kmdb_kvm.c revision ae115bc77f6fcde83175c75b4206dc2e50747966
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <kmdb/kmdb_kvm.h>
#include <kmdb/kvm.h>
#include <kmdb/kmdb_kdi.h>
#include <kmdb/kmdb_promif.h>
#include <kmdb/kmdb_module.h>
#include <kmdb/kmdb_asmutil.h>
#include <mdb/mdb_types.h>
#include <mdb/mdb_conf.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_target_impl.h>
#include <mdb/mdb_debug.h>
#include <mdb/mdb_string.h>
#include <mdb/mdb_ctf.h>
#include <mdb/mdb_kreg_impl.h>
#include <mdb/mdb_ks.h>
#include <mdb/mdb.h>
#include <strings.h>
#include <dlfcn.h>
#include <sys/isa_defs.h>
#include <sys/kobj.h>
#include <sys/kobj_impl.h>
#include <sys/bitmap.h>
#include <vm/as.h>
static const char KMT_RTLD_NAME[] = "krtld";
static const char KMT_MODULE[] = "mdb_ks";
static const char KMT_CTFPARENT[] = "genunix";
static mdb_list_t kmt_defbp_list; /* List of current deferred bp's */
static int kmt_defbp_lock; /* For list, running kernel holds */
static uint_t kmt_defbp_modchg_isload; /* Whether mod change is load/unload */
static struct modctl *kmt_defbp_modchg_modctl; /* modctl for defbp checking */
static uint_t kmt_defbp_num; /* Number of referenced def'd bp's */
static int kmt_defbp_bpspec; /* vespec for def'd bp activation bp */
static const mdb_se_ops_t kmt_brkpt_ops;
static const mdb_se_ops_t kmt_wapt_ops;
static void kmt_sync(mdb_tgt_t *);
typedef struct kmt_symarg {
mdb_tgt_sym_f *sym_cb; /* Caller's callback function */
void *sym_data; /* Callback function argument */
uint_t sym_type; /* Symbol type/binding filter */
mdb_syminfo_t sym_info; /* Symbol id and table id */
const char *sym_obj; /* Containing object */
} kmt_symarg_t;
typedef struct kmt_maparg {
mdb_tgt_t *map_target; /* Target used for mapping iter */
mdb_tgt_map_f *map_cb; /* Caller's callback function */
void *map_data; /* Callback function argument */
} kmt_maparg_t;
/*ARGSUSED*/
int
kmt_setflags(mdb_tgt_t *t, int flags)
{
/*
* We only handle one flag (ALLOWIO), and we can't fail to set or clear
* it, so we just blindly replace the t_flags version with the one
* passed.
*/
t->t_flags = (t->t_flags & ~MDB_TGT_F_ALLOWIO) |
(flags & MDB_TGT_F_ALLOWIO);
return (0);
}
/*ARGSUSED*/
const char *
kmt_name(mdb_tgt_t *t)
{
return ("kmdb_kvm");
}
/*ARGSUSED*/
static const char *
kmt_platform(mdb_tgt_t *t)
{
static char platform[SYS_NMLN];
if (kmdb_dpi_get_state(NULL) == DPI_STATE_INIT)
return (mdb_conf_platform());
if (mdb_tgt_readsym(mdb.m_target, MDB_TGT_AS_VIRT, platform,
sizeof (platform), "unix", "platform") != sizeof (platform)) {
warn("'platform' symbol is missing from kernel\n");
return ("unknown");
}
return (platform);
}
static int
kmt_uname(mdb_tgt_t *t, struct utsname *utsp)
{
return (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, utsp,
sizeof (struct utsname), MDB_TGT_OBJ_EXEC, "utsname"));
}
/*ARGSUSED*/
static int
kmt_dmodel(mdb_tgt_t *t)
{
return (MDB_TGT_MODEL_NATIVE);
}
/*ARGSUSED*/
ssize_t
kmt_rw(mdb_tgt_t *t, void *buf, size_t nbytes, uint64_t addr,
ssize_t (*rw)(void *, size_t, uint64_t))
{
size_t n, ndone, chunksz;
jmp_buf *oldpcb = NULL;
jmp_buf pcb;
ssize_t res;
kmdb_prom_check_interrupt();
if (nbytes == 0)
return (0);
/*
* Try to process the entire buffer, as requested. If we catch a fault,
* try smaller chunks. This allows us to handle regions that cross
* mapping boundaries.
*/
chunksz = nbytes;
ndone = 0;
if (setjmp(pcb) != 0) {
if (chunksz == 1) {
/* We failed with the smallest chunk - give up */
kmdb_dpi_restore_fault_hdlr(oldpcb);
return (ndone > 0 ? ndone : -1); /* errno set for us */
} else if (chunksz > 4)
chunksz = 4;
else
chunksz = 1;
}
oldpcb = kmdb_dpi_set_fault_hdlr(&pcb);
while (nbytes > 0) {
n = MIN(chunksz, nbytes);
if ((res = rw(buf, n, addr)) != n)
return (res < 0 ? res : ndone + res);
addr += n;
nbytes -= n;
ndone += n;
buf = ((caddr_t)buf + n);
}
kmdb_dpi_restore_fault_hdlr(oldpcb);
return (ndone);
}
static void
kmt_bcopy(const void *s1, void *s2, size_t n)
{
/*
* We need to guarantee atomic accesses for certain sizes. bcopy won't
* make that guarantee, so we need to do it ourselves.
*/
#ifdef _LP64
if (n == 8 && ((uintptr_t)s1 & 7) == 0 && ((uintptr_t)s2 & 7) == 0)
*(uint64_t *)s2 = *(uint64_t *)s1;
else
#endif
if (n == 4 && ((uintptr_t)s1 & 3) == 0 && ((uintptr_t)s2 & 3) == 0)
*(uint32_t *)s2 = *(uint32_t *)s1;
else if (n == 2 && ((uintptr_t)s1 & 1) == 0 && ((uintptr_t)s2 & 1) == 0)
*(uint16_t *)s2 = *(uint16_t *)s1;
else if (n == 1)
*(uint8_t *)s2 = *(uint8_t *)s1;
else
bcopy(s1, s2, n);
}
static ssize_t
kmt_reader(void *buf, size_t nbytes, uint64_t addr)
{
kmt_bcopy((void *)(uintptr_t)addr, buf, nbytes);
return (nbytes);
}
ssize_t
kmt_writer(void *buf, size_t nbytes, uint64_t addr)
{
kmt_bcopy(buf, (void *)(uintptr_t)addr, nbytes);
return (nbytes);
}
/*ARGSUSED*/
static ssize_t
kmt_read(mdb_tgt_t *t, void *buf, size_t nbytes, uintptr_t addr)
{
/*
* We don't want to allow reads of I/O-mapped memory. Multi-page reads
* that cross into I/O-mapped memory should be restricted to the initial
* non-I/O region. Reads that begin in I/O-mapped memory are failed
* outright.
*/
if (!(t->t_flags & MDB_TGT_F_ALLOWIO) &&
(nbytes = kmdb_kdi_range_is_nontoxic(addr, nbytes, 0)) == 0)
return (set_errno(EMDB_NOMAP));
return (kmt_rw(t, buf, nbytes, addr, kmt_reader));
}
/*ARGSUSED*/
static ssize_t
kmt_pread(mdb_tgt_t *t, void *buf, size_t nbytes, physaddr_t addr)
{
return (kmt_rw(t, buf, nbytes, addr, kmdb_kdi_pread));
}
/*ARGSUSED*/
ssize_t
kmt_pwrite(mdb_tgt_t *t, const void *buf, size_t nbytes, physaddr_t addr)
{
return (kmt_rw(t, (void *)buf, nbytes, addr, kmdb_kdi_pwrite));
}
static uintptr_t
kmt_read_kas(mdb_tgt_t *t)
{
GElf_Sym sym;
if (mdb_tgt_lookup_by_name(t, "unix", "kas", &sym, NULL) < 0) {
warn("'kas' symbol is missing from kernel\n");
(void) set_errno(EMDB_NOSYM);
return (0);
}
return ((uintptr_t)sym.st_value);
}
static int
kmt_vtop(mdb_tgt_t *t, mdb_tgt_as_t as, uintptr_t va, physaddr_t *pap)
{
mdb_module_t *mod;
struct as *asp;
mdb_var_t *v;
switch ((uintptr_t)as) {
case (uintptr_t)MDB_TGT_AS_PHYS:
case (uintptr_t)MDB_TGT_AS_FILE:
case (uintptr_t)MDB_TGT_AS_IO:
return (set_errno(EINVAL));
case (uintptr_t)MDB_TGT_AS_VIRT:
if ((asp = (struct as *)kmt_read_kas(t)) == NULL)
return (-1); /* errno is set for us */
break;
default:
asp = (struct as *)as;
/* We don't support non-kas vtop */
if (asp != (struct as *)kmt_read_kas(t))
return (set_errno(EMDB_TGTNOTSUP));
}
if (kmdb_prom_vtop(va, pap) == 0)
return (0);
if ((v = mdb_nv_lookup(&mdb.m_modules, "unix")) != NULL &&
(mod = mdb_nv_get_cookie(v)) != NULL) {
int (*fptr)(uintptr_t, struct as *, physaddr_t *);
fptr = (int (*)(uintptr_t, struct as *, physaddr_t *))
dlsym(mod->mod_hdl, "platform_vtop");
if ((fptr != NULL) && ((*fptr)(va, asp, pap) == 0))
return (0);
}
return (set_errno(EMDB_NOMAP));
}
/*ARGSUSED*/
static int
kmt_cpuregs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
const mdb_tgt_gregset_t *gregs;
intptr_t cpuid = DPI_MASTER_CPUID;
int i;
if (flags & DCMD_ADDRSPEC) {
if (argc != 0)
return (DCMD_USAGE);
if ((cpuid = mdb_cpu2cpuid(addr)) < 0) {
(void) set_errno(EMDB_NOMAP);
mdb_warn("failed to find cpuid for cpu at %p", addr);
return (DCMD_ERR);
}
}
i = mdb_getopts(argc, argv,
'c', MDB_OPT_UINTPTR, &cpuid,
NULL);
argc -= i;
argv += i;
if (argc != 0)
return (DCMD_USAGE);
if ((gregs = kmdb_dpi_get_gregs(cpuid)) == NULL) {
warn("failed to retrieve registers for cpu %d", (int)cpuid);
return (DCMD_ERR);
}
kmt_printregs(gregs);
return (DCMD_OK);
}
static int
kmt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (flags & DCMD_ADDRSPEC)
return (DCMD_USAGE);
return (kmt_cpuregs(addr, flags, argc, argv));
}
static int
kmt_cpustack_dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
intptr_t cpuid = DPI_MASTER_CPUID;
uint_t verbose = 0;
int i;
if (flags & DCMD_ADDRSPEC) {
if ((cpuid = mdb_cpu2cpuid(addr)) < 0) {
(void) set_errno(EMDB_NOMAP);
mdb_warn("failed to find cpuid for cpu at %p", addr);
return (DCMD_ERR);
}
flags &= ~DCMD_ADDRSPEC;
}
i = mdb_getopts(argc, argv,
'c', MDB_OPT_UINTPTR, &cpuid,
'v', MDB_OPT_SETBITS, 1, &verbose,
NULL);
argc -= i;
argv += i;
return (kmt_cpustack(addr, flags, argc, argv, cpuid, verbose));
}
/*
* Lasciate ogne speranza, voi ch'intrate.
*/
static int
kmt_call(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t *call_argv, rval;
int parse_strings = 1;
GElf_Sym sym;
jmp_buf *oldpcb = NULL;
jmp_buf pcb;
int i;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_tgt_lookup_by_addr(mdb.m_target, addr, MDB_TGT_SYM_EXACT,
NULL, 0, &sym, NULL) == 0 && GELF_ST_TYPE(sym.st_info) !=
STT_FUNC) {
warn("%a is not a function\n", addr);
return (DCMD_ERR);
}
if (argc > 1 && argv[0].a_type == MDB_TYPE_STRING &&
strcmp(argv[0].a_un.a_str, "-s") == 0) {
parse_strings = 0;
argc--;
argv++;
}
call_argv = mdb_alloc(sizeof (uintptr_t) * argc, UM_SLEEP);
for (i = 0; i < argc; i++) {
switch (argv[i].a_type) {
case MDB_TYPE_STRING:
/*
* mdb_strtoull doesn't return on error, so we have to
* pre-check strings suspected to contain numbers.
*/
if (parse_strings && strisbasenum(argv[i].a_un.a_str)) {
call_argv[i] = (uintptr_t)mdb_strtoull(
argv[i].a_un.a_str);
} else
call_argv[i] = (uintptr_t)argv[i].a_un.a_str;
break;
case MDB_TYPE_IMMEDIATE:
call_argv[i] = argv[i].a_un.a_val;
break;
default:
mdb_free(call_argv,
sizeof (uintptr_t) * argc);
return (DCMD_USAGE);
}
}
if (setjmp(pcb) != 0) {
warn("call failed: caught a trap\n");
kmdb_dpi_restore_fault_hdlr(oldpcb);
mdb_free(call_argv, sizeof (uintptr_t) * argc);
return (DCMD_ERR);
}
oldpcb = kmdb_dpi_set_fault_hdlr(&pcb);
rval = kmdb_dpi_call(addr, argc, call_argv);
kmdb_dpi_restore_fault_hdlr(oldpcb);
if (flags & DCMD_PIPE_OUT) {
mdb_printf("%p\n", rval);
} else {
/* pretty-print the results */
mdb_printf("%p = %a(", rval, addr);
for (i = 0; i < argc; i++) {
if (i > 0)
mdb_printf(", ");
if (argv[i].a_type == MDB_TYPE_STRING) {
/* I'm ashamed but amused */
char *quote = &("\""[parse_strings &&
strisbasenum(argv[i].a_un.a_str)]);
mdb_printf("%s%s%s", quote, argv[i].a_un.a_str,
quote);
} else
mdb_printf("%p", argv[i].a_un.a_val);
}
mdb_printf(");\n");
}
mdb_free(call_argv, sizeof (uintptr_t) * argc);
return (DCMD_OK);
}
/*ARGSUSED*/
int
kmt_dump_crumbs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
intptr_t cpu = -1;
if (flags & DCMD_ADDRSPEC) {
if (argc != 0)
return (DCMD_USAGE);
} else {
addr = 0;
if (mdb_getopts(argc, argv,
'c', MDB_OPT_UINTPTR, &cpu,
NULL) != argc)
return (DCMD_USAGE);
}
kmdb_dpi_dump_crumbs(addr, cpu);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
kmt_noducttape(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int a = 0;
return (a/a);
}
static int
kmt_dmod_status(char *msg, int state)
{
kmdb_modctl_t *kmc;
mdb_var_t *v;
int first = 1, n = 0;
mdb_nv_rewind(&mdb.m_dmodctl);
while ((v = mdb_nv_advance(&mdb.m_dmodctl)) != NULL) {
kmc = MDB_NV_COOKIE(v);
if (kmc->kmc_state != state)
continue;
n++;
if (msg != NULL) {
if (first) {
mdb_printf(msg, NULL);
first = 0;
}
mdb_printf(" %s", kmc->kmc_modname);
}
}
if (!first && msg != NULL)
mdb_printf("\n");
return (n);
}
/*ARGSUSED*/
static int
kmt_status_dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kmt_data_t *kmt = mdb.m_target->t_data;
struct utsname uts;
kreg_t tt;
if (mdb_tgt_readsym(mdb.m_target, MDB_TGT_AS_VIRT, &uts, sizeof (uts),
"unix", "utsname") != sizeof (uts)) {
warn("failed to read 'utsname' struct from kernel\n");
bzero(&uts, sizeof (uts));
(void) strcpy(uts.nodename, "unknown machine");
}
mdb_printf("debugging live kernel (%d-bit) on %s\n",
(int)(sizeof (void *) * NBBY),
(*uts.nodename == '\0' ? "(not set)" : uts.nodename));
mdb_printf("operating system: %s %s (%s)\n",
uts.release, uts.version, uts.machine);
if (kmt->kmt_cpu != NULL) {
mdb_printf("CPU-specific support: %s\n",
kmt_cpu_name(kmt->kmt_cpu));
}
mdb_printf("DTrace state: %s\n", (kmdb_kdi_dtrace_get_state() ==
KDI_DTSTATE_DTRACE_ACTIVE ? "active (debugger breakpoints cannot "
"be armed)" : "inactive"));
(void) kmdb_dpi_get_register("tt", &tt);
mdb_printf("stopped on: %s\n", kmt_trapname(tt));
(void) kmt_dmod_status("pending dmod loads:", KMDB_MC_STATE_LOADING);
(void) kmt_dmod_status("pending dmod unloads:",
KMDB_MC_STATE_UNLOADING);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
kmt_switch(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (!(flags & DCMD_ADDRSPEC) || argc != 0)
return (DCMD_USAGE);
if (kmdb_dpi_switch_master((int)addr) < 0) {
warn("failed to switch to CPU %d", (int)addr);
return (DCMD_ERR);
}
return (DCMD_OK);
}
static const mdb_dcmd_t kmt_dcmds[] = {
{ "$c", "?[cnt]", "print stack backtrace", kmt_stack },
{ "$C", "?[cnt]", "print stack backtrace", kmt_stackv },
{ "$r", NULL, "print general-purpose registers", kmt_regs },
{ "$?", NULL, "print status and registers", kmt_regs },
{ ":x", ":", "change the active CPU", kmt_switch },
{ "call", ":[arg ...]", "call a kernel function", kmt_call },
{ "cpustack", "?[-v] [-c cpuid] [cnt]", "print stack backtrace for a "
"specific CPU", kmt_cpustack_dcmd },
{ "cpuregs", "?[-c cpuid]", "print general-purpose registers for a "
"specific CPU", kmt_cpuregs },
{ "crumbs", NULL, NULL, kmt_dump_crumbs },
#if defined(__i386) || defined(__amd64)
{ "in", ":[-L len]", "read from I/O port", kmt_in_dcmd },
{ "out", ":[-L len] val", "write to I/O port", kmt_out_dcmd },
{ "rdmsr", ":", "read an MSR", kmt_rdmsr },
{ "wrmsr", ": val", "write an MSR", kmt_wrmsr },
{ "rdpcicfg", ": bus dev func", "read a register in PCI config space",
kmt_rdpcicfg },
{ "wrpcicfg", ": bus dev func val", "write a register in PCI config "
"space", kmt_wrpcicfg },
#endif
{ "noducttape", NULL, NULL, kmt_noducttape },
{ "regs", NULL, "print general-purpose registers", kmt_regs },
{ "stack", "?[cnt]", "print stack backtrace", kmt_stack },
{ "stackregs", "?", "print stack backtrace and registers", kmt_stackr },
{ "status", NULL, "print summary of current target", kmt_status_dcmd },
{ "switch", ":", "change the active CPU", kmt_switch },
{ NULL }
};
static uintmax_t
kmt_reg_disc_get(const mdb_var_t *v)
{
mdb_tgt_reg_t r = 0;
(void) mdb_tgt_getareg(MDB_NV_COOKIE(v), 0, mdb_nv_get_name(v), &r);
return (r);
}
static void
kmt_reg_disc_set(mdb_var_t *v, uintmax_t r)
{
if (mdb_tgt_putareg(MDB_NV_COOKIE(v), 0, mdb_nv_get_name(v), r) == -1)
warn("failed to modify %%%s register", mdb_nv_get_name(v));
}
static const mdb_nv_disc_t kmt_reg_disc = {
kmt_reg_disc_set,
kmt_reg_disc_get
};
/*ARGSUSED*/
static int
kmt_getareg(mdb_tgt_t *t, mdb_tgt_tid_t tid, const char *rname,
mdb_tgt_reg_t *rp)
{
kreg_t val;
if (kmdb_dpi_get_register(rname, &val) < 0)
return (set_errno(EMDB_BADREG));
*rp = val;
return (0);
}
/*ARGSUSED*/
static int
kmt_putareg(mdb_tgt_t *t, mdb_tgt_tid_t tid, const char *rname, mdb_tgt_reg_t r)
{
if (kmdb_dpi_set_register(rname, r) < 0)
return (set_errno(EMDB_BADREG));
return (0);
}
static void
kmt_mod_destroy(kmt_module_t *km)
{
if (km->km_name != NULL)
strfree(km->km_name);
if (km->km_symtab != NULL)
mdb_gelf_symtab_destroy(km->km_symtab);
if (km->km_ctfp != NULL)
mdb_ctf_close(km->km_ctfp);
}
static kmt_module_t *
kmt_mod_create(mdb_tgt_t *t, struct modctl *ctlp, char *name)
{
kmt_module_t *km = mdb_zalloc(sizeof (kmt_module_t), UM_SLEEP);
struct module *mod;
km->km_name = mdb_alloc(strlen(name) + 1, UM_SLEEP);
strcpy(km->km_name, name);
bcopy(ctlp, &km->km_modctl, sizeof (struct modctl));
if (mdb_tgt_vread(t, &km->km_module, sizeof (struct module),
(uintptr_t)km->km_modctl.mod_mp) != sizeof (struct module))
goto create_module_cleanup;
mod = &km->km_module;
if (mod->symhdr != NULL && mod->strhdr != NULL && mod->symtbl != NULL &&
mod->strings != NULL) {
mdb_gelf_ehdr_to_gehdr(&mod->hdr, &km->km_ehdr);
km->km_symtab = mdb_gelf_symtab_create_raw(&km->km_ehdr,
mod->symhdr, mod->symtbl, mod->strhdr, mod->strings,
MDB_TGT_SYMTAB);
km->km_symtab_va = mod->symtbl;
km->km_strtab_va = mod->strings;
if (mdb_tgt_vread(t, &km->km_symtab_hdr, sizeof (Shdr),
(uintptr_t)mod->symhdr) != sizeof (Shdr) ||
mdb_tgt_vread(t, &km->km_strtab_hdr, sizeof (Shdr),
(uintptr_t)mod->strhdr) != sizeof (Shdr))
goto create_module_cleanup;
}
/*
* We don't want everyone rooting around in the module structure, so we
* make copies of the interesting members.
*/
km->km_text_va = (uintptr_t)mod->text;
km->km_text_size = mod->text_size;
km->km_data_va = (uintptr_t)mod->data;
km->km_data_size = mod->data_size;
km->km_bss_va = (uintptr_t)mod->bss;
km->km_bss_size = mod->bss_size;
km->km_ctf_va = mod->ctfdata;
km->km_ctf_size = mod->ctfsize;
if (mod->flags & KOBJ_PRIM)
km->km_flags |= KM_F_PRIMARY;
return (km);
create_module_cleanup:
warn("failed to read module %s\n", name);
kmt_mod_destroy(km);
return (NULL);
}
static void
kmt_mod_remove(kmt_data_t *kmt, kmt_module_t *km)
{
mdb_var_t *v = mdb_nv_lookup(&kmt->kmt_modules, km->km_name);
ASSERT(v != NULL);
mdb_dprintf(MDB_DBG_KMOD, "removing module %s\n", km->km_name);
mdb_list_delete(&kmt->kmt_modlist, km);
mdb_nv_remove(&kmt->kmt_modules, v);
kmt_mod_destroy(km);
}
static int
kmt_modlist_update_cb(struct modctl *modp, void *arg)
{
mdb_tgt_t *t = arg;
kmt_data_t *kmt = t->t_data;
kmt_module_t *km;
mdb_var_t *v;
char name[MAXNAMELEN];
if (mdb_tgt_readstr(t, MDB_TGT_AS_VIRT, name, MAXNAMELEN,
(uintptr_t)modp->mod_modname) <= 0) {
warn("failed to read module name at %p",
(void *)modp->mod_modname);
}
/* We only care about modules that are actually loaded */
if (!kmdb_kdi_mod_isloaded(modp))
return (0);
/*
* Skip the modules we already know about and that haven't
* changed since last time we were here.
*/
if ((v = mdb_nv_lookup(&kmt->kmt_modules, name)) != NULL) {
km = MDB_NV_COOKIE(v);
if (kmdb_kdi_mod_haschanged(&km->km_modctl, &km->km_module,
modp, modp->mod_mp)) {
/*
* The module has changed since last we saw it. For
* safety, remove our old version, and treat it as a
* new module.
*/
mdb_dprintf(MDB_DBG_KMOD, "stutter module %s\n", name);
kmt_mod_remove(kmt, km);
} else {
km->km_seen = 1;
return (0);
}
}
mdb_dprintf(MDB_DBG_KMOD, "found new module %s\n", name);
if ((km = kmt_mod_create(t, modp, name)) != NULL) {
mdb_list_append(&kmt->kmt_modlist, km);
(void) mdb_nv_insert(&kmt->kmt_modules, name, NULL,
(uintptr_t)km, 0);
km->km_seen = 1;
}
return (0);
}
static void
kmt_modlist_update(mdb_tgt_t *t)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km, *kmn;
if (kmdb_kdi_mod_iter(kmt_modlist_update_cb, t) < 0) {
warn("failed to complete update of kernel module list\n");
return;
}
km = mdb_list_next(&kmt->kmt_modlist);
while (km != NULL) {
kmn = mdb_list_next(km);
if (km->km_seen == 1) {
/* Reset the mark for next time */
km->km_seen = 0;
} else {
/*
* We didn't see it on the kernel's module list, so
* remove it from our view of the world.
*/
kmt_mod_remove(kmt, km);
}
km = kmn;
}
}
static void
kmt_periodic(mdb_tgt_t *t)
{
(void) mdb_tgt_status(t, &t->t_status);
}
int
kmt_lookup_by_addr(mdb_tgt_t *t, uintptr_t addr, uint_t flags,
char *buf, size_t nbytes, GElf_Sym *symp, mdb_syminfo_t *sip)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km = mdb_list_next(&kmt->kmt_modlist);
kmt_module_t *sym_km = NULL;
kmt_module_t prmod;
GElf_Sym sym;
uint_t symid;
const char *name;
/*
* We look through the private symbols (if any), then through the module
* symbols. We can simplify the loop if we pretend the private symbols
* come from a module.
*/
if (mdb.m_prsym != NULL) {
bzero(&prmod, sizeof (kmt_module_t));
prmod.km_name = "<<<prmod>>>";
prmod.km_symtab = mdb.m_prsym;
prmod.km_list.ml_next = (mdb_list_t *)km;
km = &prmod;
}
/* Symbol resolution isn't available during initialization */
if (kmdb_dpi_get_state(NULL) == DPI_STATE_INIT)
return (set_errno(EMDB_NOSYM));
for (; km != NULL; km = mdb_list_next(km)) {
if (km != &prmod && !kmt->kmt_symavail)
continue;
if (km->km_symtab == NULL)
continue;
if (mdb_gelf_symtab_lookup_by_addr(km->km_symtab, addr, flags,
buf, nbytes, symp, &sip->sym_id) != 0 ||
symp->st_value == 0)
continue;
if (flags & MDB_TGT_SYM_EXACT) {
sym_km = km;
goto found;
}
/*
* If this is the first match we've found, or if this symbol is
* closer to the specified address than the last one we found,
* use it.
*/
if (sym_km == NULL || mdb_gelf_sym_closer(symp, &sym, addr)) {
sym_km = km;
sym = *symp;
symid = sip->sym_id;
}
}
/*
* kmdb dmods are normal kernel modules, loaded by krtld as such. To
* avoid polluting modinfo, and to keep from confusing the module
* subsystem (many dmods have the same names as real kernel modules),
* kmdb keeps their modctls separate, and doesn't allow their loading
* to be broadcast via the krtld module load/unload mechanism. As a
* result, kmdb_kvm doesn't find out about them, and can't turn their
* addresses into symbols. This can be most inconvenient during
* debugger faults, as the dmod frames will show up without names.
* We weren't able to turn the requested address into a symbol, so we'll
* take a spin through the dmods, trying to match our address against
* their symbols.
*/
if (sym_km == NULL) {
return (kmdb_module_lookup_by_addr(addr, flags, buf, nbytes,
symp, sip));
}
*symp = sym;
sip->sym_id = symid;
found:
/*
* Once we've found something, copy the final name into the caller's
* buffer and prefix it with the load object name if appropriate.
*/
name = mdb_gelf_sym_name(sym_km->km_symtab, symp);
if (sym_km == &prmod) {
if (buf != NULL) {
(void) strncpy(buf, name, nbytes);
buf[nbytes - 1] = '\0';
}
sip->sym_table = MDB_TGT_PRVSYM;
} else {
if (buf != NULL) {
if (sym_km->km_flags & KM_F_PRIMARY) {
(void) strncpy(buf, name, nbytes);
buf[nbytes - 1] = '\0';
} else {
(void) mdb_snprintf(buf, nbytes, "%s`%s",
sym_km->km_name, name);
}
}
sip->sym_table = MDB_TGT_SYMTAB;
}
return (0);
}
static int
kmt_lookup_by_name(mdb_tgt_t *t, const char *obj, const char *name,
GElf_Sym *symp, mdb_syminfo_t *sip)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km;
mdb_var_t *v;
GElf_Sym sym;
uint_t symid;
int n;
if (!kmt->kmt_symavail)
return (set_errno(EMDB_NOSYM));
switch ((uintptr_t)obj) {
case (uintptr_t)MDB_TGT_OBJ_EXEC:
case (uintptr_t)MDB_TGT_OBJ_EVERY:
km = mdb_list_next(&kmt->kmt_modlist);
n = mdb_nv_size(&kmt->kmt_modules);
break;
case (uintptr_t)MDB_TGT_OBJ_RTLD:
obj = kmt->kmt_rtld_name;
/*FALLTHROUGH*/
default:
/*
* If this is a request for a dmod symbol, let kmdb_module
* handle it.
*/
if (obj != NULL && strncmp(obj, "DMOD`", 5) == 0) {
return (kmdb_module_lookup_by_name(obj + 5, name,
symp, sip));
}
if ((v = mdb_nv_lookup(&kmt->kmt_modules, obj)) == NULL)
return (set_errno(EMDB_NOOBJ));
km = mdb_nv_get_cookie(v);
n = 1;
}
/*
* kmdb's kvm target is at a bit of a disadvantage compared to mdb's
* kvm target when it comes to global symbol lookups. mdb has ksyms,
* which hides pesky things like symbols that are undefined in unix,
* but which are defined in genunix. We don't have such a facility -
* we simply iterate through the modules, looking for a given symbol
* in each. Unless we're careful, we'll return the undef in the
* aforementioned case.
*/
for (; n > 0; n--, km = mdb_list_next(km)) {
if (mdb_gelf_symtab_lookup_by_name(km->km_symtab, name,
&sym, &symid) == 0 && sym.st_shndx != SHN_UNDEF)
break;
}
if (n == 0)
return (set_errno(EMDB_NOSYM));
found:
bcopy(&sym, symp, sizeof (GElf_Sym));
sip->sym_id = symid;
sip->sym_table = MDB_TGT_SYMTAB;
return (0);
}
static int
kmt_symtab_func(void *data, const GElf_Sym *sym, const char *name, uint_t id)
{
kmt_symarg_t *arg = data;
if (mdb_tgt_sym_match(sym, arg->sym_type)) {
arg->sym_info.sym_id = id;
return (arg->sym_cb(arg->sym_data, sym, name, &arg->sym_info,
arg->sym_obj));
}
return (0);
}
static void
kmt_symtab_iter(mdb_gelf_symtab_t *gst, uint_t type, const char *obj,
mdb_tgt_sym_f *cb, void *p)
{
kmt_symarg_t arg;
arg.sym_cb = cb;
arg.sym_data = p;
arg.sym_type = type;
arg.sym_info.sym_table = gst->gst_tabid;
arg.sym_obj = obj;
mdb_gelf_symtab_iter(gst, kmt_symtab_func, &arg);
}
static int
kmt_symbol_iter(mdb_tgt_t *t, const char *obj, uint_t which, uint_t type,
mdb_tgt_sym_f *cb, void *data)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km;
mdb_gelf_symtab_t *symtab = NULL;
mdb_var_t *v;
if (which == MDB_TGT_DYNSYM)
return (set_errno(EMDB_TGTNOTSUP));
switch ((uintptr_t)obj) {
case (uintptr_t)MDB_TGT_OBJ_EXEC:
case (uintptr_t)MDB_TGT_OBJ_EVERY:
mdb_nv_rewind(&kmt->kmt_modules);
while ((v = mdb_nv_advance(&kmt->kmt_modules)) != NULL) {
km = mdb_nv_get_cookie(v);
if (km->km_symtab != NULL) {
kmt_symtab_iter(km->km_symtab, type,
km->km_name, cb, data);
}
}
return (0);
case (uintptr_t)MDB_TGT_OBJ_RTLD:
obj = kmt->kmt_rtld_name;
/*FALLTHROUGH*/
default:
if (strncmp(obj, "DMOD`", 5) == 0) {
return (kmdb_module_symbol_iter(obj + 5, type,
cb, data));
}
if ((v = mdb_nv_lookup(&kmt->kmt_modules, obj)) == NULL)
return (set_errno(EMDB_NOOBJ));
km = mdb_nv_get_cookie(v);
symtab = km->km_symtab;
}
if (symtab != NULL)
kmt_symtab_iter(symtab, type, obj, cb, data);
return (0);
}
static int
kmt_mapping_walk(uintptr_t addr, const void *data, kmt_maparg_t *marg)
{
/*
* This is a bit sketchy but avoids problematic compilation of this
* target against the current VM implementation. Now that we have
* vmem, we can make this less broken and more informative by changing
* this code to invoke the vmem walker in the near future.
*/
const struct kmt_seg {
caddr_t s_base;
size_t s_size;
} *segp = (const struct kmt_seg *)data;
mdb_map_t map;
GElf_Sym sym;
mdb_syminfo_t info;
map.map_base = (uintptr_t)segp->s_base;
map.map_size = segp->s_size;
map.map_flags = MDB_TGT_MAP_R | MDB_TGT_MAP_W | MDB_TGT_MAP_X;
if (kmt_lookup_by_addr(marg->map_target, addr, MDB_TGT_SYM_EXACT,
map.map_name, MDB_TGT_MAPSZ, &sym, &info) == -1) {
(void) mdb_iob_snprintf(map.map_name, MDB_TGT_MAPSZ,
"%lr", addr);
}
return (marg->map_cb(marg->map_data, &map, map.map_name));
}
static int
kmt_mapping_iter(mdb_tgt_t *t, mdb_tgt_map_f *func, void *private)
{
kmt_maparg_t m;
uintptr_t kas;
m.map_target = t;
m.map_cb = func;
m.map_data = private;
if ((kas = kmt_read_kas(t)) == NULL)
return (-1); /* errno is set for us */
return (mdb_pwalk("seg", (mdb_walk_cb_t)kmt_mapping_walk, &m, kas));
}
static const mdb_map_t *
kmt_mod_to_map(kmt_module_t *km, mdb_map_t *map)
{
(void) strncpy(map->map_name, km->km_name, MDB_TGT_MAPSZ);
map->map_name[MDB_TGT_MAPSZ - 1] = '\0';
map->map_base = km->km_text_va;
map->map_size = km->km_text_size;
map->map_flags = MDB_TGT_MAP_R | MDB_TGT_MAP_W | MDB_TGT_MAP_X;
return (map);
}
static int
kmt_object_iter(mdb_tgt_t *t, mdb_tgt_map_f *func, void *private)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km;
mdb_map_t m;
for (km = mdb_list_next(&kmt->kmt_modlist); km != NULL;
km = mdb_list_next(km)) {
if (func(private, kmt_mod_to_map(km, &m), km->km_name) == -1)
break;
}
return (0);
}
static const mdb_map_t *
kmt_addr_to_map(mdb_tgt_t *t, uintptr_t addr)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km;
for (km = mdb_list_next(&kmt->kmt_modlist); km != NULL;
km = mdb_list_next(km)) {
if (addr - km->km_text_va < km->km_text_size ||
addr - km->km_data_va < km->km_data_size ||
addr - km->km_bss_va < km->km_bss_size)
return (kmt_mod_to_map(km, &kmt->kmt_map));
}
(void) set_errno(EMDB_NOMAP);
return (NULL);
}
static kmt_module_t *
kmt_module_by_name(kmt_data_t *kmt, const char *name)
{
kmt_module_t *km;
for (km = mdb_list_next(&kmt->kmt_modlist); km != NULL;
km = mdb_list_next(km)) {
if (strcmp(name, km->km_name) == 0)
return (km);
}
return (NULL);
}
static const mdb_map_t *
kmt_name_to_map(mdb_tgt_t *t, const char *name)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km;
mdb_map_t m;
/*
* If name is MDB_TGT_OBJ_EXEC, return the first module on the list,
* which will be unix since we keep kmt_modlist in load order.
*/
if (name == MDB_TGT_OBJ_EXEC) {
return (kmt_mod_to_map(mdb_list_next(&kmt->kmt_modlist),
&m));
}
if (name == MDB_TGT_OBJ_RTLD)
name = kmt->kmt_rtld_name;
if ((km = kmt_module_by_name(kmt, name)) != NULL)
return (kmt_mod_to_map(km, &m));
(void) set_errno(EMDB_NOOBJ);
return (NULL);
}
static ctf_file_t *
kmt_load_ctfdata(mdb_tgt_t *t, kmt_module_t *km)
{
kmt_data_t *kmt = t->t_data;
int err;
if (km->km_ctfp != NULL)
return (km->km_ctfp);
if (km->km_ctf_va == NULL || km->km_symtab == NULL) {
(void) set_errno(EMDB_NOCTF);
return (NULL);
}
if ((km->km_ctfp = mdb_ctf_bufopen(km->km_ctf_va, km->km_ctf_size,
km->km_symtab_va, &km->km_symtab_hdr, km->km_strtab_va,
&km->km_strtab_hdr, &err)) == NULL) {
(void) set_errno(ctf_to_errno(err));
return (NULL);
}
mdb_dprintf(MDB_DBG_KMOD, "loaded %lu bytes of CTF data for %s\n",
(ulong_t)km->km_ctf_size, km->km_name);
if (ctf_parent_name(km->km_ctfp) != NULL) {
mdb_var_t *v;
if ((v = mdb_nv_lookup(&kmt->kmt_modules,
ctf_parent_name(km->km_ctfp))) != NULL) {
kmt_module_t *pm = mdb_nv_get_cookie(v);
if (pm->km_ctfp == NULL)
(void) kmt_load_ctfdata(t, pm);
if (pm->km_ctfp != NULL && ctf_import(km->km_ctfp,
pm->km_ctfp) == CTF_ERR) {
warn("failed to import parent types into "
"%s: %s\n", km->km_name,
ctf_errmsg(ctf_errno(km->km_ctfp)));
}
} else {
warn("failed to load CTF data for %s - parent %s not "
"loaded\n", km->km_name,
ctf_parent_name(km->km_ctfp));
}
}
return (km->km_ctfp);
}
ctf_file_t *
kmt_addr_to_ctf(mdb_tgt_t *t, uintptr_t addr)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km;
for (km = mdb_list_next(&kmt->kmt_modlist); km != NULL;
km = mdb_list_next(km)) {
if (addr - km->km_text_va < km->km_text_size ||
addr - km->km_data_va < km->km_data_size ||
addr - km->km_bss_va < km->km_bss_size)
return (kmt_load_ctfdata(t, km));
}
return (kmdb_module_addr_to_ctf(addr));
}
ctf_file_t *
kmt_name_to_ctf(mdb_tgt_t *t, const char *name)
{
kmt_data_t *kt = t->t_data;
kmt_module_t *km;
if (name == MDB_TGT_OBJ_EXEC) {
name = KMT_CTFPARENT;
} else if (name == MDB_TGT_OBJ_RTLD) {
name = kt->kmt_rtld_name;
} else if (strncmp(name, "DMOD`", 5) == 0) {
/* Request for CTF data for a DMOD symbol */
return (kmdb_module_name_to_ctf(name + 5));
}
if ((km = kmt_module_by_name(kt, name)) != NULL)
return (kmt_load_ctfdata(t, km));
(void) set_errno(EMDB_NOOBJ);
return (NULL);
}
/*ARGSUSED*/
static int
kmt_status(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
int state;
bzero(tsp, sizeof (mdb_tgt_status_t));
switch ((state = kmdb_dpi_get_state(NULL))) {
case DPI_STATE_INIT:
tsp->st_state = MDB_TGT_RUNNING;
tsp->st_pc = 0;
break;
case DPI_STATE_STOPPED:
tsp->st_state = MDB_TGT_STOPPED;
(void) kmdb_dpi_get_register("pc", &tsp->st_pc);
break;
case DPI_STATE_FAULTED:
tsp->st_state = MDB_TGT_STOPPED;
(void) kmdb_dpi_get_register("pc", &tsp->st_pc);
tsp->st_flags |= MDB_TGT_ISTOP;
break;
case DPI_STATE_LOST:
tsp->st_state = MDB_TGT_LOST;
(void) kmdb_dpi_get_register("pc", &tsp->st_pc);
break;
}
mdb_dprintf(MDB_DBG_KMOD, "kmt_status, dpi: %d tsp: %d, pc = %p %A\n",
state, tsp->st_state, (void *)tsp->st_pc, tsp->st_pc);
return (0);
}
/*
* Invoked when kmt_defbp_enter_debugger is called, this routine activates and
* deactivates deferred breakpoints in response to module load and unload
* events.
*/
/*ARGSUSED*/
static void
kmt_defbp_event(mdb_tgt_t *t, int vid, void *private)
{
if (kmt_defbp_modchg_isload) {
if (!mdb_tgt_sespec_activate_all(t) &&
(mdb.m_flags & MDB_FL_BPTNOSYMSTOP)) {
/*
* We weren't able to activate the breakpoints.
* If so requested, we'll return without calling
* continue, thus throwing the user into the debugger.
*/
return;
}
} else {
mdb_sespec_t *sep, *nsep;
const mdb_map_t *map, *bpmap;
mdb_map_t modmap;
if ((map = kmt_addr_to_map(t,
(uintptr_t)kmt_defbp_modchg_modctl->mod_text)) == NULL) {
warn("module unload notification for unknown module %s",
kmt_defbp_modchg_modctl->mod_modname);
return; /* drop into the debugger */
}
bcopy(map, &modmap, sizeof (mdb_map_t));
for (sep = mdb_list_next(&t->t_active); sep; sep = nsep) {
nsep = mdb_list_next(sep);
if (sep->se_ops == &kmt_brkpt_ops) {
kmt_brkpt_t *kb = sep->se_data;
if ((bpmap = kmt_addr_to_map(t,
kb->kb_addr)) == NULL ||
(bpmap->map_base == modmap.map_base &&
bpmap->map_size == modmap.map_size)) {
mdb_tgt_sespec_idle_one(t, sep,
EMDB_NOMAP);
}
}
}
}
(void) mdb_tgt_continue(t, NULL);
}
static void
kmt_defbp_enter_debugger(void)
{
/*
* The debugger places a breakpoint here. We can't have a simple
* nop function here, because GCC knows much more than we do, and
* will optimize away the call to it.
*/
(void) get_fp();
}
/*
* This routine is called while the kernel is running. It attempts to determine
* whether any deferred breakpoints exist for the module being changed (loaded
* or unloaded). If any such breakpoints exist, the debugger will be entered to
* process them.
*/
static void
kmt_defbp_modchg(struct modctl *mctl, int isload)
{
kmt_defbp_t *dbp;
kmt_defbp_lock = 1;
for (dbp = mdb_list_next(&kmt_defbp_list); dbp;
dbp = mdb_list_next(dbp)) {
if (!dbp->dbp_ref)
continue;
if (strcmp(mctl->mod_modname, dbp->dbp_objname) == 0) {
/*
* Activate the breakpoint
*/
kmt_defbp_modchg_isload = isload;
kmt_defbp_modchg_modctl = mctl;
kmt_defbp_enter_debugger();
break;
}
}
kmt_defbp_lock = 0;
}
/*ARGSUSED*/
static int
kmt_continue(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
int n;
kmdb_dpi_resume();
/*
* The order of the following two calls is important. If there are
* load acks on the work queue, we'll initialize the dmods they
* represent. This will involve a call to _mdb_init, which may very
* well result in a symbol lookup. If we haven't resynced our view
* of symbols with the current state of the world, this lookup could
* end very badly. We therefore make sure to sync before processing
* the work queue.
*/
kmt_sync(t);
kmdb_dpi_process_work_queue();
if (kmdb_kdi_get_unload_request())
t->t_flags |= MDB_TGT_F_UNLOAD;
(void) mdb_tgt_status(t, &t->t_status);
if ((n = kmt_dmod_status(NULL, KMDB_MC_STATE_LOADING) +
kmt_dmod_status(NULL, KMDB_MC_STATE_UNLOADING)) != 0) {
mdb_warn("%d dmod load%c/unload%c pending\n", n,
"s"[n == 1], "s"[n == 1]);
}
return (0);
}
/*ARGSUSED*/
static int
kmt_step(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
{
int rc;
if ((rc = kmdb_dpi_step()) == 0)
(void) mdb_tgt_status(t, &t->t_status);
return (rc);
}
static int
kmt_defbp_activate(mdb_tgt_t *t)
{
kmdb_dpi_modchg_register(kmt_defbp_modchg);
/*
* The routines that add and arm breakpoints will check for the proper
* DTrace state, but they'll just put this breakpoint on the idle list
* if DTrace is active. It'll correctly move to the active list when
* DTrace deactivates, but that's insufficient for our purposes -- we
* need to do extra processing at that point. We won't get to do said
* processing with with a normal idle->active transition, so we just
* won't add it add it until we're sure that it'll stick.
*/
if (kmdb_kdi_dtrace_get_state() == KDI_DTSTATE_DTRACE_ACTIVE)
return (set_errno(EMDB_DTACTIVE));
kmt_defbp_bpspec = mdb_tgt_add_vbrkpt(t,
(uintptr_t)kmt_defbp_enter_debugger,
MDB_TGT_SPEC_HIDDEN, kmt_defbp_event, NULL);
return (0);
}
static void
kmt_defbp_deactivate(mdb_tgt_t *t)
{
kmdb_dpi_modchg_cancel();
if (kmt_defbp_bpspec != 0) {
if (t != NULL)
(void) mdb_tgt_vespec_delete(t, kmt_defbp_bpspec);
kmt_defbp_bpspec = 0;
}
}
static kmt_defbp_t *
kmt_defbp_create(mdb_tgt_t *t, const char *objname, const char *symname)
{
kmt_defbp_t *dbp = mdb_alloc(sizeof (kmt_defbp_t), UM_SLEEP);
mdb_dprintf(MDB_DBG_KMOD, "defbp_create %s`%s\n", objname, symname);
dbp->dbp_objname = strdup(objname);
dbp->dbp_symname = strdup(symname);
dbp->dbp_ref = 1;
kmt_defbp_num++;
if (kmt_defbp_num == 1 || kmt_defbp_bpspec == 0) {
if (kmt_defbp_activate(t) < 0)
warn("failed to activate deferred breakpoints");
}
mdb_list_append(&kmt_defbp_list, dbp);
return (dbp);
}
static void
kmt_defbp_destroy(kmt_defbp_t *dbp)
{
mdb_dprintf(MDB_DBG_KMOD, "defbp_destroy %s`%s\n", dbp->dbp_objname,
dbp->dbp_symname);
mdb_list_delete(&kmt_defbp_list, dbp);
strfree(dbp->dbp_objname);
strfree(dbp->dbp_symname);
mdb_free(dbp, sizeof (kmt_defbp_t));
}
static void
kmt_defbp_prune_common(int all)
{
kmt_defbp_t *dbp, *ndbp;
/* We can't remove items from the list while the driver is using it. */
if (kmt_defbp_lock)
return;
for (dbp = mdb_list_next(&kmt_defbp_list); dbp != NULL; dbp = ndbp) {
ndbp = mdb_list_next(dbp);
if (!all && dbp->dbp_ref)
continue;
kmt_defbp_destroy(dbp);
}
}
static void
kmt_defbp_prune(void)
{
kmt_defbp_prune_common(0);
}
static void
kmt_defbp_destroy_all(void)
{
kmt_defbp_prune_common(1);
}
static void
kmt_defbp_delete(mdb_tgt_t *t, kmt_defbp_t *dbp)
{
dbp->dbp_ref = 0;
ASSERT(kmt_defbp_num > 0);
kmt_defbp_num--;
if (kmt_defbp_num == 0)
kmt_defbp_deactivate(t);
kmt_defbp_prune();
}
static int
kmt_brkpt_ctor(mdb_tgt_t *t, mdb_sespec_t *sep, void *args)
{
mdb_tgt_status_t tsp;
kmt_bparg_t *ka = args;
kmt_brkpt_t *kb;
GElf_Sym s;
mdb_instr_t instr;
(void) mdb_tgt_status(t, &tsp);
if (tsp.st_state != MDB_TGT_RUNNING && tsp.st_state != MDB_TGT_STOPPED)
return (set_errno(EMDB_NOPROC));
if (ka->ka_symbol != NULL) {
if (mdb_tgt_lookup_by_scope(t, ka->ka_symbol, &s, NULL) == -1) {
if (errno != EMDB_NOOBJ && !(errno == EMDB_NOSYM &&
!(mdb.m_flags & MDB_FL_BPTNOSYMSTOP))) {
warn("breakpoint %s activation failed",
ka->ka_symbol);
}
return (-1); /* errno is set for us */
}
ka->ka_addr = (uintptr_t)s.st_value;
}
#ifdef __sparc
if (ka->ka_addr & 3)
return (set_errno(EMDB_BPALIGN));
#endif
if (mdb_vread(&instr, sizeof (instr), ka->ka_addr) != sizeof (instr))
return (-1); /* errno is set for us */
if (kmdb_kdi_dtrace_get_state() == KDI_DTSTATE_DTRACE_ACTIVE)
warn("breakpoint will not arm until DTrace is inactive\n");
kb = mdb_zalloc(sizeof (kmt_brkpt_t), UM_SLEEP);
kb->kb_addr = ka->ka_addr;
sep->se_data = kb;
return (0);
}
/*ARGSUSED*/
static void
kmt_brkpt_dtor(mdb_tgt_t *t, mdb_sespec_t *sep)
{
mdb_free(sep->se_data, sizeof (kmt_brkpt_t));
}
/*ARGSUSED*/
static char *
kmt_brkpt_info(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_vespec_t *vep,
mdb_tgt_spec_desc_t *sp, char *buf, size_t nbytes)
{
uintptr_t addr = NULL;
if (vep != NULL) {
kmt_bparg_t *ka = vep->ve_args;
if (ka->ka_symbol != NULL) {
(void) mdb_iob_snprintf(buf, nbytes, "stop at %s",
ka->ka_symbol);
} else {
(void) mdb_iob_snprintf(buf, nbytes, "stop at %a",
ka->ka_addr);
addr = ka->ka_addr;
}
} else {
addr = ((kmt_brkpt_t *)sep->se_data)->kb_addr;
(void) mdb_iob_snprintf(buf, nbytes, "stop at %a", addr);
}
sp->spec_base = addr;
sp->spec_size = sizeof (mdb_instr_t);
return (buf);
}
static int
kmt_brkpt_secmp(mdb_tgt_t *t, mdb_sespec_t *sep, void *args)
{
kmt_brkpt_t *kb = sep->se_data;
kmt_bparg_t *ka = args;
GElf_Sym sym;
if (ka->ka_symbol != NULL) {
return (mdb_tgt_lookup_by_scope(t, ka->ka_symbol,
&sym, NULL) == 0 && sym.st_value == kb->kb_addr);
}
return (ka->ka_addr == kb->kb_addr);
}
/*ARGSUSED*/
static int
kmt_brkpt_vecmp(mdb_tgt_t *t, mdb_vespec_t *vep, void *args)
{
kmt_bparg_t *ka1 = vep->ve_args;
kmt_bparg_t *ka2 = args;
if (ka1->ka_symbol != NULL && ka2->ka_symbol != NULL)
return (strcmp(ka1->ka_symbol, ka2->ka_symbol) == 0);
if (ka1->ka_symbol == NULL && ka2->ka_symbol == NULL)
return (ka1->ka_addr == ka2->ka_addr);
return (0); /* fail if one is symbolic, other is an explicit address */
}
static int
kmt_brkpt_arm(mdb_tgt_t *t, mdb_sespec_t *sep)
{
kmt_data_t *kmt = t->t_data;
kmt_brkpt_t *kb = sep->se_data;
int rv;
if (kmdb_kdi_dtrace_get_state() == KDI_DTSTATE_DTRACE_ACTIVE)
return (set_errno(EMDB_DTACTIVE));
if ((rv = kmdb_dpi_brkpt_arm(kb->kb_addr, &kb->kb_oinstr)) != 0)
return (rv);
if (kmt->kmt_narmedbpts++ == 0)
(void) kmdb_kdi_dtrace_set(KDI_DTSET_KMDB_BPT_ACTIVATE);
return (0);
}
static int
kmt_brkpt_disarm(mdb_tgt_t *t, mdb_sespec_t *sep)
{
kmt_data_t *kmt = t->t_data;
kmt_brkpt_t *kb = sep->se_data;
int rv;
ASSERT(kmdb_kdi_dtrace_get_state() == KDI_DTSTATE_KMDB_BPT_ACTIVE);
if ((rv = kmdb_dpi_brkpt_disarm(kb->kb_addr, kb->kb_oinstr)) != 0)
return (rv);
if (--kmt->kmt_narmedbpts == 0)
(void) kmdb_kdi_dtrace_set(KDI_DTSET_KMDB_BPT_DEACTIVATE);
return (0);
}
/*
* Determine whether the specified sespec is an armed watchpoint that overlaps
* with the given breakpoint and has the given flags set. We use this to find
* conflicts with breakpoints, below.
*/
static int
kmt_wp_overlap(mdb_sespec_t *sep, kmt_brkpt_t *kb, int flags)
{
const kmdb_wapt_t *wp = sep->se_data;
return (sep->se_state == MDB_TGT_SPEC_ARMED &&
sep->se_ops == &kmt_wapt_ops && (wp->wp_wflags & flags) &&
kb->kb_addr - wp->wp_addr < wp->wp_size);
}
/*
* We step over breakpoints using our single-stepper. If a conflicting
* watchpoint is present, we must temporarily remove it before stepping over the
* breakpoint so we don't immediately re-trigger the watchpoint. We know the
* watchpoint has already triggered on our trap instruction as part of fetching
* it. Before we return, we must re-install any disabled watchpoints.
*/
static int
kmt_brkpt_cont(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_tgt_status_t *tsp)
{
kmt_brkpt_t *kb = sep->se_data;
int status = -1;
int error;
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
if (kmt_wp_overlap(sep, kb, MDB_TGT_WA_X))
(void) kmdb_dpi_wapt_disarm(sep->se_data);
}
if (kmdb_dpi_brkpt_disarm(kb->kb_addr, kb->kb_oinstr) == 0 &&
kmt_step(t, tsp) == 0)
status = kmt_status(t, tsp);
error = errno; /* save errno from disarm, step, or status */
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
if (kmt_wp_overlap(sep, kb, MDB_TGT_WA_X))
kmdb_dpi_wapt_arm(sep->se_data);
}
(void) set_errno(error);
return (status);
}
/*ARGSUSED*/
static int
kmt_brkpt_match(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_tgt_status_t *tsp)
{
kmt_brkpt_t *kb = sep->se_data;
int state, why;
kreg_t pc;
state = kmdb_dpi_get_state(&why);
(void) kmdb_dpi_get_register("pc", &pc);
return (state == DPI_STATE_FAULTED && why == DPI_STATE_WHY_BKPT &&
pc == kb->kb_addr);
}
static const mdb_se_ops_t kmt_brkpt_ops = {
kmt_brkpt_ctor, /* se_ctor */
kmt_brkpt_dtor, /* se_dtor */
kmt_brkpt_info, /* se_info */
kmt_brkpt_secmp, /* se_secmp */
kmt_brkpt_vecmp, /* se_vecmp */
kmt_brkpt_arm, /* se_arm */
kmt_brkpt_disarm, /* se_disarm */
kmt_brkpt_cont, /* se_cont */
kmt_brkpt_match /* se_match */
};
static int
kmt_wapt_ctor(mdb_tgt_t *t, mdb_sespec_t *sep, void *args)
{
mdb_tgt_status_t tsp;
kmdb_wapt_t *vwp = args;
kmdb_wapt_t *swp;
(void) mdb_tgt_status(t, &tsp);
if (tsp.st_state != MDB_TGT_RUNNING && tsp.st_state != MDB_TGT_STOPPED)
return (set_errno(EMDB_NOPROC));
swp = mdb_alloc(sizeof (kmdb_wapt_t), UM_SLEEP);
bcopy(vwp, swp, sizeof (kmdb_wapt_t));
if (kmdb_dpi_wapt_reserve(swp) < 0) {
mdb_free(swp, sizeof (kmdb_wapt_t));
return (-1); /* errno is set for us */
}
sep->se_data = swp;
return (0);
}
/*ARGSUSED*/
static void
kmt_wapt_dtor(mdb_tgt_t *t, mdb_sespec_t *sep)
{
kmdb_wapt_t *wp = sep->se_data;
kmdb_dpi_wapt_release(wp);
mdb_free(wp, sizeof (kmdb_wapt_t));
}
/*ARGSUSED*/
static char *
kmt_wapt_info(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_vespec_t *vep,
mdb_tgt_spec_desc_t *sp, char *buf, size_t nbytes)
{
kmdb_wapt_t *wp = vep != NULL ? vep->ve_args : sep->se_data;
const char *fmt;
char desc[24];
ASSERT(wp->wp_wflags != 0);
desc[0] = '\0';
switch (wp->wp_wflags) {
case MDB_TGT_WA_R:
(void) strcat(desc, "/read");
break;
case MDB_TGT_WA_W:
(void) strcat(desc, "/write");
break;
case MDB_TGT_WA_X:
(void) strcat(desc, "/exec");
break;
default:
if (wp->wp_wflags & MDB_TGT_WA_R)
(void) strcat(desc, "/r");
if (wp->wp_wflags & MDB_TGT_WA_W)
(void) strcat(desc, "/w");
if (wp->wp_wflags & MDB_TGT_WA_X)
(void) strcat(desc, "/x");
}
switch (wp->wp_type) {
case DPI_WAPT_TYPE_PHYS:
fmt = "stop on %s of phys [%p, %p)";
break;
case DPI_WAPT_TYPE_VIRT:
fmt = "stop on %s of [%la, %la)";
break;
case DPI_WAPT_TYPE_IO:
if (wp->wp_size == 1)
fmt = "stop on %s of I/O port %p";
else
fmt = "stop on %s of I/O port [%p, %p)";
break;
}
(void) mdb_iob_snprintf(buf, nbytes, fmt, desc + 1, wp->wp_addr,
wp->wp_addr + wp->wp_size);
sp->spec_base = wp->wp_addr;
sp->spec_size = wp->wp_size;
return (buf);
}
/*ARGSUSED*/
static int
kmt_wapt_secmp(mdb_tgt_t *t, mdb_sespec_t *sep, void *args)
{
kmdb_wapt_t *wp1 = sep->se_data;
kmdb_wapt_t *wp2 = args;
return (wp1->wp_addr == wp2->wp_addr && wp1->wp_size == wp2->wp_size &&
wp1->wp_wflags == wp2->wp_wflags);
}
/*ARGSUSED*/
static int
kmt_wapt_vecmp(mdb_tgt_t *t, mdb_vespec_t *vep, void *args)
{
kmdb_wapt_t *wp1 = vep->ve_args;
kmdb_wapt_t *wp2 = args;
return (wp1->wp_addr == wp2->wp_addr && wp1->wp_size == wp2->wp_size &&
wp1->wp_wflags == wp2->wp_wflags);
}
/*ARGSUSED*/
static int
kmt_wapt_arm(mdb_tgt_t *t, mdb_sespec_t *sep)
{
kmdb_dpi_wapt_arm(sep->se_data);
return (0);
}
/*ARGSUSED*/
static int
kmt_wapt_disarm(mdb_tgt_t *t, mdb_sespec_t *sep)
{
kmdb_dpi_wapt_disarm(sep->se_data);
return (0);
}
/*
* Determine whether the specified sespec is an armed breakpoint at the given
* %pc. We use this to find conflicts with watchpoints below.
*/
static int
kmt_bp_overlap(mdb_sespec_t *sep, uintptr_t pc)
{
kmt_brkpt_t *kb = sep->se_data;
return (sep->se_state == MDB_TGT_SPEC_ARMED &&
sep->se_ops == &kmt_brkpt_ops && kb->kb_addr == pc);
}
/*
* We step over watchpoints using our single-stepper. If a conflicting
* breakpoint is present, we must temporarily disarm it before stepping over
* the watchpoint so we do not immediately re-trigger the breakpoint. This is
* similar to the case handled in kmt_brkpt_cont(), above.
*/
static int
kmt_wapt_cont(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_tgt_status_t *tsp)
{
mdb_sespec_t *bep = NULL;
int status = -1;
int error, why;
/*
* If we stopped for anything other than a watchpoint, check to see
* if there's a breakpoint here.
*/
if (!(kmdb_dpi_get_state(&why) == DPI_STATE_FAULTED &&
(why == DPI_STATE_WHY_V_WAPT || why == DPI_STATE_WHY_P_WAPT))) {
kreg_t pc;
(void) kmdb_dpi_get_register("pc", &pc);
for (bep = mdb_list_next(&t->t_active); bep != NULL;
bep = mdb_list_next(bep)) {
if (kmt_bp_overlap(bep, pc)) {
(void) bep->se_ops->se_disarm(t, bep);
bep->se_state = MDB_TGT_SPEC_ACTIVE;
break;
}
}
}
kmdb_dpi_wapt_disarm(sep->se_data);
if (kmt_step(t, tsp) == 0)
status = kmt_status(t, tsp);
error = errno; /* save errno from step or status */
if (bep != NULL)
mdb_tgt_sespec_arm_one(t, bep);
(void) set_errno(error);
return (status);
}
/*ARGSUSED*/
static int
kmt_wapt_match(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_tgt_status_t *tsp)
{
return (kmdb_dpi_wapt_match(sep->se_data));
}
static const mdb_se_ops_t kmt_wapt_ops = {
kmt_wapt_ctor, /* se_ctor */
kmt_wapt_dtor, /* se_dtor */
kmt_wapt_info, /* se_info */
kmt_wapt_secmp, /* se_secmp */
kmt_wapt_vecmp, /* se_vecmp */
kmt_wapt_arm, /* se_arm */
kmt_wapt_disarm, /* se_disarm */
kmt_wapt_cont, /* se_cont */
kmt_wapt_match /* se_match */
};
/*ARGSUSED*/
static int
kmt_trap_ctor(mdb_tgt_t *t, mdb_sespec_t *sep, void *args)
{
sep->se_data = args; /* trap number */
return (0);
}
/*ARGSUSED*/
static char *
kmt_trap_info(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_vespec_t *vep,
mdb_tgt_spec_desc_t *sp, char *buf, size_t nbytes)
{
const char *name;
int trapnum;
if (vep != NULL)
trapnum = (intptr_t)vep->ve_args;
else
trapnum = (intptr_t)sep->se_data;
if (trapnum == KMT_TRAP_ALL)
name = "any trap";
else if (trapnum == KMT_TRAP_NOTENUM)
name = "miscellaneous trap";
else
name = kmt_trapname(trapnum);
(void) mdb_iob_snprintf(buf, nbytes, "single-step stop on %s", name);
return (buf);
}
/*ARGSUSED2*/
static int
kmt_trap_match(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_tgt_status_t *tsp)
{
int spectt = (intptr_t)sep->se_data;
kmt_data_t *kmt = t->t_data;
kreg_t tt;
(void) kmdb_dpi_get_register("tt", &tt);
switch (spectt) {
case KMT_TRAP_ALL:
return (1);
case KMT_TRAP_NOTENUM:
return (tt > kmt->kmt_trapmax ||
!BT_TEST(kmt->kmt_trapmap, tt));
default:
return (tt == spectt);
}
}
static const mdb_se_ops_t kmt_trap_ops = {
kmt_trap_ctor, /* se_ctor */
no_se_dtor, /* se_dtor */
kmt_trap_info, /* se_info */
no_se_secmp, /* se_secmp */
no_se_vecmp, /* se_vecmp */
no_se_arm, /* se_arm */
no_se_disarm, /* se_disarm */
no_se_cont, /* se_cont */
kmt_trap_match /* se_match */
};
static void
kmt_bparg_dtor(mdb_vespec_t *vep)
{
kmt_bparg_t *ka = vep->ve_args;
if (ka->ka_symbol != NULL)
strfree(ka->ka_symbol);
if (ka->ka_defbp != NULL)
kmt_defbp_delete(mdb.m_target, ka->ka_defbp);
mdb_free(ka, sizeof (kmt_bparg_t));
}
static int
kmt_add_vbrkpt(mdb_tgt_t *t, uintptr_t addr,
int spec_flags, mdb_tgt_se_f *func, void *data)
{
kmt_bparg_t *ka = mdb_alloc(sizeof (kmt_bparg_t), UM_SLEEP);
ka->ka_addr = addr;
ka->ka_symbol = NULL;
ka->ka_defbp = NULL;
return (mdb_tgt_vespec_insert(t, &kmt_brkpt_ops, spec_flags,
func, data, ka, kmt_bparg_dtor));
}
static int
kmt_add_sbrkpt(mdb_tgt_t *t, const char *fullname,
int spec_flags, mdb_tgt_se_f *func, void *data)
{
kmt_bparg_t *ka;
kmt_defbp_t *dbp;
GElf_Sym sym;
char *tick, *objname, *symname;
int serrno;
if ((tick = strchr(fullname, '`')) == fullname) {
(void) set_errno(EMDB_NOOBJ);
return (0);
}
/*
* Deferred breakpoints are always scoped. If we didn't find a tick,
* there's no scope. We'll create a vbrkpt, but only if we can turn the
* provided string into an address.
*/
if (tick == NULL) {
uintptr_t addr;
if (strisbasenum(fullname)) {
addr = mdb_strtoull(fullname); /* a bare address */
} else if (mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EVERY,
fullname, &sym, NULL) < 0) {
(void) set_errno(EMDB_NOSYM);
return (0);
} else {
addr = (uintptr_t)sym.st_value; /* unscoped sym name */
}
return (kmt_add_vbrkpt(t, addr, spec_flags, func, data));
}
if (*(tick + 1) == '\0') {
(void) set_errno(EMDB_NOSYM);
return (0);
}
objname = strndup(fullname, tick - fullname);
symname = tick + 1;
if (mdb_tgt_lookup_by_name(t, objname, symname, NULL, NULL) < 0 &&
errno != EMDB_NOOBJ) {
serrno = errno;
strfree(objname);
(void) set_errno(serrno);
return (0); /* errno is set for us */
}
dbp = kmt_defbp_create(t, objname, symname);
strfree(objname);
ka = mdb_alloc(sizeof (kmt_bparg_t), UM_SLEEP);
ka->ka_symbol = strdup(fullname);
ka->ka_addr = NULL;
ka->ka_defbp = dbp;
return (mdb_tgt_vespec_insert(t, &kmt_brkpt_ops, spec_flags,
func, data, ka, kmt_bparg_dtor));
}
static int
kmt_wparg_overlap(const kmdb_wapt_t *wp1, const kmdb_wapt_t *wp2)
{
/* Assume the watchpoint spaces don't overlap */
if (wp1->wp_type != wp2->wp_type)
return (0);
if (wp2->wp_addr + wp2->wp_size <= wp1->wp_addr)
return (0); /* no range overlap */
if (wp1->wp_addr + wp1->wp_size <= wp2->wp_addr)
return (0); /* no range overlap */
return (wp1->wp_addr != wp2->wp_addr || wp1->wp_size != wp2->wp_size ||
wp1->wp_wflags != wp2->wp_wflags);
}
static void
kmt_wparg_dtor(mdb_vespec_t *vep)
{
mdb_free(vep->ve_args, sizeof (kmdb_wapt_t));
}
static int
kmt_add_wapt_common(mdb_tgt_t *t, uintptr_t addr, size_t len, uint_t wflags,
int spec_flags, mdb_tgt_se_f *func, void *data, int type)
{
kmdb_wapt_t *wp = mdb_alloc(sizeof (kmdb_wapt_t), UM_SLEEP);
mdb_sespec_t *sep;
wp->wp_addr = addr;
wp->wp_size = len;
wp->wp_type = type;
wp->wp_wflags = wflags;
if (kmdb_dpi_wapt_validate(wp) < 0)
return (0); /* errno is set for us */
for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
if (sep->se_ops == &kmt_wapt_ops &&
mdb_list_next(&sep->se_velist) != NULL &&
kmt_wparg_overlap(wp, sep->se_data))
goto wapt_dup;
}
for (sep = mdb_list_next(&t->t_idle); sep; sep = mdb_list_next(sep)) {
if (sep->se_ops == &kmt_wapt_ops && kmt_wparg_overlap(wp,
((mdb_vespec_t *)mdb_list_next(&sep->se_velist))->ve_args))
goto wapt_dup;
}
return (mdb_tgt_vespec_insert(t, &kmt_wapt_ops, spec_flags,
func, data, wp, kmt_wparg_dtor));
wapt_dup:
mdb_free(wp, sizeof (kmdb_wapt_t));
(void) set_errno(EMDB_WPDUP);
return (0);
}
static int
kmt_add_pwapt(mdb_tgt_t *t, physaddr_t addr, size_t len, uint_t wflags,
int spec_flags, mdb_tgt_se_f *func, void *data)
{
return (kmt_add_wapt_common(t, (uintptr_t)addr, len, wflags, spec_flags,
func, data, DPI_WAPT_TYPE_PHYS));
}
static int
kmt_add_vwapt(mdb_tgt_t *t, uintptr_t addr, size_t len, uint_t wflags,
int spec_flags, mdb_tgt_se_f *func, void *data)
{
return (kmt_add_wapt_common(t, addr, len, wflags, spec_flags, func,
data, DPI_WAPT_TYPE_VIRT));
}
static int
kmt_add_iowapt(mdb_tgt_t *t, uintptr_t addr, size_t len, uint_t wflags,
int spec_flags, mdb_tgt_se_f *func, void *data)
{
return (kmt_add_wapt_common(t, addr, len, wflags, spec_flags, func,
data, DPI_WAPT_TYPE_IO));
}
static int
kmt_add_trap(mdb_tgt_t *t, int trapnum, int spec_flags, mdb_tgt_se_f *func,
void *data)
{
kmt_data_t *kmt = t->t_data;
if (trapnum != KMT_TRAP_ALL && trapnum != KMT_TRAP_NOTENUM) {
if (trapnum < 0 || trapnum > kmt->kmt_trapmax) {
(void) set_errno(EMDB_BADFLTNUM);
return (0);
}
BT_SET(kmt->kmt_trapmap, trapnum);
}
return (mdb_tgt_vespec_insert(t, &kmt_trap_ops, spec_flags, func, data,
(void *)(uintptr_t)trapnum, no_ve_dtor));
}
/*ARGSUSED*/
static uintmax_t
kmt_cpuid_disc_get(const mdb_var_t *v)
{
return (kmdb_dpi_get_master_cpuid());
}
static const mdb_nv_disc_t kmt_cpuid_disc = {
NULL,
kmt_cpuid_disc_get
};
/*
* This routine executes while the kernel is running.
*/
void
kmt_activate(mdb_tgt_t *t)
{
kmt_data_t *kmt = t->t_data;
mdb_prop_postmortem = FALSE;
mdb_prop_kernel = TRUE;
(void) mdb_tgt_register_dcmds(t, &kmt_dcmds[0], MDB_MOD_FORCE);
mdb_tgt_register_regvars(t, kmt->kmt_rds, &kmt_reg_disc, 0);
/*
* Force load of the MDB krtld module, in case it's been rolled into
* unix.
*/
(void) mdb_module_load(KMT_RTLD_NAME, MDB_MOD_SILENT | MDB_MOD_DEFER);
}
static void
kmt_destroy(mdb_tgt_t *t)
{
kmt_data_t *kmt = t->t_data;
kmt_module_t *km, *pkm;
mdb_nv_destroy(&kmt->kmt_modules);
for (km = mdb_list_prev(&kmt->kmt_modlist); km != NULL; km = pkm) {
pkm = mdb_list_prev(km);
mdb_free(km, sizeof (kmt_module_t));
}
if (!kmt_defbp_lock)
kmt_defbp_destroy_all();
if (kmt->kmt_trapmap != NULL)
mdb_free(kmt->kmt_trapmap, BT_SIZEOFMAP(kmt->kmt_trapmax));
if (kmt->kmt_cpu != NULL)
kmt_cpu_destroy(kmt->kmt_cpu);
if (kmt != NULL)
mdb_free(kmt, sizeof (kmt_data_t));
}
static const mdb_tgt_ops_t kmt_ops = {
kmt_setflags, /* t_setflags */
(int (*)()) mdb_tgt_notsup, /* t_setcontext */
kmt_activate, /* t_activate */
(void (*)()) mdb_tgt_nop, /* t_deactivate */
kmt_periodic, /* t_periodic */
kmt_destroy, /* t_destroy */
kmt_name, /* t_name */
(const char *(*)()) mdb_conf_isa, /* t_isa */
kmt_platform, /* t_platform */
kmt_uname, /* t_uname */
kmt_dmodel, /* t_dmodel */
(ssize_t (*)()) mdb_tgt_notsup, /* t_aread */
(ssize_t (*)()) mdb_tgt_notsup, /* t_awrite */
kmt_read, /* t_vread */
kmt_write, /* t_vwrite */
kmt_pread, /* t_pread */
kmt_pwrite, /* t_pwrite */
kmt_read, /* t_fread */
kmt_write, /* t_fwrite */
kmt_ioread, /* t_ioread */
kmt_iowrite, /* t_iowrite */
kmt_vtop, /* t_vtop */
kmt_lookup_by_name, /* t_lookup_by_name */
kmt_lookup_by_addr, /* t_lookup_by_addr */
kmt_symbol_iter, /* t_symbol_iter */
kmt_mapping_iter, /* t_mapping_iter */
kmt_object_iter, /* t_object_iter */
kmt_addr_to_map, /* t_addr_to_map */
kmt_name_to_map, /* t_name_to_map */
kmt_addr_to_ctf, /* t_addr_to_ctf */
kmt_name_to_ctf, /* t_name_to_ctf */
kmt_status, /* t_status */
(int (*)()) mdb_tgt_notsup, /* t_run */
kmt_step, /* t_step */
kmt_step_out, /* t_step_out */
kmt_step_branch, /* t_step_branch */
kmt_next, /* t_next */
kmt_continue, /* t_cont */
(int (*)()) mdb_tgt_notsup, /* t_signal */
kmt_add_vbrkpt, /* t_add_vbrkpt */
kmt_add_sbrkpt, /* t_add_sbrkpt */
kmt_add_pwapt, /* t_add_pwapt */
kmt_add_vwapt, /* t_add_vwapt */
kmt_add_iowapt, /* t_add_iowapt */
(int (*)()) mdb_tgt_null, /* t_add_sysenter */
(int (*)()) mdb_tgt_null, /* t_add_sysexit */
(int (*)()) mdb_tgt_null, /* t_add_signal */
kmt_add_trap, /* t_add_fault */
kmt_getareg, /* t_getareg */
kmt_putareg, /* t_putareg */
(int (*)()) mdb_tgt_nop /* XXX t_stack_iter */
};
/*
* Called immediately upon resumption of the system after a step or continue.
* Allows us to synchronize kmt's view of the world with reality.
*/
/*ARGSUSED*/
static void
kmt_sync(mdb_tgt_t *t)
{
kmt_data_t *kmt = t->t_data;
int symavail;
mdb_dprintf(MDB_DBG_KMOD, "synchronizing with kernel\n");
symavail = kmt->kmt_symavail;
kmt->kmt_symavail = FALSE;
/*
* Resync our view of the world if the modules have changed, or if we
* didn't have any symbols coming into this function. The latter will
* only happen on startup.
*/
if (kmdb_kdi_mods_changed() || !symavail)
kmt_modlist_update(t);
/*
* It would be nice if we could run this less frequently, perhaps
* after a dvec-initiated trigger.
*/
kmdb_module_sync();
kmt->kmt_symavail = TRUE;
mdb_dprintf(MDB_DBG_KMOD, "synchronization complete\n");
kmt_defbp_prune();
if (kmt_defbp_num > 0 && kmt_defbp_bpspec == 0 &&
kmdb_kdi_dtrace_get_state() != KDI_DTSTATE_DTRACE_ACTIVE) {
/*
* Deferred breakpoints were created while DTrace was active,
* and consequently the deferred breakpoint enabling mechanism
* wasn't activated. Activate it now, and then try to activate
* the deferred breakpoints. We do this so that we can catch
* the ones which may apply to modules that have been loaded
* while they were waiting for DTrace to deactivate.
*/
(void) kmt_defbp_activate(t);
(void) mdb_tgt_sespec_activate_all(t);
}
if (kmt->kmt_cpu_retry && ((kmt->kmt_cpu = kmt_cpu_create(t)) !=
NULL || errno != EAGAIN))
kmt->kmt_cpu_retry = FALSE;
(void) mdb_tgt_status(t, &t->t_status);
}
/*
* This routine executes while the kernel is running.
*/
/*ARGSUSED*/
int
kmdb_kvm_create(mdb_tgt_t *t, int argc, const char *argv[])
{
kmt_data_t *kmt;
if (argc != 0)
return (set_errno(EINVAL));
kmt = mdb_zalloc(sizeof (kmt_data_t), UM_SLEEP);
t->t_data = kmt;
t->t_ops = &kmt_ops;
t->t_flags |= MDB_TGT_F_RDWR; /* kmdb is always r/w */
(void) mdb_nv_insert(&mdb.m_nv, "cpuid", &kmt_cpuid_disc, 0,
MDB_NV_PERSIST | MDB_NV_RDONLY);
(void) mdb_nv_create(&kmt->kmt_modules, UM_SLEEP);
kmt_init_isadep(t);
kmt->kmt_symavail = FALSE;
kmt->kmt_cpu_retry = TRUE;
bzero(&kmt_defbp_list, sizeof (mdb_list_t));
return (0);
create_err:
kmt_destroy(t);
return (-1);
}
/*
* This routine is called once, when kmdb first has control of the world.
*/
void
kmdb_kvm_startup(void)
{
kmt_data_t *kmt = mdb.m_target->t_data;
mdb_dprintf(MDB_DBG_KMOD, "kmdb_kvm startup\n");
kmt_sync(mdb.m_target);
(void) mdb_module_load_builtin(KMT_MODULE);
kmt_startup_isadep(mdb.m_target);
/*
* This is here because we need to write the deferred breakpoint
* breakpoint when the debugger starts. Our normal r/o write routines
* don't work when the kernel is running, so we have to do it during
* startup.
*/
(void) mdb_tgt_sespec_activate_all(mdb.m_target);
kmt->kmt_rtld_name = KMT_RTLD_NAME;
if (kmt_module_by_name(kmt, KMT_RTLD_NAME) == NULL)
kmt->kmt_rtld_name = "unix";
}
/*
* This routine is called after kmdb has loaded its initial set of modules.
*/
void
kmdb_kvm_poststartup(void)
{
mdb_dprintf(MDB_DBG_KMOD, "kmdb_kvm post-startup\n");
(void) mdb_dis_select(kmt_def_dismode());
}