptr_t)MDB_TGT_AS_IO:
return (t->t_ops->t_iowrite(t, buf, n, addr));
}
return (t->t_ops->t_awrite(t, as, buf, n, addr));
}
ssize_t
mdb_tgt_vread(mdb_tgt_t *t, void *buf, size_t n, uintptr_t addr)
{
return (t->t_ops->t_vread(t, buf, n, addr));
}
ssize_t
mdb_tgt_vwrite(mdb_tgt_t *t, const void *buf, size_t n, uintptr_t addr)
{
if (t->t_flags & MDB_TGT_F_RDWR)
return (t->t_ops->t_vwrite(t, buf, n, addr));
return (set_errno(EMDB_TGTRDONLY));
}
ssize_t
mdb_tgt_pread(mdb_tgt_t *t, void *buf, size_t n, physaddr_t addr)
{
return (t->t_ops->t_pread(t, buf, n, addr));
}
ssize_t
mdb_tgt_pwrite(mdb_tgt_t *t, const void *buf, size_t n, physaddr_t addr)
{
if (t->t_flags & MDB_TGT_F_RDWR)
return (t->t_ops->t_pwrite(t, buf, n, addr));
return (set_errno(EMDB_TGTRDONLY));
}
ssize_t
mdb_tgt_fread(mdb_tgt_t *t, void *buf, size_t n, uintptr_t addr)
{
return (t->t_ops->t_fread(t, buf, n, addr));
}
ssize_t
mdb_tgt_fwrite(mdb_tgt_t *t, const void *buf, size_t n, uintptr_t addr)
{
if (t->t_flags & MDB_TGT_F_RDWR)
return (t->t_ops->t_fwrite(t, buf, n, addr));
return (set_errno(EMDB_TGTRDONLY));
}
ssize_t
mdb_tgt_ioread(mdb_tgt_t *t, void *buf, size_t n, uintptr_t addr)
{
return (t->t_ops->t_ioread(t, buf, n, addr));
}
ssize_t
mdb_tgt_iowrite(mdb_tgt_t *t, const void *buf, size_t n, uintptr_t addr)
{
if (t->t_flags & MDB_TGT_F_RDWR)
return (t->t_ops->t_iowrite(t, buf, n, addr));
return (set_errno(EMDB_TGTRDONLY));
}
int
mdb_tgt_vtop(mdb_tgt_t *t, mdb_tgt_as_t as, uintptr_t va, physaddr_t *pap)
{
return (t->t_ops->t_vtop(t, as, va, pap));
}
ssize_t
mdb_tgt_readstr(mdb_tgt_t *t, mdb_tgt_as_t as, char *buf,
size_t nbytes, mdb_tgt_addr_t addr)
{
ssize_t n, nread = mdb_tgt_aread(t, as, buf, nbytes, addr);
char *p;
if (nread >= 0) {
if ((p = memchr(buf, '\0', nread)) != NULL)
nread = (size_t)(p - buf);
goto done;
}
nread = 0;
p = &buf[0];
while (nread < nbytes && (n = mdb_tgt_aread(t, as, p, 1, addr)) == 1) {
if (*p == '\0')
return (nread);
nread++;
addr++;
p++;
}
if (nread == 0 && n == -1)
return (-1); /* If we can't even read a byte, return -1 */
done:
if (nbytes != 0)
buf[MIN(nread, nbytes - 1)] = '\0';
return (nread);
}
ssize_t
mdb_tgt_writestr(mdb_tgt_t *t, mdb_tgt_as_t as,
const char *buf, mdb_tgt_addr_t addr)
{
ssize_t nwritten = mdb_tgt_awrite(t, as, buf, strlen(buf) + 1, addr);
return (nwritten > 0 ? nwritten - 1 : nwritten);
}
int
mdb_tgt_lookup_by_name(mdb_tgt_t *t, const char *obj,
const char *name, GElf_Sym *symp, mdb_syminfo_t *sip)
{
mdb_syminfo_t info;
GElf_Sym sym;
uint_t id;
if (name == NULL || t == NULL)
return (set_errno(EINVAL));
if (obj == MDB_TGT_OBJ_EVERY &&
mdb_gelf_symtab_lookup_by_name(mdb.m_prsym, name, &sym, &id) == 0) {
info.sym_table = MDB_TGT_PRVSYM;
info.sym_id = id;
goto found;
}
if (t->t_ops->t_lookup_by_name(t, obj, name, &sym, &info) == 0)
goto found;
return (-1);
found:
if (symp != NULL)
*symp = sym;
if (sip != NULL)
*sip = info;
return (0);
}
int
mdb_tgt_lookup_by_addr(mdb_tgt_t *t, uintptr_t addr, uint_t flags,
char *buf, size_t len, GElf_Sym *symp, mdb_syminfo_t *sip)
{
mdb_syminfo_t info;
GElf_Sym sym;
if (t == NULL)
return (set_errno(EINVAL));
if (t->t_ops->t_lookup_by_addr(t, addr, flags,
buf, len, &sym, &info) == 0) {
if (symp != NULL)
*symp = sym;
if (sip != NULL)
*sip = info;
return (0);
}
return (-1);
}
/*
* The mdb_tgt_lookup_by_scope function is a convenience routine for code that
* wants to look up a scoped symbol name such as "object`symbol". It is
* implemented as a simple wrapper around mdb_tgt_lookup_by_name. Note that
* we split on the *last* occurrence of "`", so the object name itself may
* contain additional scopes whose evaluation is left to the target. This
* allows targets to implement additional scopes, such as source files,
* function names, link map identifiers, etc.
*/
int
mdb_tgt_lookup_by_scope(mdb_tgt_t *t, const char *s, GElf_Sym *symp,
mdb_syminfo_t *sip)
{
const char *object = MDB_TGT_OBJ_EVERY;
const char *name = s;
if (t == NULL)
return (set_errno(EINVAL));
if (strchr(name, '`') != NULL) {
char buf[MDB_TGT_SYM_NAMLEN];
(void) strncpy(buf, s, sizeof (buf));
buf[sizeof (buf) - 1] = '\0';
name = buf;
if ((s = strrsplit(buf, '`')) != NULL) {
object = buf;
name = s;
if (*object == '\0')
return (set_errno(EMDB_NOOBJ));
if (*name == '\0')
return (set_errno(EMDB_NOSYM));
}
}
return (mdb_tgt_lookup_by_name(t, object, name, symp, sip));
}
int
mdb_tgt_symbol_iter(mdb_tgt_t *t, const char *obj, uint_t which,
uint_t type, mdb_tgt_sym_f *cb, void *p)
{
if ((which != MDB_TGT_SYMTAB && which != MDB_TGT_DYNSYM) ||
(type & ~(MDB_TGT_BIND_ANY | MDB_TGT_TYPE_ANY)) != 0)
return (set_errno(EINVAL));
return (t->t_ops->t_symbol_iter(t, obj, which, type, cb, p));
}
ssize_t
mdb_tgt_readsym(mdb_tgt_t *t, mdb_tgt_as_t as, void *buf, size_t nbytes,
const char *obj, const char *name)
{
GElf_Sym sym;
if (mdb_tgt_lookup_by_name(t, obj, name, &sym, NULL) == 0)
return (mdb_tgt_aread(t, as, buf, nbytes, sym.st_value));
return (-1);
}
ssize_t
mdb_tgt_writesym(mdb_tgt_t *t, mdb_tgt_as_t as, const void *buf,
size_t nbytes, const char *obj, const char *name)
{
GElf_Sym sym;
if (mdb_tgt_lookup_by_name(t, obj, name, &sym, NULL) == 0)
return (mdb_tgt_awrite(t, as, buf, nbytes, sym.st_value));
return (-1);
}
int
mdb_tgt_mapping_iter(mdb_tgt_t *t, mdb_tgt_map_f *cb, void *p)
{
return (t->t_ops->t_mapping_iter(t, cb, p));
}
int
mdb_tgt_object_iter(mdb_tgt_t *t, mdb_tgt_map_f *cb, void *p)
{
return (t->t_ops->t_object_iter(t, cb, p));
}
const mdb_map_t *
mdb_tgt_addr_to_map(mdb_tgt_t *t, uintptr_t addr)
{
return (t->t_ops->t_addr_to_map(t, addr));
}
const mdb_map_t *
mdb_tgt_name_to_map(mdb_tgt_t *t, const char *name)
{
return (t->t_ops->t_name_to_map(t, name));
}
struct ctf_file *
mdb_tgt_addr_to_ctf(mdb_tgt_t *t, uintptr_t addr)
{
return (t->t_ops->t_addr_to_ctf(t, addr));
}
struct ctf_file *
mdb_tgt_name_to_ctf(mdb_tgt_t *t, const char *name)
{
return (t->t_ops->t_name_to_ctf(t, name));
}
/*
* Return the latest target status. We just copy out our cached copy. The
* status only needs to change when the target is run, stepped, or continued.
*/
int
mdb_tgt_status(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
uint_t dstop = (t->t_status.st_flags & MDB_TGT_DSTOP);
uint_t istop = (t->t_status.st_flags & MDB_TGT_ISTOP);
uint_t state = t->t_status.st_state;
if (tsp == NULL)
return (set_errno(EINVAL));
/*
* If we're called with the address of the target's internal status,
* then call down to update it; otherwise copy out the saved status.
*/
if (tsp == &t->t_status && t->t_ops->t_status(t, &t->t_status) != 0)
return (-1); /* errno is set for us */
/*
* Assert that our state is valid before returning it. The state must
* be valid, and DSTOP and ISTOP cannot be set simultaneously. ISTOP
* is only valid when stopped. DSTOP is only valid when running or
* stopped. If any test fails, abort the debugger.
*/
if (state > MDB_TGT_LOST)
fail("invalid target state (%u)\n", state);
if (state != MDB_TGT_STOPPED && istop)
fail("target state is (%u) and ISTOP is set\n", state);
if (state != MDB_TGT_STOPPED && state != MDB_TGT_RUNNING && dstop)
fail("target state is (%u) and DSTOP is set\n", state);
if (istop && dstop)
fail("target has ISTOP and DSTOP set simultaneously\n");
if (tsp != &t->t_status)
bcopy(&t->t_status, tsp, sizeof (mdb_tgt_status_t));
return (0);
}
/*
* For the given sespec, scan its list of vespecs for ones that are marked
* temporary and delete them. We use the same method as vespec_delete below.
*/
/*ARGSUSED*/
void
mdb_tgt_sespec_prune_one(mdb_tgt_t *t, mdb_sespec_t *sep)
{
mdb_vespec_t *vep, *nvep;
for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
nvep = mdb_list_next(vep);
if ((vep->ve_flags & (MDB_TGT_SPEC_DELETED |
MDB_TGT_SPEC_TEMPORARY)) == MDB_TGT_SPEC_TEMPORARY) {
vep->ve_flags |= MDB_TGT_SPEC_DELETED;
mdb_tgt_vespec_rele(t, vep);
}
}
}
/*
* Prune each sespec on the active list of temporary vespecs. This function
* is called, for example, after the target finishes a continue operation.
*/
void
mdb_tgt_sespec_prune_all(mdb_tgt_t *t)
{
mdb_sespec_t *sep, *nsep;
for (sep = mdb_list_next(&t->t_active); sep != NULL; sep = nsep) {
nsep = mdb_list_next(sep);
mdb_tgt_sespec_prune_one(t, sep);
}
}
/*
* Transition the given sespec to the IDLE state. We invoke the destructor,
* and then move the sespec from the active list to the idle list.
*/
void
mdb_tgt_sespec_idle_one(mdb_tgt_t *t, mdb_sespec_t *sep, int reason)
{
ASSERT(sep->se_state != MDB_TGT_SPEC_IDLE);
if (sep->se_state == MDB_TGT_SPEC_ARMED)
(void) sep->se_ops->se_disarm(t, sep);
sep->se_ops->se_dtor(t, sep);
sep->se_data = NULL;
sep->se_state = MDB_TGT_SPEC_IDLE;
sep->se_errno = reason;
mdb_list_delete(&t->t_active, sep);
mdb_list_append(&t->t_idle, sep);
mdb_tgt_sespec_prune_one(t, sep);
}
/*
* Transition each sespec on the active list to the IDLE state. This function
* is called, for example, after the target terminates execution.
*/
void
mdb_tgt_sespec_idle_all(mdb_tgt_t *t, int reason, int clear_matched)
{
mdb_sespec_t *sep, *nsep;
mdb_vespec_t *vep;
while ((sep = t->t_matched) != T_SE_END && clear_matched) {
for (vep = mdb_list_next(&sep->se_velist); vep != NULL; ) {
vep->ve_flags &= ~MDB_TGT_SPEC_MATCHED;
vep = mdb_list_next(vep);
}
t->t_matched = sep->se_matched;
sep->se_matched = NULL;
mdb_tgt_sespec_rele(t, sep);
}
for (sep = mdb_list_next(&t->t_active); sep != NULL; sep = nsep) {
nsep = mdb_list_next(sep);
mdb_tgt_sespec_idle_one(t, sep, reason);
}
}
/*
* Attempt to transition the given sespec from the IDLE to ACTIVE state. We
* do this by invoking se_ctor -- if this fails, we save the reason in se_errno
* and return -1 with errno set. One strange case we need to deal with here is
* the possibility that a given vespec is sitting on the idle list with its
* corresponding sespec, but it is actually a duplicate of another sespec on the
* active list. This can happen if the sespec is associated with a
* MDB_TGT_SPEC_DISABLED vespec that was just enabled, and is now ready to be
* activated. A more interesting reason this situation might arise is the case
* where a virtual address breakpoint is set at an address just mmap'ed by
* dlmopen. Since no symbol table information is available for this mapping
* yet, a pre-existing deferred symbolic breakpoint may already exist for this
* address, but it is on the idle list. When the symbol table is ready and the
* DLACTIVITY event occurs, we now discover that the virtual address obtained by
* evaluating the symbolic breakpoint matches the explicit virtual address of
* the active virtual breakpoint. To resolve this conflict in either case, we
* destroy the idle sespec, and attach its list of vespecs to the existing
* active sespec.
*/
int
mdb_tgt_sespec_activate_one(mdb_tgt_t *t, mdb_sespec_t *sep)
{
mdb_vespec_t *vep = mdb_list_next(&sep->se_velist);
mdb_vespec_t *nvep;
mdb_sespec_t *dup;
ASSERT(sep->se_state == MDB_TGT_SPEC_IDLE);
ASSERT(vep != NULL);
if (vep->ve_flags & MDB_TGT_SPEC_DISABLED)
return (0); /* cannot be activated while disabled bit set */
/*
* First search the active list for an existing, duplicate sespec to
* handle the special case described above.
*/
for (dup = mdb_list_next(&t->t_active); dup; dup = mdb_list_next(dup)) {
if (dup->se_ops == sep->se_ops &&
dup->se_ops->se_secmp(t, dup, vep->ve_args)) {
ASSERT(dup != sep);
break;
}
}
/*
* If a duplicate is found, destroy the existing, idle sespec, and
* attach all of its vespecs to the duplicate sespec.
*/
if (dup != NULL) {
for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
mdb_dprintf(MDB_DBG_TGT, "merge [ %d ] to sespec %p\n",
vep->ve_id, (void *)dup);
if (dup->se_matched != NULL)
vep->ve_flags |= MDB_TGT_SPEC_MATCHED;
nvep = mdb_list_next(vep);
vep->ve_hits = 0;
mdb_list_delete(&sep->se_velist, vep);
mdb_tgt_sespec_rele(t, sep);
mdb_list_append(&dup->se_velist, vep);
mdb_tgt_sespec_hold(t, dup);
vep->ve_se = dup;
}
mdb_dprintf(MDB_DBG_TGT, "merged idle sespec %p with %p\n",
(void *)sep, (void *)dup);
return (0);
}
/*
* If no duplicate is found, call the sespec's constructor. If this
* is successful, move the sespec to the active list.
*/
if (sep->se_ops->se_ctor(t, sep, vep->ve_args) < 0) {
sep->se_errno = errno;
sep->se_data = NULL;
return (-1);
}
for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
nvep = mdb_list_next(vep);
vep->ve_hits = 0;
}
mdb_list_delete(&t->t_idle, sep);
mdb_list_append(&t->t_active, sep);
sep->se_state = MDB_TGT_SPEC_ACTIVE;
sep->se_errno = 0;
return (0);
}
/*
* Transition each sespec on the idle list to the ACTIVE state. This function
* is called, for example, after the target's t_run() function returns. If
* the se_ctor() function fails, the specifier is not yet applicable; it will
* remain on the idle list and can be activated later.
*
* Returns 1 if there weren't any unexpected activation failures; 0 if there
* were.
*/
int
mdb_tgt_sespec_activate_all(mdb_tgt_t *t)
{
mdb_sespec_t *sep, *nsep;
int rc = 1;
for (sep = mdb_list_next(&t->t_idle); sep != NULL; sep = nsep) {
nsep = mdb_list_next(sep);
if (mdb_tgt_sespec_activate_one(t, sep) < 0 &&
sep->se_errno != EMDB_NOOBJ)
rc = 0;
}
return (rc);
}
/*
* Transition the given sespec to the ARMED state. Note that we attempt to
* re-arm sespecs previously in the ERROR state. If se_arm() fails the sespec
* transitions to the ERROR state but stays on the active list.
*/
void
mdb_tgt_sespec_arm_one(mdb_tgt_t *t, mdb_sespec_t *sep)
{
ASSERT(sep->se_state != MDB_TGT_SPEC_IDLE);
if (sep->se_state == MDB_TGT_SPEC_ARMED)
return; /* do not arm sespecs more than once */
if (sep->se_ops->se_arm(t, sep) == -1) {
sep->se_state = MDB_TGT_SPEC_ERROR;
sep->se_errno = errno;
} else {
sep->se_state = MDB_TGT_SPEC_ARMED;
sep->se_errno = 0;
}
}
/*
* Transition each sespec on the active list (except matched specs) to the
* ARMED state. This function is called prior to continuing the target.
*/
void
mdb_tgt_sespec_arm_all(mdb_tgt_t *t)
{
mdb_sespec_t *sep, *nsep;
for (sep = mdb_list_next(&t->t_active); sep != NULL; sep = nsep) {
nsep = mdb_list_next(sep);
if (sep->se_matched == NULL)
mdb_tgt_sespec_arm_one(t, sep);
}
}
/*
* Transition each sespec on the active list that is in the ARMED state to
* the ACTIVE state. If se_disarm() fails, the sespec is transitioned to
* the ERROR state instead, but left on the active list.
*/
static void
tgt_disarm_sespecs(mdb_tgt_t *t)
{
mdb_sespec_t *sep;
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
if (sep->se_state != MDB_TGT_SPEC_ARMED)
continue; /* do not disarm if in ERROR state */
if (sep->se_ops->se_disarm(t, sep) == -1) {
sep->se_state = MDB_TGT_SPEC_ERROR;
sep->se_errno = errno;
} else {
sep->se_state = MDB_TGT_SPEC_ACTIVE;
sep->se_errno = 0;
}
}
}
/*
* Determine if the software event that triggered the most recent stop matches
* any of the active event specifiers. If 'all' is TRUE, we consider all
* sespecs in our search. If 'all' is FALSE, we only consider ARMED sespecs.
* If we successfully match an event, we add it to the t_matched list and
* place an additional hold on it.
*/
static mdb_sespec_t *
tgt_match_sespecs(mdb_tgt_t *t, int all)
{
mdb_sespec_t *sep;
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
if (all == FALSE && sep->se_state != MDB_TGT_SPEC_ARMED)
continue; /* restrict search to ARMED sespecs */
if (sep->se_state != MDB_TGT_SPEC_ERROR &&
sep->se_ops->se_match(t, sep, &t->t_status)) {
mdb_dprintf(MDB_DBG_TGT, "match se %p\n", (void *)sep);
mdb_tgt_sespec_hold(t, sep);
sep->se_matched = t->t_matched;
t->t_matched = sep;
}
}
return (t->t_matched);
}
/*
* This function provides the low-level target continue algorithm. We proceed
* in three phases: (1) we arm the active sespecs, except the specs matched at
* the time we last stopped, (2) we call se_cont() on any matched sespecs to
* step over these event transitions, and then arm the corresponding sespecs,
* and (3) we call the appropriate low-level continue routine. Once the
* target stops again, we determine which sespecs were matched, and invoke the
* appropriate vespec callbacks and perform other vespec maintenance.
*/
static int
tgt_continue(mdb_tgt_t *t, mdb_tgt_status_t *tsp,
int (*t_cont)(mdb_tgt_t *, mdb_tgt_status_t *))
{
mdb_var_t *hitv = mdb_nv_lookup(&mdb.m_nv, "hits");
uintptr_t pc = t->t_status.st_pc;
int error = 0;
mdb_sespec_t *sep, *nsep, *matched;
mdb_vespec_t *vep, *nvep;
uintptr_t addr;
uint_t cbits = 0; /* union of pending continue bits */
uint_t ncont = 0; /* # of callbacks that requested cont */
uint_t n = 0; /* # of callbacks */
/*
* If the target is undead, dead, or lost, we no longer allow continue.
* This effectively forces the user to use ::kill or ::run after death.
*/
if (t->t_status.st_state == MDB_TGT_UNDEAD)
return (set_errno(EMDB_TGTZOMB));
if (t->t_status.st_state == MDB_TGT_DEAD)
return (set_errno(EMDB_TGTCORE));
if (t->t_status.st_state == MDB_TGT_LOST)
return (set_errno(EMDB_TGTLOST));
/*
* If any of single-step, step-over, or step-out is pending, it takes
* precedence over an explicit or pending continue, because these are
* all different specialized forms of continue.
*/
if (t->t_flags & MDB_TGT_F_STEP)
t_cont = t->t_ops->t_step;
else if (t->t_flags & MDB_TGT_F_NEXT)
t_cont = t->t_ops->t_step;
else if (t->t_flags & MDB_TGT_F_STEP_BRANCH)
t_cont = t->t_ops->t_cont;
else if (t->t_flags & MDB_TGT_F_STEP_OUT)
t_cont = t->t_ops->t_cont;
/*
* To handle step-over, we ask the target to find the address past the
* next control transfer instruction. If an address is found, we plant
* a temporary breakpoint there and continue; otherwise just step.
*/
if ((t->t_flags & MDB_TGT_F_NEXT) && !(t->t_flags & MDB_TGT_F_STEP)) {
if (t->t_ops->t_next(t, &addr) == -1 || mdb_tgt_add_vbrkpt(t,
addr, MDB_TGT_SPEC_HIDDEN | MDB_TGT_SPEC_TEMPORARY,
no_se_f, NULL) == 0) {
mdb_dprintf(MDB_DBG_TGT, "next falling back to step: "
"%s\n", mdb_strerror(errno));
} else
t_cont = t->t_ops->t_cont;
}
/*
* To handle step-out, we ask the target to find the return address of
* the current frame, plant a temporary breakpoint there, and continue.
*/
if (t->t_flags & MDB_TGT_F_STEP_OUT) {
if (t->t_ops->t_step_out(t, &addr) == -1)
return (-1); /* errno is set for us */
if (mdb_tgt_add_vbrkpt(t, addr, MDB_TGT_SPEC_HIDDEN |
MDB_TGT_SPEC_TEMPORARY, no_se_f, NULL) == 0)
return (-1); /* errno is set for us */
}
/*
* To handle step-branch, we ask the target to enable it for the coming
* continue. Step-branch is incompatible with step, so don't enable it
* if we're going to be stepping.
*/
if (t->t_flags & MDB_TGT_F_STEP_BRANCH && t_cont == t->t_ops->t_cont) {
if (t->t_ops->t_step_branch(t) == -1)
return (-1); /* errno is set for us */
}
(void) mdb_signal_block(SIGHUP);
(void) mdb_signal_block(SIGTERM);
mdb_intr_disable();
t->t_flags &= ~T_CONT_BITS;
t->t_flags |= MDB_TGT_F_BUSY;
mdb_tgt_sespec_arm_all(t);
ASSERT(t->t_matched != NULL);
matched = t->t_matched;
t->t_matched = T_SE_END;
if (mdb.m_term != NULL)
IOP_SUSPEND(mdb.m_term);
/*
* Iterate over the matched sespec list, performing autostop processing
* and clearing the matched bit for each associated vespec. We then
* invoke each sespec's se_cont callback in order to continue past
* the corresponding event. If the matched list has more than one
* sespec, we assume that the se_cont callbacks are non-interfering.
*/
for (sep = matched; sep != T_SE_END; sep = sep->se_matched) {
for (vep = mdb_list_next(&sep->se_velist); vep != NULL; ) {
if ((vep->ve_flags & MDB_TGT_SPEC_AUTOSTOP) &&
(vep->ve_limit && vep->ve_hits == vep->ve_limit))
vep->ve_hits = 0;
vep->ve_flags &= ~MDB_TGT_SPEC_MATCHED;
vep = mdb_list_next(vep);
}
if (sep->se_ops->se_cont(t, sep, &t->t_status) == -1) {
error = errno ? errno : -1;
tgt_disarm_sespecs(t);
break;
}
if (!(t->t_status.st_flags & MDB_TGT_ISTOP)) {
tgt_disarm_sespecs(t);
if (t->t_status.st_state == MDB_TGT_UNDEAD)
mdb_tgt_sespec_idle_all(t, EMDB_TGTZOMB, TRUE);
else if (t->t_status.st_state == MDB_TGT_LOST)
mdb_tgt_sespec_idle_all(t, EMDB_TGTLOST, TRUE);
break;
}
}
/*
* Clear the se_matched field for each matched sespec, and drop the
* reference count since the sespec is no longer on the matched list.
*/
for (sep = matched; sep != T_SE_END; sep = nsep) {
nsep = sep->se_matched;
sep->se_matched = NULL;
mdb_tgt_sespec_rele(t, sep);
}
/*
* If the matched list was non-empty, see if we hit another event while
* performing se_cont() processing. If so, don't bother continuing any
* further. If not, arm the sespecs on the old matched list by calling
* mdb_tgt_sespec_arm_all() again and then continue by calling t_cont.
*/
if (matched != T_SE_END) {
if (error != 0 || !(t->t_status.st_flags & MDB_TGT_ISTOP))
goto out; /* abort now if se_cont() failed */
if ((t->t_matched = tgt_match_sespecs(t, FALSE)) != T_SE_END) {
tgt_disarm_sespecs(t);
goto out;
}
mdb_tgt_sespec_arm_all(t);
}
if (t_cont != t->t_ops->t_step || pc == t->t_status.st_pc) {
if (t_cont(t, &t->t_status) != 0)
error = errno ? errno : -1;
}
tgt_disarm_sespecs(t);
if (t->t_flags & MDB_TGT_F_UNLOAD)
longjmp(mdb.m_frame->f_pcb, MDB_ERR_QUIT);
if (t->t_status.st_state == MDB_TGT_UNDEAD)
mdb_tgt_sespec_idle_all(t, EMDB_TGTZOMB, TRUE);
else if (t->t_status.st_state == MDB_TGT_LOST)
mdb_tgt_sespec_idle_all(t, EMDB_TGTLOST, TRUE);
else if (t->t_status.st_flags & MDB_TGT_ISTOP)
t->t_matched = tgt_match_sespecs(t, TRUE);
out:
if (mdb.m_term != NULL)
IOP_RESUME(mdb.m_term);
(void) mdb_signal_unblock(SIGTERM);
(void) mdb_signal_unblock(SIGHUP);
mdb_intr_enable();
for (sep = t->t_matched; sep != T_SE_END; sep = sep->se_matched) {
/*
* When we invoke a ve_callback, it may in turn request that the
* target continue immediately after callback processing is
* complete. We only allow this to occur if *all* callbacks
* agree to continue. To implement this behavior, we keep a
* count (ncont) of such requests, and only apply the cumulative
* continue bits (cbits) to the target if ncont is equal to the
* total number of callbacks that are invoked (n).
*/
for (vep = mdb_list_next(&sep->se_velist);
vep != NULL; vep = nvep, n++) {
/*
* Place an extra hold on the current vespec and pick
* up the next pointer before invoking the callback: we
* must be prepared for the vespec to be deleted or
* moved to a different list by the callback.
*/
mdb_tgt_vespec_hold(t, vep);
nvep = mdb_list_next(vep);
vep->ve_flags |= MDB_TGT_SPEC_MATCHED;
vep->ve_hits++;
mdb_nv_set_value(mdb.m_dot, t->t_status.st_pc);
mdb_nv_set_value(hitv, vep->ve_hits);
ASSERT((t->t_flags & T_CONT_BITS) == 0);
vep->ve_callback(t, vep->ve_id, vep->ve_data);
ncont += (t->t_flags & T_CONT_BITS) != 0;
cbits |= (t->t_flags & T_CONT_BITS);
t->t_flags &= ~T_CONT_BITS;
if (vep->ve_limit && vep->ve_hits == vep->ve_limit) {
if (vep->ve_flags & MDB_TGT_SPEC_AUTODEL)
(void) mdb_tgt_vespec_delete(t,
vep->ve_id);
else if (vep->ve_flags & MDB_TGT_SPEC_AUTODIS)
(void) mdb_tgt_vespec_disable(t,
vep->ve_id);
}
if (vep->ve_limit && vep->ve_hits < vep->ve_limit) {
if (vep->ve_flags & MDB_TGT_SPEC_AUTOSTOP)
(void) mdb_tgt_continue(t, NULL);
}
mdb_tgt_vespec_rele(t, vep);
}
}
if (t->t_matched != T_SE_END && ncont == n)
t->t_flags |= cbits; /* apply continues (see above) */
mdb_tgt_sespec_prune_all(t);
t->t_status.st_flags &= ~MDB_TGT_BUSY;
t->t_flags &= ~MDB_TGT_F_BUSY;
if (tsp != NULL)
bcopy(&t->t_status, tsp, sizeof (mdb_tgt_status_t));
if (error != 0)
return (set_errno(error));
return (0);
}
/*
* This function is the common glue that connects the high-level target layer
* continue functions (e.g. step and cont below) with the low-level
* tgt_continue() function above. Since vespec callbacks may perform any
* actions, including attempting to continue the target itself, we must be
* prepared to be called while the target is still marked F_BUSY. In this
* case, we just set a pending bit and return. When we return from the call
* to tgt_continue() that made us busy into the tgt_request_continue() call
* that is still on the stack, we will loop around and call tgt_continue()
* again. This allows vespecs to continue the target without recursion.
*/
static int
tgt_request_continue(mdb_tgt_t *t, mdb_tgt_status_t *tsp, uint_t tflag,
int (*t_cont)(mdb_tgt_t *, mdb_tgt_status_t *))
{
mdb_tgt_spec_desc_t desc;
mdb_sespec_t *sep;
char buf[BUFSIZ];
int status;
if (t->t_flags & MDB_TGT_F_BUSY) {
t->t_flags |= tflag;
return (0);
}
do {
status = tgt_continue(t, tsp, t_cont);
} while (status == 0 && (t->t_flags & T_CONT_BITS));
if (status == 0) {
for (sep = t->t_matched; sep != T_SE_END;
sep = sep->se_matched) {
mdb_vespec_t *vep;
for (vep = mdb_list_next(&sep->se_velist); vep;
vep = mdb_list_next(vep)) {
if (vep->ve_flags & MDB_TGT_SPEC_SILENT)
continue;
warn("%s\n", sep->se_ops->se_info(t, sep,
vep, &desc, buf, sizeof (buf)));
}
}
mdb_callb_fire(MDB_CALLB_STCHG);
}
t->t_flags &= ~T_CONT_BITS;
return (status);
}
/*
* Restart target execution: we rely upon the underlying target implementation
* to do most of the work for us. In particular, we assume it will properly
* preserve the state of our event lists if the run fails for some reason,
* and that it will reset all events to the IDLE state if the run succeeds.
* If it is successful, we attempt to activate all of the idle sespecs. The
* t_run() operation is defined to leave the target stopped at the earliest
* possible point in execution, and then return control to the debugger,
* awaiting a step or continue operation to set it running again.
*/
int
mdb_tgt_run(mdb_tgt_t *t, int argc, const mdb_arg_t *argv)
{
int i;
for (i = 0; i < argc; i++) {
if (argv->a_type != MDB_TYPE_STRING)
return (set_errno(EINVAL));
}
if (t->t_ops->t_run(t, argc, argv) == -1)
return (-1); /* errno is set for us */
t->t_flags &= ~T_CONT_BITS;
(void) mdb_tgt_sespec_activate_all(t);
if (mdb.m_term != NULL)
IOP_CTL(mdb.m_term, MDB_IOC_CTTY, NULL);
return (0);
}
int
mdb_tgt_step(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
return (tgt_request_continue(t, tsp, MDB_TGT_F_STEP, t->t_ops->t_step));
}
int
mdb_tgt_step_out(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
t->t_flags |= MDB_TGT_F_STEP_OUT; /* set flag even if tgt not busy */
return (tgt_request_continue(t, tsp, 0, t->t_ops->t_cont));
}
int
mdb_tgt_step_branch(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
t->t_flags |= MDB_TGT_F_STEP_BRANCH; /* set flag even if tgt not busy */
return (tgt_request_continue(t, tsp, 0, t->t_ops->t_cont));
}
int
mdb_tgt_next(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
t->t_flags |= MDB_TGT_F_NEXT; /* set flag even if tgt not busy */
return (tgt_request_continue(t, tsp, 0, t->t_ops->t_step));
}
int
mdb_tgt_continue(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
return (tgt_request_continue(t, tsp, MDB_TGT_F_CONT, t->t_ops->t_cont));
}
int
mdb_tgt_signal(mdb_tgt_t *t, int sig)
{
return (t->t_ops->t_signal(t, sig));
}
void *
mdb_tgt_vespec_data(mdb_tgt_t *t, int vid)
{
mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, vid);
if (vep == NULL) {
(void) set_errno(EMDB_NOSESPEC);
return (NULL);
}
return (vep->ve_data);
}
/*
* Return a structured description and comment string for the given vespec.
* We fill in the common information from the vespec, and then call down to
* the underlying sespec to provide the comment string and modify any
* event type-specific information.
*/
char *
mdb_tgt_vespec_info(mdb_tgt_t *t, int vid, mdb_tgt_spec_desc_t *sp,
char *buf, size_t nbytes)
{
mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, vid);
mdb_tgt_spec_desc_t desc;
mdb_sespec_t *sep;
if (vep == NULL) {
if (sp != NULL)
bzero(sp, sizeof (mdb_tgt_spec_desc_t));
(void) set_errno(EMDB_NOSESPEC);
return (NULL);
}
if (sp == NULL)
sp = &desc;
sep = vep->ve_se;
sp->spec_id = vep->ve_id;
sp->spec_flags = vep->ve_flags;
sp->spec_hits = vep->ve_hits;
sp->spec_limit = vep->ve_limit;
sp->spec_state = sep->se_state;
sp->spec_errno = sep->se_errno;
sp->spec_base = NULL;
sp->spec_size = 0;
sp->spec_data = vep->ve_data;
return (sep->se_ops->se_info(t, sep, vep, sp, buf, nbytes));
}
/*
* Qsort callback for sorting vespecs by VID, used below.
*/
static int
tgt_vespec_compare(const mdb_vespec_t **lp, const mdb_vespec_t **rp)
{
return ((*lp)->ve_id - (*rp)->ve_id);
}
/*
* Iterate over all vespecs and call the specified callback function with the
* corresponding VID and caller data pointer. We want the callback function
* to see a consistent, sorted snapshot of the vespecs, and allow the callback
* to take actions such as deleting the vespec itself, so we cannot simply
* iterate over the lists. Instead, we pre-allocate an array of vespec
* pointers, fill it in and place an additional hold on each vespec, and then
* sort it. After the callback has been executed on each vespec in the
* sorted array, we remove our hold and free the temporary array.
*/
int
mdb_tgt_vespec_iter(mdb_tgt_t *t, mdb_tgt_vespec_f *func, void *p)
{
mdb_vespec_t **veps, **vepp, **vend;
mdb_vespec_t *vep, *nvep;
mdb_sespec_t *sep;
uint_t vecnt = t->t_vecnt;
veps = mdb_alloc(sizeof (mdb_vespec_t *) * vecnt, UM_SLEEP);
vend = veps + vecnt;
vepp = veps;
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
mdb_tgt_vespec_hold(t, vep);
nvep = mdb_list_next(vep);
*vepp++ = vep;
}
}
for (sep = mdb_list_next(&t->t_idle); sep; sep = mdb_list_next(sep)) {
for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
mdb_tgt_vespec_hold(t, vep);
nvep = mdb_list_next(vep);
*vepp++ = vep;
}
}
if (vepp != vend) {
fail("target has %u vespecs on list but vecnt shows %u\n",
(uint_t)(vepp - veps), vecnt);
}
qsort(veps, vecnt, sizeof (mdb_vespec_t *),
(int (*)(const void *, const void *))tgt_vespec_compare);
for (vepp = veps; vepp < vend; vepp++) {
if (func(t, p, (*vepp)->ve_id, (*vepp)->ve_data) != 0)
break;
}
for (vepp = veps; vepp < vend; vepp++)
mdb_tgt_vespec_rele(t, *vepp);
mdb_free(veps, sizeof (mdb_vespec_t *) * vecnt);
return (0);
}
/*
* Reset the vespec flags, match limit, and callback data to the specified
* values. We silently correct invalid parameters, except for the VID.
* The caller is required to query the existing properties and pass back
* the existing values for any properties that should not be modified.
* If the callback data is modified, the caller is responsible for cleaning
* up any state associated with the previous value.
*/
int
mdb_tgt_vespec_modify(mdb_tgt_t *t, int id, uint_t flags,
uint_t limit, void *data)
{
mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
if (vep == NULL)
return (set_errno(EMDB_NOSESPEC));
/*
* If the value of the MDB_TGT_SPEC_DISABLED bit is changing, call the
* appropriate vespec function to do the enable/disable work.
*/
if ((flags & MDB_TGT_SPEC_DISABLED) !=
(vep->ve_flags & MDB_TGT_SPEC_DISABLED)) {
if (flags & MDB_TGT_SPEC_DISABLED)
(void) mdb_tgt_vespec_disable(t, id);
else
(void) mdb_tgt_vespec_enable(t, id);
}
/*
* Make that only one MDB_TGT_SPEC_AUTO* bit is set in the new flags
* value: extra bits are cleared according to order of precedence.
*/
if (flags & MDB_TGT_SPEC_AUTOSTOP)
flags &= ~(MDB_TGT_SPEC_AUTODEL | MDB_TGT_SPEC_AUTODIS);
else if (flags & MDB_TGT_SPEC_AUTODEL)
flags &= ~MDB_TGT_SPEC_AUTODIS;
/*
* The TEMPORARY property always takes precedence over STICKY.
*/
if (flags & MDB_TGT_SPEC_TEMPORARY)
flags &= ~MDB_TGT_SPEC_STICKY;
/*
* If any MDB_TGT_SPEC_AUTO* bits are changing, reset the hit count
* back to zero and clear all of the old auto bits.
*/
if ((flags & T_AUTO_BITS) != (vep->ve_flags & T_AUTO_BITS)) {
vep->ve_flags &= ~T_AUTO_BITS;
vep->ve_hits = 0;
}
vep->ve_flags = (vep->ve_flags & T_IMPL_BITS) | (flags & ~T_IMPL_BITS);
vep->ve_data = data;
/*
* If any MDB_TGT_SPEC_AUTO* flags are set, make sure the limit is at
* least one. If none are set, reset it back to zero.
*/
if (vep->ve_flags & T_AUTO_BITS)
vep->ve_limit = MAX(limit, 1);
else
vep->ve_limit = 0;
/*
* As a convenience, we allow the caller to specify SPEC_DELETED in
* the flags field as indication that the event should be deleted.
*/
if (flags & MDB_TGT_SPEC_DELETED)
(void) mdb_tgt_vespec_delete(t, id);
return (0);
}
/*
* Remove the user disabled bit from the specified vespec, and attempt to
* activate the underlying sespec and move it to the active list if possible.
*/
int
mdb_tgt_vespec_enable(mdb_tgt_t *t, int id)
{
mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
if (vep == NULL)
return (set_errno(EMDB_NOSESPEC));
if (vep->ve_flags & MDB_TGT_SPEC_DISABLED) {
ASSERT(mdb_list_next(vep) == NULL);
vep->ve_flags &= ~MDB_TGT_SPEC_DISABLED;
if (mdb_tgt_sespec_activate_one(t, vep->ve_se) < 0)
return (-1); /* errno is set for us */
}
return (0);
}
/*
* Set the user disabled bit on the specified vespec, and move it to the idle
* list. If the vespec is not alone with its sespec or if it is a currently
* matched event, we must always create a new idle sespec and move the vespec
* there. If the vespec was alone and active, we can simply idle the sespec.
*/
int
mdb_tgt_vespec_disable(mdb_tgt_t *t, int id)
{
mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
mdb_sespec_t *sep;
if (vep == NULL)
return (set_errno(EMDB_NOSESPEC));
if (vep->ve_flags & MDB_TGT_SPEC_DISABLED)
return (0); /* already disabled */
if (mdb_list_prev(vep) != NULL || mdb_list_next(vep) != NULL ||
vep->ve_se->se_matched != NULL) {
sep = mdb_tgt_sespec_insert(t, vep->ve_se->se_ops, &t->t_idle);
mdb_list_delete(&vep->ve_se->se_velist, vep);
mdb_tgt_sespec_rele(t, vep->ve_se);
mdb_list_append(&sep->se_velist, vep);
mdb_tgt_sespec_hold(t, sep);
vep->ve_flags &= ~MDB_TGT_SPEC_MATCHED;
vep->ve_se = sep;
} else if (vep->ve_se->se_state != MDB_TGT_SPEC_IDLE)
mdb_tgt_sespec_idle_one(t, vep->ve_se, EMDB_SPECDIS);
vep->ve_flags |= MDB_TGT_SPEC_DISABLED;
return (0);
}
/*
* Delete the given vespec. We use the MDB_TGT_SPEC_DELETED flag to ensure that
* multiple calls to mdb_tgt_vespec_delete to not attempt to decrement the
* reference count on the vespec more than once. This is because the vespec
* may remain referenced if it is currently held by another routine (e.g.
* vespec_iter), and so the user could attempt to delete it more than once
* since it reference count will be >= 2 prior to the first delete call.
*/
int
mdb_tgt_vespec_delete(mdb_tgt_t *t, int id)
{
mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
if (vep == NULL)
return (set_errno(EMDB_NOSESPEC));
if (vep->ve_flags & MDB_TGT_SPEC_DELETED)
return (set_errno(EBUSY));
vep->ve_flags |= MDB_TGT_SPEC_DELETED;
mdb_tgt_vespec_rele(t, vep);
return (0);
}
int
mdb_tgt_add_vbrkpt(mdb_tgt_t *t, uintptr_t addr,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
return (t->t_ops->t_add_vbrkpt(t, addr, spec_flags, func, p));
}
int
mdb_tgt_add_sbrkpt(mdb_tgt_t *t, const char *symbol,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
return (t->t_ops->t_add_sbrkpt(t, symbol, spec_flags, func, p));
}
int
mdb_tgt_add_pwapt(mdb_tgt_t *t, physaddr_t pa, size_t n, uint_t flags,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
if ((flags & ~MDB_TGT_WA_RWX) || flags == 0) {
(void) set_errno(EINVAL);
return (0);
}
if (pa + n < pa) {
(void) set_errno(EMDB_WPRANGE);
return (0);
}
return (t->t_ops->t_add_pwapt(t, pa, n, flags, spec_flags, func, p));
}
int
mdb_tgt_add_vwapt(mdb_tgt_t *t, uintptr_t va, size_t n, uint_t flags,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
if ((flags & ~MDB_TGT_WA_RWX) || flags == 0) {
(void) set_errno(EINVAL);
return (0);
}
if (va + n < va) {
(void) set_errno(EMDB_WPRANGE);
return (0);
}
return (t->t_ops->t_add_vwapt(t, va, n, flags, spec_flags, func, p));
}
int
mdb_tgt_add_iowapt(mdb_tgt_t *t, uintptr_t addr, size_t n, uint_t flags,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
if ((flags & ~MDB_TGT_WA_RWX) || flags == 0) {
(void) set_errno(EINVAL);
return (0);
}
if (addr + n < addr) {
(void) set_errno(EMDB_WPRANGE);
return (0);
}
return (t->t_ops->t_add_iowapt(t, addr, n, flags, spec_flags, func, p));
}
int
mdb_tgt_add_sysenter(mdb_tgt_t *t, int sysnum,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
return (t->t_ops->t_add_sysenter(t, sysnum, spec_flags, func, p));
}
int
mdb_tgt_add_sysexit(mdb_tgt_t *t, int sysnum,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
return (t->t_ops->t_add_sysexit(t, sysnum, spec_flags, func, p));
}
int
mdb_tgt_add_signal(mdb_tgt_t *t, int sig,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
return (t->t_ops->t_add_signal(t, sig, spec_flags, func, p));
}
int
mdb_tgt_add_fault(mdb_tgt_t *t, int flt,
int spec_flags, mdb_tgt_se_f *func, void *p)
{
return (t->t_ops->t_add_fault(t, flt, spec_flags, func, p));
}
int
mdb_tgt_getareg(mdb_tgt_t *t, mdb_tgt_tid_t tid,
const char *rname, mdb_tgt_reg_t *rp)
{
return (t->t_ops->t_getareg(t, tid, rname, rp));
}
int
mdb_tgt_putareg(mdb_tgt_t *t, mdb_tgt_tid_t tid,
const char *rname, mdb_tgt_reg_t r)
{
return (t->t_ops->t_putareg(t, tid, rname, r));
}
int
mdb_tgt_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gregs,
mdb_tgt_stack_f *cb, void *p)
{
return (t->t_ops->t_stack_iter(t, gregs, cb, p));
}
int
mdb_tgt_xdata_iter(mdb_tgt_t *t, mdb_tgt_xdata_f *func, void *private)
{
mdb_xdata_t *xdp;
for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
if (func(private, xdp->xd_name, xdp->xd_desc,
xdp->xd_copy(t, NULL, 0)) != 0)
break;
}
return (0);
}
ssize_t
mdb_tgt_getxdata(mdb_tgt_t *t, const char *name, void *buf, size_t nbytes)
{
mdb_xdata_t *xdp;
for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
if (strcmp(xdp->xd_name, name) == 0)
return (xdp->xd_copy(t, buf, nbytes));
}
return (set_errno(ENODATA));
}
long
mdb_tgt_notsup()
{
return (set_errno(EMDB_TGTNOTSUP));
}
void *
mdb_tgt_null()
{
(void) set_errno(EMDB_TGTNOTSUP);
return (NULL);
}
long
mdb_tgt_nop()
{
return (0L);
}
int
mdb_tgt_xdata_insert(mdb_tgt_t *t, const char *name, const char *desc,
ssize_t (*copy)(mdb_tgt_t *, void *, size_t))
{
mdb_xdata_t *xdp;
for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
if (strcmp(xdp->xd_name, name) == 0)
return (set_errno(EMDB_XDEXISTS));
}
xdp = mdb_alloc(sizeof (mdb_xdata_t), UM_SLEEP);
mdb_list_append(&t->t_xdlist, xdp);
xdp->xd_name = name;
xdp->xd_desc = desc;
xdp->xd_copy = copy;
return (0);
}
int
mdb_tgt_xdata_delete(mdb_tgt_t *t, const char *name)
{
mdb_xdata_t *xdp;
for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
if (strcmp(xdp->xd_name, name) == 0) {
mdb_list_delete(&t->t_xdlist, xdp);
mdb_free(xdp, sizeof (mdb_xdata_t));
return (0);
}
}
return (set_errno(EMDB_NOXD));
}
int
mdb_tgt_sym_match(const GElf_Sym *sym, uint_t mask)
{
uchar_t s_bind = GELF_ST_BIND(sym->st_info);
uchar_t s_type = GELF_ST_TYPE(sym->st_info);
/*
* In case you haven't already guessed, this relies on the bitmask
* used by <mdb/mdb_target.h> and <libproc.h> for encoding symbol
* type and binding matching the order of STB and STT constants
* in <sys/elf.h>. ELF can't change without breaking binary
* compatibility, so I think this is reasonably fair game.
*/
if (s_bind < STB_NUM && s_type < STT_NUM) {
uint_t type = (1 << (s_type + 8)) | (1 << s_bind);
return ((type & ~mask) == 0);
}
return (0); /* Unknown binding or type; fail to match */
}
void
mdb_tgt_elf_export(mdb_gelf_file_t *gf)
{
GElf_Xword d = 0, t = 0;
GElf_Addr b = 0, e = 0;
uint32_t m = 0;
mdb_var_t *v;
/*
* Reset legacy adb variables based on the specified ELF object file
* provided by the target. We define these variables:
*
* b - the address of the data segment (first writeable Phdr)
* d - the size of the data segment
* e - the address of the entry point
* m - the magic number identifying the file
* t - the address of the text segment (first executable Phdr)
*/
if (gf != NULL) {
const GElf_Phdr *text = NULL, *data = NULL;
size_t i;
e = gf->gf_ehdr.e_entry;
bcopy(&gf->gf_ehdr.e_ident[EI_MAG0], &m, sizeof (m));
for (i = 0; i < gf->gf_npload; i++) {
if (text == NULL && (gf->gf_phdrs[i].p_flags & PF_X))
text = &gf->gf_phdrs[i];
if (data == NULL && (gf->gf_phdrs[i].p_flags & PF_W))
data = &gf->gf_phdrs[i];
}
if (text != NULL)
t = text->p_memsz;
if (data != NULL) {
b = data->p_vaddr;
d = data->p_memsz;
}
}
if ((v = mdb_nv_lookup(&mdb.m_nv, "b")) != NULL)
mdb_nv_set_value(v, b);
if ((v = mdb_nv_lookup(&mdb.m_nv, "d")) != NULL)
mdb_nv_set_value(v, d);
if ((v = mdb_nv_lookup(&mdb.m_nv, "e")) != NULL)
mdb_nv_set_value(v, e);
if ((v = mdb_nv_lookup(&mdb.m_nv, "m")) != NULL)
mdb_nv_set_value(v, m);
if ((v = mdb_nv_lookup(&mdb.m_nv, "t")) != NULL)
mdb_nv_set_value(v, t);
}
/*ARGSUSED*/
void
mdb_tgt_sespec_hold(mdb_tgt_t *t, mdb_sespec_t *sep)
{
sep->se_refs++;
ASSERT(sep->se_refs != 0);
}
void
mdb_tgt_sespec_rele(mdb_tgt_t *t, mdb_sespec_t *sep)
{
ASSERT(sep->se_refs != 0);
if (--sep->se_refs == 0) {
mdb_dprintf(MDB_DBG_TGT, "destroying sespec %p\n", (void *)sep);
ASSERT(mdb_list_next(&sep->se_velist) == NULL);
if (sep->se_state != MDB_TGT_SPEC_IDLE) {
sep->se_ops->se_dtor(t, sep);
mdb_list_delete(&t->t_active, sep);
} else
mdb_list_delete(&t->t_idle, sep);
mdb_free(sep, sizeof (mdb_sespec_t));
}
}
mdb_sespec_t *
mdb_tgt_sespec_insert(mdb_tgt_t *t, const mdb_se_ops_t *ops, mdb_list_t *list)
{
mdb_sespec_t *sep = mdb_zalloc(sizeof (mdb_sespec_t), UM_SLEEP);
if (list == &t->t_active)
sep->se_state = MDB_TGT_SPEC_ACTIVE;
else
sep->se_state = MDB_TGT_SPEC_IDLE;
mdb_list_append(list, sep);
sep->se_ops = ops;
return (sep);
}
mdb_sespec_t *
mdb_tgt_sespec_lookup_active(mdb_tgt_t *t, const mdb_se_ops_t *ops, void *args)
{
mdb_sespec_t *sep;
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
if (sep->se_ops == ops && sep->se_ops->se_secmp(t, sep, args))
break;
}
return (sep);
}
mdb_sespec_t *
mdb_tgt_sespec_lookup_idle(mdb_tgt_t *t, const mdb_se_ops_t *ops, void *args)
{
mdb_sespec_t *sep;
for (sep = mdb_list_next(&t->t_idle); sep; sep = mdb_list_next(sep)) {
if (sep->se_ops == ops && sep->se_ops->se_vecmp(t,
mdb_list_next(&sep->se_velist), args))
break;
}
return (sep);
}
/*ARGSUSED*/
void
mdb_tgt_vespec_hold(mdb_tgt_t *t, mdb_vespec_t *vep)
{
vep->ve_refs++;
ASSERT(vep->ve_refs != 0);
}
void
mdb_tgt_vespec_rele(mdb_tgt_t *t, mdb_vespec_t *vep)
{
ASSERT(vep->ve_refs != 0);
if (--vep->ve_refs == 0) {
/*
* Remove this vespec from the sespec's velist and decrement
* the reference count on the sespec.
*/
mdb_list_delete(&vep->ve_se->se_velist, vep);
mdb_tgt_sespec_rele(t, vep->ve_se);
/*
* If we are deleting the most recently assigned VID, reset
* t_vepos or t_veneg as appropriate to re-use that number.
* This could be enhanced to re-use any free number by
* maintaining a bitmap or hash of the allocated IDs.
*/
if (vep->ve_id > 0 && t->t_vepos == vep->ve_id + 1)
t->t_vepos = vep->ve_id;
else if (vep->ve_id < 0 && t->t_veneg == -vep->ve_id + 1)
t->t_veneg = -vep->ve_id;
/*
* Call the destructor to clean up ve_args, and then free
* the actual vespec structure.
*/
vep->ve_dtor(vep);
mdb_free(vep, sizeof (mdb_vespec_t));
ASSERT(t->t_vecnt != 0);
t->t_vecnt--;
}
}
int
mdb_tgt_vespec_insert(mdb_tgt_t *t, const mdb_se_ops_t *ops, int flags,
mdb_tgt_se_f *func, void *data, void *args, void (*dtor)(mdb_vespec_t *))
{
mdb_vespec_t *vep = mdb_zalloc(sizeof (mdb_vespec_t), UM_SLEEP);
int id, mult, *seqp;
mdb_sespec_t *sep;
/*
* Make that only one MDB_TGT_SPEC_AUTO* bit is set in the new flags
* value: extra bits are cleared according to order of precedence.
*/
if (flags & MDB_TGT_SPEC_AUTOSTOP)
flags &= ~(MDB_TGT_SPEC_AUTODEL | MDB_TGT_SPEC_AUTODIS);
else if (flags & MDB_TGT_SPEC_AUTODEL)
flags &= ~MDB_TGT_SPEC_AUTODIS;
/*
* The TEMPORARY property always takes precedence over STICKY.
*/
if (flags & MDB_TGT_SPEC_TEMPORARY)
flags &= ~MDB_TGT_SPEC_STICKY;
/*
* Find a matching sespec or create a new one on the appropriate list.
* We always create a new sespec if the vespec is created disabled.
*/
if (flags & MDB_TGT_SPEC_DISABLED)
sep = mdb_tgt_sespec_insert(t, ops, &t->t_idle);
else if ((sep = mdb_tgt_sespec_lookup_active(t, ops, args)) == NULL &&
(sep = mdb_tgt_sespec_lookup_idle(t, ops, args)) == NULL)
sep = mdb_tgt_sespec_insert(t, ops, &t->t_active);
/*
* Generate a new ID for the vespec. Increasing positive integers are
* assigned to visible vespecs; decreasing negative integers are
* assigned to hidden vespecs. The target saves our most recent choice.
*/
if (flags & MDB_TGT_SPEC_INTERNAL) {
seqp = &t->t_veneg;
mult = -1;
} else {
seqp = &t->t_vepos;
mult = 1;
}
id = *seqp;
while (mdb_tgt_vespec_lookup(t, id * mult) != NULL)
id = MAX(id + 1, 1);
*seqp = MAX(id + 1, 1);
vep->ve_id = id * mult;
vep->ve_flags = flags & ~(MDB_TGT_SPEC_MATCHED | MDB_TGT_SPEC_DELETED);
vep->ve_se = sep;
vep->ve_callback = func;
vep->ve_data = data;
vep->ve_args = args;
vep->ve_dtor = dtor;
mdb_list_append(&sep->se_velist, vep);
mdb_tgt_sespec_hold(t, sep);
mdb_tgt_vespec_hold(t, vep);
t->t_vecnt++;
/*
* If this vespec is the first reference to the sespec and it's active,
* then it is newly created and we should attempt to initialize it.
* If se_ctor fails, then move the sespec back to the idle list.
*/
if (sep->se_refs == 1 && sep->se_state == MDB_TGT_SPEC_ACTIVE &&
sep->se_ops->se_ctor(t, sep, vep->ve_args) == -1) {
mdb_list_delete(&t->t_active, sep);
mdb_list_append(&t->t_idle, sep);
sep->se_state = MDB_TGT_SPEC_IDLE;
sep->se_errno = errno;
sep->se_data = NULL;
}
/*
* If the sespec is active and the target is currently running (because
* we grabbed it using PGRAB_NOSTOP), then go ahead and attempt to arm
* the sespec so it will take effect immediately.
*/
if (sep->se_state == MDB_TGT_SPEC_ACTIVE &&
t->t_status.st_state == MDB_TGT_RUNNING)
mdb_tgt_sespec_arm_one(t, sep);
mdb_dprintf(MDB_DBG_TGT, "inserted [ %d ] sep=%p refs=%u state=%d\n",
vep->ve_id, (void *)sep, sep->se_refs, sep->se_state);
return (vep->ve_id);
}
/*
* Search the target's active, idle, and disabled lists for the vespec matching
* the specified VID, and return a pointer to it, or NULL if no match is found.
*/
mdb_vespec_t *
mdb_tgt_vespec_lookup(mdb_tgt_t *t, int vid)
{
mdb_sespec_t *sep;
mdb_vespec_t *vep;
if (vid == 0)
return (NULL); /* 0 is never a valid VID */
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
for (vep = mdb_list_next(&sep->se_velist); vep;
vep = mdb_list_next(vep)) {
if (vep->ve_id == vid)
return (vep);
}
}
for (sep = mdb_list_next(&t->t_idle); sep; sep = mdb_list_next(sep)) {
for (vep = mdb_list_next(&sep->se_velist); vep;
vep = mdb_list_next(vep)) {
if (vep->ve_id == vid)
return (vep);
}
}
return (NULL);
}
/*ARGSUSED*/
void
no_ve_dtor(mdb_vespec_t *vep)
{
/* default destructor does nothing */
}
/*ARGSUSED*/
void
no_se_f(mdb_tgt_t *t, int vid, void *data)
{
/* default callback does nothing */
}
/*ARGSUSED*/
void
no_se_dtor(mdb_tgt_t *t, mdb_sespec_t *sep)
{
/* default destructor does nothing */
}
/*ARGSUSED*/
int
no_se_secmp(mdb_tgt_t *t, mdb_sespec_t *sep, void *args)
{
return (sep->se_data == args);
}
/*ARGSUSED*/
int
no_se_vecmp(mdb_tgt_t *t, mdb_vespec_t *vep, void *args)
{
return (vep->ve_args == args);
}
/*ARGSUSED*/
int
no_se_arm(mdb_tgt_t *t, mdb_sespec_t *sep)
{
return (0); /* return success */
}
/*ARGSUSED*/
int
no_se_disarm(mdb_tgt_t *t, mdb_sespec_t *sep)
{
return (0); /* return success */
}
/*ARGSUSED*/
int
no_se_cont(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_tgt_status_t *tsp)
{
if (tsp != &t->t_status)
bcopy(&t->t_status, tsp, sizeof (mdb_tgt_status_t));
return (0); /* return success */
}
int
mdb_tgt_register_dcmds(mdb_tgt_t *t, const mdb_dcmd_t *dcp, int flags)
{
int fail = 0;
for (; dcp->dc_name != NULL; dcp++) {
if (mdb_module_add_dcmd(t->t_module, dcp, flags) == -1) {
warn("failed to add dcmd %s", dcp->dc_name);
fail++;
}
}
return (fail > 0 ? -1 : 0);
}
int
mdb_tgt_register_walkers(mdb_tgt_t *t, const mdb_walker_t *wp, int flags)
{
int fail = 0;
for (; wp->walk_name != NULL; wp++) {
if (mdb_module_add_walker(t->t_module, wp, flags) == -1) {
warn("failed to add walk %s", wp->walk_name);
fail++;
}
}
return (fail > 0 ? -1 : 0);
}
void
mdb_tgt_register_regvars(mdb_tgt_t *t, const mdb_tgt_regdesc_t *rdp,
const mdb_nv_disc_t *disc, int flags)
{
for (; rdp->rd_name != NULL; rdp++) {
if (!(rdp->rd_flags & MDB_TGT_R_EXPORT))
continue; /* Don't export register as a variable */
if (rdp->rd_flags & MDB_TGT_R_RDONLY)
flags |= MDB_NV_RDONLY;
(void) mdb_nv_insert(&mdb.m_nv, rdp->rd_name, disc,
(uintptr_t)t, MDB_NV_PERSIST | flags);
}
}