graph.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1992, 2000 by Sun Microsystems, Inc.
* All rights reserved.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#define INF 1.e+37
#define F .25
struct xy {
int xlbf; /*flag:explicit lower bound*/
int xubf; /*flag:explicit upper bound*/
int xqf; /*flag:explicit quantum*/
double (*xf)(); /*transform function, e.g. log*/
float xa,xb; /*scaling coefficients*/
float xlb,xub; /*lower and upper bound*/
float xquant; /*quantum*/
float xoff; /*screen offset fraction*/
float xsize; /*screen fraction*/
int xbot,xtop; /*screen coords of border*/
float xmult; /*scaling constant*/
} xd,yd;
struct val {
float xv;
float yv;
int lblptr;
} *xx;
static char *labs;
static int labsiz;
int tick = 50;
int top = 4000;
int bot = 200;
float absbot;
int n;
int erasf = 1;
int gridf = 2;
int symbf = 0;
int absf = 0;
int transf;
int brkf;
float dx;
char *plotsymb;
double atof();
#define BSIZ 80
char labbuf[BSIZ];
char titlebuf[BSIZ];
char *modes[] = {
"disconnected",
"solid",
"dotted",
"dotdashed",
"shortdashed",
"longdashed"
};
int mode = 1;
char *realloc();
char *malloc();
double ident(x)
double x;
{
return(x);
}
main(argc,argv)
char *argv[];
{
space(0,0,4096,4096);
init(&xd);
init(&yd);
xd.xsize = yd.xsize = 1.;
xx = (struct val *)malloc((unsigned)sizeof(struct val));
labs = malloc(1);
labs[labsiz++] = 0;
setopt(argc,argv);
if(erasf)
erase();
readin();
transpose();
scale(&xd,(struct val *)&xx->xv);
scale(&yd,(struct val *)&xx->yv);
axes();
title();
plot();
move(1,1);
closevt();
return(0);
}
init(p)
struct xy *p;
{
p->xf = ident;
p->xmult = 1;
}
setopt(argc,argv)
char *argv[];
{
char *p1, *p2;
float temp;
xd.xlb = yd.xlb = INF;
xd.xub = yd.xub = -INF;
while(--argc > 0) {
argv++;
again: switch(argv[0][0]) {
case '-':
argv[0]++;
goto again;
case 'l': /* label for plot */
p1 = titlebuf;
if (argc>=2) {
argv++;
argc--;
p2 = argv[0];
while (*p1++ = *p2++);
}
break;
case 'd': /*disconnected,obsolete option*/
case 'm': /*line mode*/
mode = 0;
if(!numb(&temp,&argc,&argv))
break;
if(temp>=sizeof(modes)/sizeof(*modes))
mode = 1;
else if(temp>=0)
mode = temp;
break;
case 'a': /*automatic abscissas*/
absf = 1;
dx = 1;
if(!numb(&dx,&argc,&argv))
break;
if(numb(&absbot,&argc,&argv))
absf = 2;
break;
case 's': /*save screen, overlay plot*/
erasf = 0;
break;
case 'g': /*grid style 0 none, 1 ticks, 2 full*/
gridf = 0;
if(!numb(&temp,&argc,&argv))
temp = argv[0][1]-'0'; /*for caompatibility*/
if(temp>=0&&temp<=2)
gridf = temp;
break;
case 'c': /*character(s) for plotting*/
if(argc >= 2) {
symbf = 1;
plotsymb = argv[1];
argv++;
argc--;
}
break;
case 't': /*transpose*/
transf = 1;
break;
case 'b': /*breaks*/
brkf = 1;
break;
case 'x': /*x limits */
limread(&xd,&argc,&argv);
break;
case 'y':
limread(&yd,&argc,&argv);
break;
case 'h': /*set height of plot */
if(!numb(&yd.xsize, &argc,&argv))
badarg();
break;
case 'w': /*set width of plot */
if(!numb(&xd.xsize, &argc, &argv))
badarg();
break;
case 'r': /* set offset to right */
if(!numb(&xd.xoff, &argc, &argv))
badarg();
break;
case 'u': /*set offset up the screen*/
if(!numb(&yd.xoff,&argc,&argv))
badarg();
break;
default:
badarg();
}
}
}
limread(p, argcp, argvp)
register struct xy *p;
int *argcp;
char ***argvp;
{
if(*argcp>1 && (*argvp)[1][0]=='l') {
(*argcp)--;
(*argvp)++;
p->xf = log10;
}
if(!numb(&p->xlb,argcp,argvp))
return;
p->xlbf = 1;
if(!numb(&p->xub,argcp,argvp))
return;
p->xubf = 1;
if(!numb(&p->xquant,argcp,argvp))
return;
p->xqf = 1;
}
numb(np, argcp, argvp)
int *argcp;
float *np;
register char ***argvp;
{
register char c;
if(*argcp <= 1)
return(0);
while((c=(*argvp)[1][0]) == '+')
(*argvp)[1]++;
if(!(isdigit(c) || c=='-'&&(*argvp)[1][1]<'A' || c=='.'))
return(0);
*np = atof((*argvp)[1]);
(*argcp)--;
(*argvp)++;
return(1);
}
readin()
{
register t;
struct val *temp;
if(absf==1) {
if(xd.xlbf)
absbot = xd.xlb;
else if(xd.xf==log10)
absbot = 1;
}
for(;;) {
temp = (struct val *)realloc((char*)xx,
(unsigned)(n+1)*sizeof(struct val));
if(temp==0)
return;
xx = temp;
if(absf)
xx[n].xv = n*dx + absbot;
else
if(!getfloat(&xx[n].xv))
return;
if(!getfloat(&xx[n].yv))
return;
xx[n].lblptr = -1;
t = getstring();
if(t>0)
xx[n].lblptr = copystring(t);
n++;
if(t<0)
return;
}
}
transpose()
{
register i;
float f;
struct xy t;
if(!transf)
return;
t = xd; xd = yd; yd = t;
for(i= 0;i<n;i++) {
f = xx[i].xv; xx[i].xv = xx[i].yv; xx[i].yv = f;
}
}
copystring(k)
{
register char *temp;
register i;
int q;
temp = realloc(labs,(unsigned)(labsiz+1+k));
if(temp==0)
return(0);
labs = temp;
q = labsiz;
for(i=0;i<=k;i++)
labs[labsiz++] = labbuf[i];
return(q);
}
float
modceil(f,t)
float f,t;
{
t = fabs(t);
return(ceil(f/t)*t);
}
float
modfloor(f,t)
float f,t;
{
t = fabs(t);
return(floor(f/t)*t);
}
getlim(p,v)
register struct xy *p;
struct val *v;
{
register i;
i = 0;
do {
if(!p->xlbf && p->xlb>v[i].xv)
p->xlb = v[i].xv;
if(!p->xubf && p->xub<v[i].xv)
p->xub = v[i].xv;
i++;
} while(i < n);
}
struct z {
float lb,ub,mult,quant;
} setloglim(), setlinlim();
setlim(p)
register struct xy *p;
{
float t,delta,sign;
struct z z;
float lb,ub;
int lbf,ubf;
lb = p->xlb;
ub = p->xub;
delta = ub-lb;
if(p->xqf) {
if(delta*p->xquant <=0 )
badarg();
return;
}
sign = 1;
lbf = p->xlbf;
ubf = p->xubf;
if(delta < 0) {
sign = -1;
t = lb;
lb = ub;
ub = t;
t = lbf;
lbf = ubf;
ubf = t;
}
else if(delta == 0) {
if(ub > 0) {
ub = 2*ub;
lb = 0;
}
else
if(lb < 0) {
lb = 2*lb;
ub = 0;
}
else {
ub = 1;
lb = -1;
}
}
if(p->xf==log10 && lb>0 && ub>lb) {
z = setloglim(lbf,ubf,lb,ub);
p->xlb = z.lb;
p->xub = z.ub;
p->xmult *= z.mult;
p->xquant = z.quant;
if(setmark(p, 0)<2) {
p->xqf = lbf = ubf = 1;
lb = z.lb; ub = z.ub;
} else
return;
}
z = setlinlim(lbf,ubf,lb,ub);
if(sign > 0) {
p->xlb = z.lb;
p->xub = z.ub;
} else {
p->xlb = z.ub;
p->xub = z.lb;
}
p->xmult *= z.mult;
p->xquant = sign*z.quant;
}
struct z
setloglim(lbf,ubf,lb,ub)
float lb,ub;
{
float r,s,t;
struct z z;
for(s=1; lb*s<1; s*=10) ;
lb *= s;
ub *= s;
for(r=1; 10*r<=lb; r*=10) ;
for(t=1; t<ub; t*=10) ;
z.lb = !lbf ? r : lb;
z.ub = !ubf ? t : ub;
if(ub/lb<100) {
if(!lbf) {
if(lb >= 5*z.lb)
z.lb *= 5;
else if(lb >= 2*z.lb)
z.lb *= 2;
}
if(!ubf) {
if(ub*5 <= z.ub)
z.ub /= 5;
else if(ub*2 <= z.ub)
z.ub /= 2;
}
}
z.mult = s;
z.quant = r;
return(z);
}
struct z
setlinlim(lbf,ubf,xlb,xub)
int lbf,ubf;
float xlb,xub;
{
struct z z;
float r,s,delta;
float ub,lb;
loop:
ub = xub;
lb = xlb;
delta = ub - lb;
/*scale up by s, a power of 10, so range (delta) exceeds 1*/
/*find power of 10 quantum, r, such that delta/10<=r<delta*/
r = s = 1;
while(delta*s < 10)
s *= 10;
delta *= s;
while(10*r < delta)
r *= 10;
lb *= s;
ub *= s;
/*set r=(1,2,5)*10**n so that 3-5 quanta cover range*/
if(r>=delta/2)
r /= 2;
else if(r<delta/5)
r *= 2;
z.ub = ubf? ub: modceil(ub,r);
z.lb = lbf? lb: modfloor(lb,r);
if(!lbf && z.lb<=r && z.lb>0) {
xlb = 0;
goto loop;
}
else if(!ubf && z.ub>=-r && z.ub<0) {
xub = 0;
goto loop;
}
z.quant = r;
z.mult = s;
return(z);
}
scale(p,v)
register struct xy *p;
struct val *v;
{
float edge;
getlim(p,v);
setlim(p);
edge = top-bot;
p->xa = p->xsize*edge/((*p->xf)(p->xub) - (*p->xf)(p->xlb));
p->xbot = bot + edge*p->xoff;
p->xtop = p->xbot + (top-bot)*p->xsize;
p->xb = p->xbot - (*p->xf)(p->xlb)*p->xa + .5;
}
axes()
{
register i;
if(gridf==0)
return;
line(xd.xbot,yd.xbot,xd.xtop,yd.xbot);
cont(xd.xtop,yd.xtop);
cont(xd.xbot,yd.xtop);
cont(xd.xbot,yd.xbot);
(void) setmark(&xd, 1);
(void) setmark(&yd, 1);
}
setmark(p, doprt)
register struct xy *p;
int doprt; /* 1 == print ticks, 0 == just count */
{
int xn = 0;
float x,xl,xu;
float q;
if(p->xf==log10&&!p->xqf) {
for(x=p->xquant; x<p->xub; x*=10) {
xn += submark(x, p, doprt);
if(p->xub/p->xlb<=100) {
xn += submark(2*x, p, doprt);
xn += submark(5*x, p, doprt);
}
}
} else {
q = p->xquant;
if(q>0) {
xl = modceil(p->xlb+q/6,q);
xu = modfloor(p->xub-q/6,q)+q/2;
} else {
xl = modceil(p->xub-q/6,q);
xu = modfloor(p->xlb+q/6,q)-q/2;
}
for(x=xl; x<=xu; x+=fabs(p->xquant)) {
xn++;
if (doprt)
domark((*p->xf)(x)*p->xa + p->xb, p);
}
}
return(xn);
}
submark(x,p,doprt)
float x;
struct xy *p;
int doprt;
{
if(1.001*p->xlb < x && .999*p->xub > x) {
if (doprt)
domark(log10(x)*p->xa + p->xb, p);
return 1;
}
else {
return 0;
}
}
domark(markf, p)
float markf;
register struct xy *p;
{
int mark = markf;
if (p == &xd) {
if(gridf==2)
line(mark,yd.xbot,mark,yd.xtop);
if(gridf==1) {
line(mark,yd.xbot,mark,yd.xbot+tick);
line(mark,yd.xtop-tick,mark,yd.xtop);
}
}
else {
if(gridf==2)
line(xd.xbot,mark,xd.xtop,mark);
if(gridf==1) {
line(xd.xbot,mark,xd.xbot+tick,mark);
line(xd.xtop-tick,mark,xd.xtop,mark);
}
}
}
plot()
{
int ix,iy;
int i;
int conn;
conn = 0;
if(mode!=0)
linemod(modes[mode]);
for(i=0; i<n; i++) {
if(!con_v(xx[i].xv,&xd,&ix) ||
!con_v(xx[i].yv,&yd,&iy)) {
conn = 0;
continue;
}
if(mode!=0) {
if(conn != 0)
cont(ix,iy);
else
move(ix,iy);
conn = 1;
}
conn &= symbol(ix,iy,xx[i].lblptr);
}
linemod(modes[1]);
}
con_v(xv,p,ip)
float xv;
register struct xy *p;
int *ip;
{
long ix;
ix = p->xa*(*p->xf)(xv*p->xmult) + p->xb;
if(ix<p->xbot || ix>p->xtop)
return(0);
*ip = ix;
return(1);
}
getfloat(p)
float *p;
{
register i;
i = scanf("%f",p);
return(i==1);
}
getstring()
{
register i;
char junk[20];
i = scanf("%1s",labbuf);
if(i==-1)
return(-1);
switch(*labbuf) {
default:
if(!isdigit(*labbuf)) {
ungetc(*labbuf,stdin);
i = scanf("%s",labbuf);
break;
}
case '.':
case '+':
case '-':
ungetc(*labbuf,stdin);
return(0);
case '"':
i = scanf("%[^\"\n]",labbuf);
scanf("%[\"]",junk);
break;
}
if(i==-1)
return(-1);
return(strlen(labbuf));
}
symbol(ix,iy,k)
{
if(symbf==0&&k<0) {
if(mode==0)
point(ix,iy);
return(1);
}
else {
move(ix,iy);
label(k>=0?labs+k:plotsymb);
move(ix,iy);
return(!brkf|k<0);
}
}
title()
{
char *buf, *bufp;
buf = (char *) malloc(100 + strlen(titlebuf));
if (buf == NULL)
return;
*buf = '\0';
bufp = buf;
move(xd.xbot,yd.xbot-60);
if (titlebuf[0]) {
sprintf(bufp, "%s ", titlebuf);
bufp += strlen(bufp);
}
if(erasf&&gridf) {
sprintf(bufp, "%g -%sx- %g", xd.xlb/xd.xmult,
xd.xf==log10?"log ":"", xd.xub/xd.xmult);
bufp += strlen(bufp);
strcat(bufp, " ");
bufp += strlen(bufp);
sprintf(bufp, "%g -%sy- %g", yd.xlb/yd.xmult,
yd.xf==log10?"log ":"", yd.xub/yd.xmult);
}
label(buf);
free(buf);
}
badarg()
{
fprintf(stderr,"graph: error in arguments\n");
exit(1);
}