mdb_pipeio.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Pipe I/O Backend
*
* In order to implement dcmd pipelines, we provide a pipe i/o backend that
* can be used to connect two mdb_iob structures (a read and write end).
* This backend is selected when mdb_iob_pipe is used to construct a pair of
* iobs. Each iob points at the same i/o backend (the pipe i/o), and the
* backend manages a circular fixed-size buffer which moves data between
* the reader and writer. The caller provides read and write-side service
* routines that are expected to perform context switching (see mdb_context.c).
* The pipe implementation is relatively simple: the writer calls any of the
* mdb_iob_* routines to fill the write-side iob, and when this iob needs to
* flush data to the underlying i/o, pio_write() below is called. This
* routine copies data into the pipe buffer until no more free space is
* available, and then calls the read-side service routine (presuming that
* when it returns, more free space will be available). On the read-side,
* pio_read() copies data up from the pipe buffer into the read-side iob.
* If pio_read() is called and the pipe buffer is empty, pio_read() calls
* the write-side service routine to force the writer to produce more data.
*/
#include <sys/sysmacros.h>
#include <stropts.h>
#include <limits.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_debug.h>
#include <mdb/mdb_string.h>
#include <mdb/mdb_context.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_io_impl.h>
typedef struct pipe_data {
mdb_iobsvc_f *pipe_rdsvc; /* Read-side service routine */
mdb_iob_t *pipe_rdiob; /* Read-side i/o buffer */
mdb_iobsvc_f *pipe_wrsvc; /* Write-side service routine */
mdb_iob_t *pipe_wriob; /* Write-side i/o buffer */
char pipe_buf[BUFSIZ]; /* Ring buffer for pipe contents */
mdb_iob_ctx_t pipe_ctx; /* Context data for service routines */
uint_t pipe_rdndx; /* Next byte index for reading */
uint_t pipe_wrndx; /* Next byte index for writing */
uint_t pipe_free; /* Free space for writing in bytes */
uint_t pipe_used; /* Used space for reading in bytes */
} pipe_data_t;
static ssize_t
pio_read(mdb_io_t *io, void *buf, size_t nbytes)
{
pipe_data_t *pd = io->io_data;
size_t n, nleft;
if (nbytes == 0)
return (0); /* return 0 for zero-length read */
for (nleft = nbytes; nleft == nbytes; nleft -= n) {
if (pd->pipe_used == 0) {
if (pd->pipe_wriob != NULL) {
pd->pipe_wrsvc(pd->pipe_rdiob,
pd->pipe_wriob, &pd->pipe_ctx);
}
if (pd->pipe_used == 0)
break;
}
n = MIN(pd->pipe_used, nleft);
if (BUFSIZ - pd->pipe_rdndx < n) {
/*
* Case 1: The amount to read overlaps the end of the
* circular buffer. 'n1' will be the amount to copy
* from the end of the buffer, and 'n2' will be the
* amount to copy from the beginning. Note that since
* n <= pipe_used, it is impossible to read past
* pipe_wrndx into undefined territory.
*/
size_t n1 = BUFSIZ - pd->pipe_rdndx;
size_t n2 = n - n1;
ASSERT(n2 <= pd->pipe_wrndx);
bcopy(&pd->pipe_buf[pd->pipe_rdndx], buf, n1);
buf = (char *)buf + n1;
bcopy(&pd->pipe_buf[0], buf, n2);
buf = (char *)buf + n2;
} else {
/*
* Case 2: The easy case. Simply copy the data over
* to the buffer.
*/
bcopy(&pd->pipe_buf[pd->pipe_rdndx], buf, n);
buf = (char *)buf + n;
}
pd->pipe_rdndx = (pd->pipe_rdndx + n) % BUFSIZ;
pd->pipe_free += n;
pd->pipe_used -= n;
}
/*
* If we have a writer, but pipe_wrsvc failed to produce any data,
* we return EAGAIN. If there is no writer, then return 0 for EOF.
*/
if (nleft == nbytes) {
if (pd->pipe_wriob != NULL)
return (set_errno(EAGAIN));
else
return (0);
}
return (nbytes - nleft);
}
static ssize_t
pio_write(mdb_io_t *io, const void *buf, size_t nbytes)
{
pipe_data_t *pd = io->io_data;
size_t n, nleft;
if (pd->pipe_rdiob == NULL)
return (set_errno(EPIPE)); /* fail with EPIPE if no reader */
for (nleft = nbytes; nleft != 0; nleft -= n) {
if (pd->pipe_free == 0) {
pd->pipe_rdsvc(pd->pipe_rdiob,
pd->pipe_wriob, &pd->pipe_ctx);
if (pd->pipe_free == 0)
break; /* if nothing consumed by reader, exit */
}
n = MIN(pd->pipe_free, nleft);
if (BUFSIZ - pd->pipe_wrndx < n) {
/*
* Case 1: The data will overlap the circular buffer
* boundary. In this case, 'n1' will be the number of
* bytes to put at the end of the buffer, and 'n2' will
* be the number of bytes to put at the beginning.
* Note that since n <= pipe_free, it is impossible to
* overlap rdndx with the initial data.
*/
size_t n1 = BUFSIZ - pd->pipe_wrndx;
size_t n2 = n - n1;
ASSERT(n2 <= pd->pipe_rdndx);
bcopy(buf, &pd->pipe_buf[pd->pipe_wrndx], n1);
buf = (const char *)buf + n1;
bcopy(buf, &pd->pipe_buf[0], n2);
buf = (const char *)buf + n2;
} else {
/*
* Case 2: The easy case. Simply copy the data into
* the buffer.
*/
bcopy(buf, &pd->pipe_buf[pd->pipe_wrndx], n);
buf = (const char *)buf + n;
}
pd->pipe_wrndx = (pd->pipe_wrndx + n) % BUFSIZ;
pd->pipe_free -= n;
pd->pipe_used += n;
}
if (nleft == nbytes && nbytes != 0)
return (set_errno(EAGAIN));
return (nbytes - nleft);
}
/*
* Provide support for STREAMS-style write-side flush ioctl. This can be
* used by the caller to force a context switch to the read-side.
*/
static int
pio_ctl(mdb_io_t *io, int req, void *arg)
{
pipe_data_t *pd = io->io_data;
if (io->io_next != NULL)
return (IOP_CTL(io->io_next, req, arg));
if (req != I_FLUSH || (intptr_t)arg != FLUSHW)
return (set_errno(ENOTSUP));
if (pd->pipe_used != 0)
pd->pipe_rdsvc(pd->pipe_rdiob, pd->pipe_wriob, &pd->pipe_ctx);
return (0);
}
static void
pio_close(mdb_io_t *io)
{
mdb_free(io->io_data, sizeof (pipe_data_t));
}
/*ARGSUSED*/
static const char *
pio_name(mdb_io_t *io)
{
return ("(pipeline)");
}
static void
pio_link(mdb_io_t *io, mdb_iob_t *iob)
{
pipe_data_t *pd = io->io_data;
/*
* Here we take advantage of the IOP_LINK calls made to associate each
* i/o backend with its iob to determine our read and write iobs.
*/
if (io->io_next == NULL) {
if (iob->iob_flags & MDB_IOB_RDONLY)
pd->pipe_rdiob = iob;
else
pd->pipe_wriob = iob;
} else
IOP_LINK(io->io_next, iob);
}
static void
pio_unlink(mdb_io_t *io, mdb_iob_t *iob)
{
pipe_data_t *volatile pd = io->io_data;
/*
* The IOP_UNLINK call will be made when one of our associated iobs is
* destroyed. If the read-side iob is being destroyed, we simply set
* pipe_rdiob to NULL, forcing subsequent pio_write() calls to fail
* with EPIPE. Things are more complicated when the write-side is
* being destroyed. If this is the last close prior to destroying the
* pipe, we need to arrange for any in-transit data to be consumed by
* the reader. We first set pipe_wriob to NULL, which forces pio_read
* to return EOF when all in-transit data is consumed. We then call
* the read-service routine while there is still a reader and pipe_used
* is non-zero, indicating there is still data in the pipe.
*/
if (io->io_next == NULL) {
if (pd->pipe_wriob == iob) {
pd->pipe_wriob = NULL; /* remove writer */
if (pd->pipe_used == 0 && pd->pipe_ctx.ctx_data == NULL)
return; /* no reader and nothing to read */
/*
* Note that we need to use a do-while construct here
* so that we resume the reader's context at *least*
* once. This forces it to read EOF and exit even if
* the pipeline is already completely flushed.
*/
do {
if (pd->pipe_rdiob == NULL ||
mdb_iob_err(pd->pipe_rdiob) != 0)
break; /* don't read if error bit set */
if (pd->pipe_ctx.ctx_data == NULL ||
setjmp(*mdb_context_getpcb(
pd->pipe_ctx.ctx_data)) == 0) {
pd->pipe_rdsvc(pd->pipe_rdiob,
pd->pipe_wriob, &pd->pipe_ctx);
}
} while (pd->pipe_used != 0);
if (pd->pipe_ctx.ctx_data != NULL) {
mdb_context_destroy(pd->pipe_ctx.ctx_data);
pd->pipe_ctx.ctx_data = NULL;
}
} else if (pd->pipe_rdiob == iob)
pd->pipe_rdiob = NULL; /* remove reader */
} else
IOP_UNLINK(io->io_next, iob);
}
static const mdb_io_ops_t pipeio_ops = {
pio_read,
pio_write,
no_io_seek,
pio_ctl,
pio_close,
pio_name,
pio_link,
pio_unlink,
no_io_setattr,
no_io_suspend,
no_io_resume
};
mdb_io_t *
mdb_pipeio_create(mdb_iobsvc_f *rdsvc, mdb_iobsvc_f *wrsvc)
{
mdb_io_t *io = mdb_alloc(sizeof (mdb_io_t), UM_SLEEP);
pipe_data_t *pd = mdb_zalloc(sizeof (pipe_data_t), UM_SLEEP);
ASSERT(rdsvc != NULL && wrsvc != NULL);
pd->pipe_rdsvc = rdsvc;
pd->pipe_wrsvc = wrsvc;
pd->pipe_free = BUFSIZ;
io->io_ops = &pipeio_ops;
io->io_data = pd;
io->io_next = NULL;
io->io_refcnt = 0;
return (io);
}
int
mdb_iob_isapipe(mdb_iob_t *iob)
{
mdb_io_t *io;
for (io = iob->iob_iop; io != NULL; io = io->io_next) {
if (io->io_ops == &pipeio_ops)
return (1);
}
return (0);
}