inode.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright (c) 1980, 1986, 1990 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that: (1) source distributions retain this entire copyright
* notice and comment, and (2) distributions including binaries display
* the following acknowledgement: ``This product includes software
* developed by the University of California, Berkeley and its contributors''
* in the documentation or other materials provided with the distribution
* and in all advertising materials mentioning features or use of this
* software. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/mntent.h>
#include <sys/vnode.h>
#include <sys/fs/ufs_inode.h>
#include <sys/fs/ufs_fs.h>
#include <sys/fs/ufs_fsdir.h>
#include <pwd.h>
#include "fsck.h"
static ino_t startinum = 0;
extern uint_t largefile_count;
ckinode(dp, idesc)
struct dinode *dp;
struct inodesc *idesc;
{
daddr32_t *ap;
int64_t offset;
int n, ndb;
int ret;
struct dinode dino;
u_offset_t indir_data_blks;
idesc->id_entryno = 0;
idesc->id_filesize = (offset_t)dp->di_size;
if ((dp->di_mode & IFMT) == IFBLK || (dp->di_mode & IFMT) == IFCHR)
return (KEEPON);
dino = *dp;
ndb = howmany(dino.di_size, (u_offset_t)sblock.fs_bsize);
for (ap = &dino.di_db[0]; ap < &dino.di_db[NDADDR]; ap++) {
if (--ndb == 0 &&
(offset = blkoff(&sblock, dino.di_size)) != 0)
idesc->id_numfrags =
numfrags(&sblock, fragroundup(&sblock, offset));
else
idesc->id_numfrags = sblock.fs_frag;
if (*ap == 0)
continue;
idesc->id_blkno = *ap;
if (idesc->id_type == ADDR || idesc->id_type == ACL)
ret = (*idesc->id_func)(idesc);
else
ret = dirscan(idesc);
if (ret & STOP)
return (ret);
}
idesc->id_numfrags = sblock.fs_frag;
/*
* indir_data_blks determine the no. of data blocks
* in the previous levels. ie., at level 3 it
* is the number of data blocks at level 2, 1, and 0.
*/
for (ap = &dino.di_ib[0], n = 1; n <= NIADDR; ap++, n++) {
if (n == 1) {
/* SINGLE */
indir_data_blks = NDADDR;
} else if (n == 2) {
/* DOUBLE */
indir_data_blks = NDADDR + NINDIR(&sblock);
} else if (n == 3) {
/* TRIPLE */
indir_data_blks = NDADDR + NINDIR(&sblock) +
(NINDIR(&sblock) * NINDIR(&sblock));
}
if (*ap) {
idesc->id_blkno = *ap;
ret = iblock(idesc, n,
(u_offset_t)howmany(dino.di_size,
(u_offset_t)sblock.fs_bsize) - indir_data_blks);
if (ret & STOP)
return (ret);
} else {
idesc->id_hasholes = 1;
}
}
return (KEEPON);
}
iblock(idesc, ilevel, iblks)
struct inodesc *idesc;
int ilevel;
u_offset_t iblks;
{
daddr32_t *ap;
daddr32_t *aplim;
int i, n, (*func)();
u_offset_t fsbperindirb;
offset_t nif;
struct bufarea *bp;
char buf[BUFSIZ];
extern int dirscan(), pass1check(), pass3bcheck();
if (idesc->id_type == ADDR) {
func = idesc->id_func;
if (((n = (*func)(idesc)) & KEEPON) == 0)
return (n);
} else if (idesc->id_type == ACL) {
func = idesc->id_func;
if (chkrange(idesc->id_blkno, idesc->id_numfrags))
return (STOP);
} else { /* DATA, ie a directory */
func = dirscan;
if (chkrange(idesc->id_blkno, idesc->id_numfrags))
return (SKIP);
}
bp = getdatablk(idesc->id_blkno, sblock.fs_bsize);
ilevel--;
for (fsbperindirb = 1, i = 0; i < ilevel; i++) {
fsbperindirb *= (u_offset_t)NINDIR(&sblock);
}
/*
* nif indicates the next "free" pointer (as an array index) in this
* indirect block, based on counting the blocks remaining in the
* file after subtracting all previously processed blocks.
* This figure is based on the size field of the inode.
*
* Note that in normal operation, nif may initially calculated to
* be larger than the number of pointers in this block; if that is
* the case, nif is limited to the max number of pointers per
* indirect block.
*
* Also note that if an inode is inconsistant (has more blocks
* allocated to it than the size field would indicate), the sweep
* through any indirect blocks directly pointed at by the inode
* continues. Since the block offset of any data blocks referenced
* by these indirect blocks is greater than the size of the file,
* the index nif may be computed as a negative value.
* In this case, we reset nif to indicate that all pointers in
* this retrieval block should be zeroed and the resulting
* unreferenced data and/or retrieval blocks be recovered
* through garbage collection later.
*/
nif = (offset_t)howmany(iblks, fsbperindirb);
if (nif > NINDIR(&sblock))
nif = NINDIR(&sblock);
else if (nif < 0)
nif = 0;
/*
* first pass: all "free" retrieval pointers (from [nif] thru
* the end of the indirect block) should be zero. (This
* assertion does not hold for directories, which may be
* truncated without releasing their allocated space)
*/
if ((idesc->id_func == pass1check || idesc->id_func == pass3bcheck) &&
nif < NINDIR(&sblock)) {
aplim = &bp->b_un.b_indir[NINDIR(&sblock)];
for (ap = &bp->b_un.b_indir[nif];
ap < aplim; ap++) {
if (*ap == 0)
continue;
(void) sprintf(buf, "PARTIALLY TRUNCATED INODE I=%d",
idesc->id_number);
if (dofix(idesc, buf)) {
*ap = 0;
dirty(bp);
}
}
flush(fswritefd, bp);
}
/*
* second pass: all retrieval pointers refering to blocks within
* a valid range [0..filesize] (both indirect and data blocks)
* are respectively examined the same manner as the direct blocks
* in the inode are checked in chkinode(). Sweep through
* the first pointer in this retrieval block to [nif-1].
*/
aplim = &bp->b_un.b_indir[nif];
for (ap = bp->b_un.b_indir; ap < aplim; ap++) {
if (*ap) {
idesc->id_blkno = *ap;
if (ilevel > 0) {
n = iblock(idesc, ilevel, iblks);
/*
* each iteration decrease "remaining block
* count" by however many blocks were accessible
* by a pointer at this indirect block level.
*/
iblks -= fsbperindirb;
} else {
if (!idesc->id_hasholes) {
/*
* Increment logical block count here.
* In the case of direct blocks, it is
* done in pass1().
*/
idesc->id_llbna++;
}
n = (*func)(idesc);
}
if (n & STOP) {
brelse(bp);
return (n);
}
} else {
idesc->id_hasholes = 1;
}
}
brelse(bp);
return (KEEPON);
}
/*
* Check that a block is a legal block number.
* Return 0 if in range, 1 if out of range.
*/
chkrange(blk, cnt)
daddr32_t blk;
int cnt;
{
int c;
if ((unsigned)(blk + cnt) > (unsigned)maxfsblock)
return (1);
c = dtog(&sblock, blk);
if (blk < cgdmin(&sblock, c)) {
if ((unsigned)(blk + cnt) > (unsigned)cgsblock(&sblock, c)) {
if (debug) {
printf("blk %d < cgdmin %d;",
blk, cgdmin(&sblock, c));
printf(" blk + cnt %d > cgsbase %d\n",
blk + cnt, cgsblock(&sblock, c));
}
return (1);
}
} else {
if ((unsigned)(blk + cnt) > (unsigned)cgbase(&sblock, c+1)) {
if (debug) {
printf("blk %d >= cgdmin %d;",
blk, cgdmin(&sblock, c));
printf(" blk + cnt %d > sblock.fs_fpg %d\n",
blk+cnt, sblock.fs_fpg);
}
return (1);
}
}
return (0);
}
/*
* General purpose interface for reading inodes.
*/
struct dinode *
ginode(inumber)
ino_t inumber;
{
daddr32_t iblk;
struct dinode *dp;
if (inumber < UFSROOTINO || inumber > maxino)
errexit("bad inode number %d to ginode\n", inumber);
if (startinum == 0 ||
inumber < startinum ||
inumber >= (ino_t)(startinum + (ino_t)INOPB(&sblock))) {
iblk = itod(&sblock, inumber);
if (pbp != 0) {
brelse(pbp);
}
pbp = getdatablk(iblk, sblock.fs_bsize);
startinum =
(ino_t)((inumber / INOPB(&sblock)) * INOPB(&sblock));
}
dp = &pbp->b_un.b_dinode[inumber % INOPB(&sblock)];
dp->di_mode = dp->di_smode;
if (dp->di_suid != UID_LONG) dp->di_uid = dp->di_suid;
if (dp->di_sgid != GID_LONG) dp->di_gid = dp->di_sgid;
return (dp);
}
/*
* Special purpose version of ginode used to optimize first pass
* over all the inodes in numerical order.
*/
ino_t nextino, lastinum;
int64_t readcnt, readpercg, fullcnt, inobufsize, partialcnt, partialsize;
struct dinode *inodebuf;
struct dinode *
getnextinode(inumber)
ino_t inumber;
{
int64_t size;
diskaddr_t dblk;
static struct dinode *dp;
if (inumber != nextino++ || inumber > maxino)
errexit("bad inode number %d to nextinode\n", inumber);
if (inumber >= lastinum) {
readcnt++;
dblk = fsbtodb(&sblock, itod(&sblock, lastinum));
if (readcnt % readpercg == 0) {
size = partialsize;
lastinum += partialcnt;
} else {
size = inobufsize;
lastinum += fullcnt;
}
bread(fsreadfd, (char *)inodebuf, dblk, (long)size);
dp = inodebuf;
}
return (dp++);
}
resetinodebuf()
{
startinum = 0;
nextino = 0;
lastinum = 0;
readcnt = 0;
inobufsize = blkroundup(&sblock, INOBUFSIZE);
fullcnt = inobufsize / sizeof (struct dinode);
readpercg = sblock.fs_ipg / fullcnt;
partialcnt = sblock.fs_ipg % fullcnt;
partialsize = partialcnt * sizeof (struct dinode);
if (partialcnt != 0) {
readpercg++;
} else {
partialcnt = fullcnt;
partialsize = inobufsize;
}
if (inodebuf == NULL &&
(inodebuf = (struct dinode *)malloc((unsigned)inobufsize)) == NULL)
errexit("Cannot allocate space for inode buffer\n");
while (nextino < UFSROOTINO)
(void) getnextinode(nextino);
}
freeinodebuf()
{
if (inodebuf != NULL)
free((char *)inodebuf);
inodebuf = NULL;
}
/*
* Routines to maintain information about directory inodes.
* This is built during the first pass and used during the
* second and third passes.
*
* Enter inodes into the cache.
*/
cacheino(dp, inumber)
struct dinode *dp;
ino_t inumber;
{
struct inoinfo *inp;
struct inoinfo **inpp;
uint_t blks;
blks = NDADDR + NIADDR;
inp = (struct inoinfo *)
malloc(sizeof (*inp) + (blks - 1) * sizeof (daddr32_t));
if (inp == NULL)
return;
inpp = &inphead[inumber % numdirs];
inp->i_nexthash = *inpp;
*inpp = inp;
inp->i_parent = (ino_t)0;
inp->i_dotdot = (ino_t)0;
inp->i_number = inumber;
inp->i_isize = (offset_t)dp->di_size;
inp->i_numblks = blks * sizeof (daddr32_t);
inp->i_extattr = dp->di_oeftflag;
memcpy(&inp->i_blks[0], &dp->di_db[0], inp->i_numblks);
if (inplast == listmax) {
listmax += 100;
inpsort = (struct inoinfo **)realloc((char *)inpsort,
(unsigned)listmax * sizeof (struct inoinfo *));
if (inpsort == NULL)
errexit("cannot increase directory list");
}
inpsort[inplast++] = inp;
}
/*
* Look up an inode cache structure.
*/
struct inoinfo *
getinoinfo(inumber)
ino_t inumber;
{
struct inoinfo *inp;
for (inp = inphead[inumber % numdirs]; inp; inp = inp->i_nexthash) {
if (inp->i_number != inumber)
continue;
return (inp);
}
errexit("cannot find inode %d\n", inumber);
return ((struct inoinfo *)0);
}
/*
* Determine whether inode is in cache.
*/
inocached(inumber)
ino_t inumber;
{
struct inoinfo *inp;
for (inp = inphead[inumber % numdirs]; inp; inp = inp->i_nexthash) {
if (inp->i_number != inumber)
continue;
return (1);
}
return (0);
}
/*
* Clean up all the inode cache structure.
*/
inocleanup()
{
struct inoinfo **inpp;
if (inphead == NULL)
return;
for (inpp = &inpsort[inplast - 1]; inpp >= inpsort; inpp--)
free((char *)(*inpp));
free((char *)inphead);
free((char *)inpsort);
inphead = inpsort = NULL;
}
/*
* Routines to maintain information about acl inodes.
* This is built during the first pass and used during the
* second and third passes.
*
* Enter acl inodes into the cache.
*/
cacheacl(dp, inumber)
struct dinode *dp;
ino_t inumber;
{
struct aclinfo *aclp;
struct aclinfo **aclpp;
uint_t blks;
blks = NDADDR + NIADDR;
aclp = (struct aclinfo *)
malloc(sizeof (*aclp) + (blks - 1) * sizeof (daddr32_t));
if (aclp == NULL)
return;
aclpp = &aclphead[inumber % numacls];
aclp->i_nexthash = *aclpp;
*aclpp = aclp;
aclp->i_number = inumber;
aclp->i_isize = (offset_t)dp->di_size;
aclp->i_numblks = blks * sizeof (daddr32_t);
memcpy(&aclp->i_blks[0], &dp->di_db[0], aclp->i_numblks);
if (aclplast == aclmax) {
aclmax += 100;
aclpsort = (struct aclinfo **)realloc((char *)aclpsort,
(unsigned)aclmax * sizeof (struct aclinfo *));
if (aclpsort == NULL)
errexit("cannot increase acl list");
}
aclpsort[aclplast++] = aclp;
}
/*
* Look up an acl inode cache structure.
*/
struct aclinfo *
getaclinfo(inum)
ino_t inum;
{
struct aclinfo *aclp;
for (aclp = aclphead[inum % numacls]; aclp; aclp = aclp->i_nexthash) {
if (aclp->i_number != inum)
continue;
return (aclp);
}
errexit("cannot find acl inode %d\n", inum);
return ((struct aclinfo *)0);
}
/*
* Determine whether acl inode is in cache.
*/
aclcached(inum)
ino_t inum;
{
struct aclinfo *aclp;
for (aclp = aclphead[inum % numacls]; aclp; aclp = aclp->i_nexthash) {
if (aclp->i_number != inum)
continue;
return (1);
}
return (0);
}
inodirty()
{
dirty(pbp);
}
clri(idesc, type, flag)
struct inodesc *idesc;
char *type;
int flag;
{
struct dinode *dp;
dp = ginode(idesc->id_number);
if (flag == 1) {
pwarn("%s %s", type,
(dp->di_mode & IFMT) == IFDIR ? "DIRECTORY" : "FILE");
pinode(idesc->id_number);
}
if (preen || reply("CLEAR") == 1) {
if (preen)
printf(" (CLEARED)\n");
n_files--;
if (dp->di_size > (u_offset_t)MAXOFF_T) {
largefile_count--;
if (debug)
printf("clearing file: size %d,count %d\n",
dp->di_size, largefile_count);
}
(void) ckinode(dp, idesc);
clearinode(dp);
statemap[idesc->id_number] = USTATE;
inodirty();
}
}
findname(idesc)
struct inodesc *idesc;
{
struct direct *dirp = idesc->id_dirp;
if (dirp->d_ino != idesc->id_parent)
return (KEEPON);
memcpy(idesc->id_name, dirp->d_name,
MIN(dirp->d_namlen, MAXNAMLEN) + 1);
return (STOP|FOUND);
}
findino(idesc)
struct inodesc *idesc;
{
struct direct *dirp = idesc->id_dirp;
if (dirp->d_ino == 0)
return (KEEPON);
if (strcmp(dirp->d_name, idesc->id_name) == 0 &&
dirp->d_ino >= UFSROOTINO && dirp->d_ino <= maxino) {
idesc->id_parent = dirp->d_ino;
return (STOP|FOUND);
}
return (KEEPON);
}
pinode(ino)
ino_t ino;
{
struct dinode *dp;
char *p;
struct passwd *pw;
time_t t;
printf(" I=%u ", ino);
if (ino < UFSROOTINO || ino > maxino)
return;
dp = ginode(ino);
printf(" OWNER=");
if ((pw = getpwuid((int)dp->di_uid)) != 0)
printf("%s ", pw->pw_name);
else
printf("%d ", dp->di_uid);
printf("MODE=%o\n", dp->di_mode);
if (preen)
printf("%s: ", devname);
printf("SIZE=%lld ", dp->di_size);
t = (time_t)dp->di_mtime;
p = ctime(&t);
printf("MTIME=%12.12s %4.4s ", p + 4, p + 20);
}
blkerror(ino, type, blk)
ino_t ino;
char *type;
daddr32_t blk;
{
pfatal("%ld %s I=%u", blk, type, ino);
printf("\n");
switch (statemap[ino]) {
case FSTATE:
statemap[ino] = FCLEAR;
return;
case DSTATE:
statemap[ino] = DCLEAR;
return;
case SSTATE:
statemap[ino] = SCLEAR;
return;
case FCLEAR:
case DCLEAR:
case SCLEAR:
return;
default:
errexit("BAD STATE %d TO BLKERR\n", statemap[ino]);
/* NOTREACHED */
}
}
/*
* allocate an unused inode
*/
ino_t
allocino(request, type)
ino_t request;
int type;
{
ino_t ino;
struct dinode *dp;
time_t t;
if (request == 0)
request = UFSROOTINO;
else if (statemap[request] != USTATE)
return (0);
for (ino = request; ino < maxino; ino++)
if (statemap[ino] == USTATE)
break;
if (ino == maxino)
return (0);
switch (type & IFMT) {
case IFDIR:
statemap[ino] = DSTATE;
break;
case IFREG:
case IFLNK:
statemap[ino] = FSTATE;
break;
default:
return (0);
}
dp = ginode(ino);
dp->di_db[0] = allocblk(1);
if (dp->di_db[0] == 0) {
statemap[ino] = USTATE;
return (0);
}
dp->di_smode = dp->di_mode = type;
time(&t);
dp->di_atime = (time32_t)t;
dp->di_mtime = dp->di_ctime = dp->di_atime;
dp->di_size = (u_offset_t)sblock.fs_fsize;
dp->di_blocks = btodb(sblock.fs_fsize);
n_files++;
inodirty();
return (ino);
}
/*
* deallocate an inode
*/
freeino(ino)
ino_t ino;
{
struct inodesc idesc;
extern int pass4check();
struct dinode *dp;
memset(&idesc, 0, sizeof (struct inodesc));
idesc.id_type = ADDR;
idesc.id_func = pass4check;
idesc.id_number = ino;
idesc.id_fix = DONTKNOW;
dp = ginode(ino);
(void) ckinode(dp, &idesc);
clearinode(dp);
inodirty();
statemap[ino] = USTATE;
n_files--;
}