readbuf.c revision 1160694128cd3980cc06abe31af529a887efd310
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* nfs log - read buffer file and return structs in usable form
*/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include <sys/mman.h>
#include <strings.h>
#include <errno.h>
#include <syslog.h>
#include <time.h>
#include <limits.h>
#include <libintl.h>
#include <values.h>
#include <search.h>
#include <pwd.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netdir.h>
#include <nfs/nfs_sec.h>
#include <nfs/export.h>
#include <rpc/auth.h>
#include <rpc/svc.h>
#include <rpc/xdr.h>
#include <rpc/clnt.h>
#include <nfs/nfs.h>
#include <nfs/nfs_log.h>
#include "nfslogd.h"
#define MAX_LRS_READ_AHEAD 2048
#define MAX_RECS_TO_DELAY 32768
static int nfslog_init_buf(char *, struct nfslog_buf *, int *);
static void nfslog_free_buf(struct nfslog_buf *, int);
static struct nfslog_lr *nfslog_read_buffer(struct nfslog_buf *);
static void free_lrp(struct nfslog_lr *);
static struct nfslog_lr *remove_lrp_from_lb(struct nfslog_buf *,
struct nfslog_lr *);
static void insert_lrp_to_lb(struct nfslog_buf *,
struct nfslog_lr *);
static void nfslog_rewrite_bufheader(struct nfslog_buf *);
/*
* Treat the provided path name as an NFS log buffer file.
* Allocate a data structure for its handling and initialize it.
* *error contains the previous error condition encountered for
* this object. This value can be used to avoid printing the last
* error endlessly.
* It will set *error appropriately after processing.
*/
struct nfslog_buf *
nfslog_open_buf(char *bufpath, int *error)
{
struct nfslog_buf *lbp = NULL;
if (bufpath == NULL) {
*error = EINVAL;
return (NULL);
}
if ((lbp = malloc(sizeof (struct nfslog_buf))) == NULL) {
*error = ENOMEM;
return (NULL);
}
bzero(lbp, sizeof (struct nfslog_buf));
if (nfslog_init_buf(bufpath, lbp, error)) {
free(lbp);
return (NULL);
}
return (lbp);
}
/*
* Free the log buffer struct with all of its baggage and free the data struct
*/
void
nfslog_close_buf(struct nfslog_buf *lbp, int close_quick)
{
nfslog_free_buf(lbp, close_quick);
free(lbp);
}
/*
* Set up the log buffer struct; simple things are opening and locking
* the buffer file and then on to mmap()ing it for later use by the
* XDR decode path. Make sure to read the buffer header before
* returning so that we will be at the first true log record.
*
* *error contains the last error encountered on this object. It can
* be used to avoid reporting the same error endlessly. It is reset
* to the current error code on return.
*/
static int
nfslog_init_buf(char *bufpath, struct nfslog_buf *lbp, int *error)
{
struct stat sb;
int preverror = *error;
lbp->next = lbp;
lbp->prev = lbp;
/*
* set these values so that the free routine will know what to do
*/
lbp->mmap_addr = (intptr_t)MAP_FAILED;
lbp->last_rec_id = MAXINT - 1;
lbp->bh.bh_length = 0;
lbp->bh_lrp = NULL;
lbp->num_lrps = 0;
lbp->lrps = NULL;
lbp->last_record_offset = 0;
lbp->prp = NULL;
lbp->num_pr_queued = 0;
lbp->bufpath = strdup(bufpath);
if (lbp->bufpath == NULL) {
*error = ENOMEM;
if (preverror != *error) {
syslog(LOG_ERR, gettext("Cannot strdup '%s': %s"),
bufpath, strerror(*error));
}
nfslog_free_buf(lbp, FALSE);
return (*error);
}
if ((lbp->fd = open(bufpath, O_RDWR)) < 0) {
*error = errno;
if (preverror != *error) {
syslog(LOG_ERR, gettext("Cannot open '%s': %s"),
bufpath, strerror(*error));
}
nfslog_free_buf(lbp, FALSE);
return (*error);
}
/*
* Lock the entire buffer file to prevent conflicting access.
* We get a write lock because we want only 1 process to be
* generating records from it.
*/
lbp->fl.l_type = F_WRLCK;
lbp->fl.l_whence = SEEK_SET; /* beginning of file */
lbp->fl.l_start = (offset_t)0;
lbp->fl.l_len = 0; /* entire file */
lbp->fl.l_sysid = 0;
lbp->fl.l_pid = 0;
if (fcntl(lbp->fd, F_SETLKW, &lbp->fl) == -1) {
*error = errno;
if (preverror != *error) {
syslog(LOG_ERR, gettext("Cannot lock (%s): %s"),
bufpath, strerror(*error));
}
nfslog_free_buf(lbp, FALSE);
return (*error);
}
if (fstat(lbp->fd, &sb)) {
*error = errno;
if (preverror != *error) {
syslog(LOG_ERR, gettext("Cannot stat (%s): %s"),
bufpath, strerror(*error));
}
nfslog_free_buf(lbp, FALSE);
return (*error);
}
lbp->filesize = sb.st_size;
lbp->mmap_addr = (intptr_t)mmap(0, lbp->filesize, PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_NORESERVE, lbp->fd, 0);
/* This is part of the duality of the use of either mmap()|read() */
if (lbp->mmap_addr == (intptr_t)MAP_FAILED) {
lbp->next_rec = 0;
} else {
lbp->next_rec = lbp->mmap_addr;
}
/* Read the header */
if ((lbp->bh_lrp = nfslog_read_buffer(lbp)) == NULL) {
*error = EIO;
if (preverror != *error) {
syslog(LOG_ERR, gettext(
"error in reading file '%s': %s"),
bufpath, strerror(EIO));
}
nfslog_free_buf(lbp, FALSE);
return (*error);
}
if (!xdr_nfslog_buffer_header(&lbp->bh_lrp->xdrs, &lbp->bh)) {
*error = EIO;
if (preverror != *error) {
syslog(LOG_ERR, gettext(
"error in reading file '%s': %s"),
bufpath, strerror(*error));
}
nfslog_free_buf(lbp, FALSE);
return (*error);
}
/*
* Set the pointer to the next record based on the buffer header.
* 'lbp->bh.bh_offset' contains the offset of where to begin
* processing relative to the buffer header.
*/
lbp->next_rec += lbp->bh.bh_offset;
/*
* If we are going to be using read() for file data, then we may
* have to adjust the current file pointer to take into account
* a starting point other than the beginning of the file.
* If mmap is being used, this is taken care of as a side effect of
* setting up the value of next_rec.
*/
if (lbp->mmap_addr == (intptr_t)MAP_FAILED && lbp->next_rec != 0) {
(void) lseek(lbp->fd, lbp->next_rec, SEEK_SET);
/* This is a special case of setting the last_record_offset */
lbp->last_record_offset = lbp->next_rec;
} else {
lbp->last_record_offset = lbp->next_rec - lbp->mmap_addr;
}
return (*error = 0);
}
/*
* Free the nfslog buffer and its associated allocations
*/
static void
nfslog_free_buf(struct nfslog_buf *lbp, int close_quick)
{
XDR xdrs;
int error;
caddr_t buffer;
struct nfslog_lr *lrp, *lrp_next;
struct processed_records *prp, *tprp;
/* work to free the offset records and rewrite header */
if (lbp->prp) {
if (lbp->last_record_offset == lbp->prp->start_offset) {
/* adjust the offset for the entire buffer */
lbp->last_record_offset =
lbp->prp->start_offset + lbp->prp->len;
nfslog_rewrite_bufheader(lbp);
}
if (close_quick)
return;
prp = lbp->prp;
do {
tprp = prp->next;
free(prp);
prp = tprp;
} while (lbp->prp != prp);
}
if (close_quick)
return;
/* Take care of the queue log records first */
if (lbp->lrps != NULL) {
lrp = lbp->lrps;
do {
lrp_next = lrp->next;
nfslog_free_logrecord(lrp, FALSE);
lrp = lrp_next;
} while (lrp != lbp->lrps);
lbp->lrps = NULL;
}
/* The buffer header was decoded and needs to be freed */
if (lbp->bh.bh_length != 0) {
buffer = (lbp->bh_lrp->buffer != NULL ?
lbp->bh_lrp->buffer : (caddr_t)lbp->mmap_addr);
xdrmem_create(&xdrs, buffer, lbp->bh_lrp->recsize, XDR_FREE);
(void) xdr_nfslog_buffer_header(&xdrs, &lbp->bh);
lbp->bh.bh_length = 0;
}
/* get rid of the bufheader lrp */
if (lbp->bh_lrp != NULL) {
free_lrp(lbp->bh_lrp);
lbp->bh_lrp = NULL;
}
/* Clean up for mmap() usage */
if (lbp->mmap_addr != (intptr_t)MAP_FAILED) {
if (munmap((void *)lbp->mmap_addr, lbp->filesize)) {
error = errno;
syslog(LOG_ERR, gettext("munmap failed: %s: %s"),
(lbp->bufpath != NULL ? lbp->bufpath : ""),
strerror(error));
}
lbp->mmap_addr = (intptr_t)MAP_FAILED;
}
/* Finally close the buffer file */
if (lbp->fd >= 0) {
lbp->fl.l_type = F_UNLCK;
if (fcntl(lbp->fd, F_SETLK, &lbp->fl) == -1) {
error = errno;
syslog(LOG_ERR,
gettext("Cannot unlock file %s: %s"),
(lbp->bufpath != NULL ? lbp->bufpath : ""),
strerror(error));
}
(void) close(lbp->fd);
lbp->fd = -1;
}
if (lbp->bufpath != NULL)
free(lbp->bufpath);
}
/*
* We are reading a record from the log buffer file. Since we are reading
* an XDR stream, we first have to read the first integer to determine
* how much to read in whole for this record. Our preference is to use
* mmap() but if failed initially we will be using read(). Need to be
* careful about proper initialization of the log record both from a field
* perspective and for XDR decoding.
*/
static struct nfslog_lr *
nfslog_read_buffer(struct nfslog_buf *lbp)
{
XDR xdrs;
unsigned int record_size;
struct nfslog_lr *lrp;
char *sizebuf, tbuf[16];
caddr_t buffer;
offset_t next_rec;
lrp = (struct nfslog_lr *)malloc(sizeof (*lrp));
bzero(lrp, sizeof (*lrp));
/* Check to see if mmap worked */
if (lbp->mmap_addr == (intptr_t)MAP_FAILED) {
/*
* EOF or other failure; we don't try to recover, just return
*/
if (read(lbp->fd, tbuf, BYTES_PER_XDR_UNIT) <= 0) {
free_lrp(lrp);
return (NULL);
}
sizebuf = tbuf;
} else {
/* EOF check for the mmap() case */
if (lbp->filesize <= lbp->next_rec - lbp->mmap_addr) {
free_lrp(lrp);
return (NULL);
}
sizebuf = (char *)(uintptr_t)lbp->next_rec;
}
/* We have to XDR the first int so we know how much is in this record */
xdrmem_create(&xdrs, sizebuf, sizeof (unsigned int), XDR_DECODE);
if (!xdr_u_int(&xdrs, &record_size)) {
free_lrp(lrp);
return (NULL);
}
lrp->recsize = record_size;
next_rec = lbp->next_rec + lrp->recsize;
if (lbp->mmap_addr == (intptr_t)MAP_FAILED) {
/*
* Read() case - shouldn't be used very much.
* Note: The 'buffer' field is used later on
* to determine which method is being used mmap()|read()
*/
if (lbp->filesize < next_rec) {
/* partial record from buffer */
syslog(LOG_ERR, gettext(
"Last partial record in work buffer %s "
"discarded\n"), lbp->bufpath);
free_lrp(lrp);
return (NULL);
}
if ((lrp->buffer = malloc(lrp->recsize)) == NULL) {
free_lrp(lrp);
return (NULL);
}
bcopy(sizebuf, lrp->buffer, BYTES_PER_XDR_UNIT);
if (read(lbp->fd, &lrp->buffer[BYTES_PER_XDR_UNIT],
lrp->recsize - BYTES_PER_XDR_UNIT) <= 0) {
free_lrp(lrp);
return (NULL);
}
} else if (lbp->filesize < next_rec - lbp->mmap_addr) {
/* partial record from buffer */
syslog(LOG_ERR, gettext(
"Last partial record in work buffer %s "
"discarded\n"), lbp->bufpath);
free_lrp(lrp);
return (NULL);
}
/* other initializations */
lrp->next = lrp->prev = lrp;
/* Keep track of the offset at which this record was read */
if (lbp->mmap_addr == (intptr_t)MAP_FAILED)
lrp->f_offset = lbp->next_rec;
else
lrp->f_offset = lbp->next_rec - lbp->mmap_addr;
/* This is the true address of the record */
lrp->record = lbp->next_rec;
lrp->xdrargs = lrp->xdrres = NULL;
lrp->lbp = lbp;
/* Here is the logic for mmap() vs. read() */
buffer = (lrp->buffer != NULL ? lrp->buffer : (caddr_t)lrp->record);
/* Setup for the 'real' XDR decode of the entire record */
xdrmem_create(&lrp->xdrs, buffer, lrp->recsize, XDR_DECODE);
/* calculate the offset for the next record */
lbp->next_rec = next_rec;
return (lrp);
}
/*
* Simple removal of the log record from the log buffer queue.
* Make sure to manage the count of records queued.
*/
static struct nfslog_lr *
remove_lrp_from_lb(struct nfslog_buf *lbp, struct nfslog_lr *lrp)
{
if (lbp->lrps == lrp) {
if (lbp->lrps == lbp->lrps->next) {
lbp->lrps = NULL;
} else {
lbp->lrps = lrp->next;
remque(lrp);
}
} else {
remque(lrp);
}
lbp->num_lrps--;
return (lrp);
}
/*
* Insert a log record struct on the log buffer struct. The log buffer
* has a pointer to the head of a queue of log records that have been
* read from the buffer file but have not been processed yet because
* the record id did not match the sequence desired for processing.
* The insertion must be in the 'correct'/sorted order which adds
* to the complexity of this function.
*/
static void
insert_lrp_to_lb(struct nfslog_buf *lbp, struct nfslog_lr *lrp)
{
int ins_rec_id = lrp->log_record.re_header.rh_rec_id;
struct nfslog_lr *curlrp;
if (lbp->lrps == NULL) {
/* that was easy */
lbp->lrps = lrp;
} else {
/*
* Does this lrp go before the first on the list?
* If so, do the insertion by hand since insque is not
* as flexible when queueing an element to the head of
* a list.
*/
if (ins_rec_id < lbp->lrps->log_record.re_header.rh_rec_id) {
lrp->next = lbp->lrps;
lrp->prev = lbp->lrps->prev;
lbp->lrps->prev->next = lrp;
lbp->lrps->prev = lrp;
lbp->lrps = lrp;
} else {
/*
* Search the queue for the correct insertion point.
* Be careful about the insque so that the record
* ends up in the right place.
*/
curlrp = lbp->lrps;
do {
if (ins_rec_id <
curlrp->next->log_record.re_header.rh_rec_id)
break;
curlrp = curlrp->next;
} while (curlrp != lbp->lrps);
if (curlrp == lbp->lrps)
insque(lrp, lbp->lrps->prev);
else
insque(lrp, curlrp);
}
}
/* always keep track of how many we have */
lbp->num_lrps++;
}
/*
* We are rewriting the buffer header at the start of the log buffer
* for the sole purpose of resetting the bh_offset field. This is
* supposed to represent the progress that the nfslogd daemon has made
* in its processing of the log buffer file.
* 'lbp->last_record_offset' contains the absolute offset of the end
* of the last element processed. The on-disk buffer offset is relative
* to the buffer header, therefore we subtract the length of the buffer
* header from the absolute offset.
*/
static void
nfslog_rewrite_bufheader(struct nfslog_buf *lbp)
{
XDR xdrs;
nfslog_buffer_header bh;
/* size big enough for buffer header encode */
#define XBUFSIZE 128
char buffer[XBUFSIZE];
unsigned int wsize;
/*
* if version 1 buffer is large and the current offset cannot be
* represented, then don't update the offset in the buffer.
*/
if (lbp->bh.bh_flags & NFSLOG_BH_OFFSET_OVERFLOW) {
/* No need to update the header - offset too big */
return;
}
/*
* build the buffer header from the original that was saved
* on initialization; note that the offset is taken from the
* last record processed (the last offset that represents
* all records processed without any holes in the processing)
*/
bh = lbp->bh;
/*
* if version 1 buffer is large and the current offset cannot be
* represented in 32 bits, then save only the last valid offset
* in the buffer and mark the flags to indicate that.
*/
if ((bh.bh_version > 1) ||
(lbp->last_record_offset - bh.bh_length < UINT32_MAX)) {
bh.bh_offset = lbp->last_record_offset - bh.bh_length;
} else {
/* don't update the offset in the buffer */
bh.bh_flags |= NFSLOG_BH_OFFSET_OVERFLOW;
lbp->bh.bh_flags = bh.bh_flags;
syslog(LOG_ERR, gettext(
"nfslog_rewrite_bufheader: %s: offset does not fit "
"in a 32 bit field\n"), lbp->bufpath);
}
xdrmem_create(&xdrs, buffer, XBUFSIZE, XDR_ENCODE);
if (!xdr_nfslog_buffer_header(&xdrs, &bh)) {
syslog(LOG_ERR, gettext(
"error in re-writing buffer file %s header\n"),
lbp->bufpath);
return;
}
wsize = xdr_getpos(&xdrs);
if (lbp->mmap_addr == (intptr_t)MAP_FAILED) {
/* go to the beginning of the file */
(void) lseek(lbp->fd, 0, SEEK_SET);
(void) write(lbp->fd, buffer, wsize);
(void) lseek(lbp->fd, lbp->next_rec, SEEK_SET);
(void) fsync(lbp->fd);
} else {
bcopy(buffer, (void *)lbp->mmap_addr, wsize);
(void) msync((void *)lbp->mmap_addr, wsize, MS_SYNC);
}
}
/*
* With the provided lrp, we will take and 'insert' the range that the
* record covered in the buffer file into a list of processed ranges
* for the buffer file. These ranges represent the records processed
* but not 'marked' in the buffer header as being processed.
* This insertion process is being done for two reasons. The first is that
* we do not want to pay the performance penalty of re-writing the buffer header
* for each record that we process. The second reason is that the records
* may be processed out of order because of the unique ids. This will occur
* if the kernel has written the records to the buffer file out of order.
* The read routine will 'sort' them as the records are read.
*
* We do not want to re-write the buffer header such that a record is
* represented and being processed when it has not been. In the case
* that the nfslogd daemon restarts processing and the buffer header
* has been re-written improperly, some records could be skipped.
* We will be taking the conservative approach and only writing buffer
* header offsets when the entire offset range has been processed.
*/
static void
nfslog_ins_last_rec_processed(struct nfslog_lr *lrp)
{
struct processed_records *prp, *tp;
/* init the data struct as if it were the only one */
prp = malloc(sizeof (*prp));
prp->next = prp->prev = prp;
prp->start_offset = lrp->f_offset;
prp->len = lrp->recsize;
prp->num_recs = 1;
/* always add since we know we are going to insert */
lrp->lbp->num_pr_queued++;
/* Is this the first one? If so, take the easy way out */
if (lrp->lbp->prp == NULL) {
lrp->lbp->prp = prp;
} else {
/* sort on insertion... */
tp = lrp->lbp->prp;
do {
if (prp->start_offset < tp->start_offset)
break;
tp = tp->next;
} while (tp != lrp->lbp->prp);
/* insert where appropriate (before the one we found */
insque(prp, tp->prev);
/*
* special case where the insertion was done at the
* head of the list
*/
if (tp == lrp->lbp->prp && prp->start_offset < tp->start_offset)
lrp->lbp->prp = prp;
/*
* now that the entry is in place, we need to see if it can
* be combined with the previous or following entries.
* combination is done by adding to the length.
*/
if (prp->start_offset ==
(prp->prev->start_offset + prp->prev->len)) {
tp = prp->prev;
remque(prp);
tp->len += prp->len;
tp->num_recs += prp->num_recs;
free(prp);
prp = tp;
}
if (prp->next->start_offset ==
(prp->start_offset + prp->len)) {
prp->len += prp->next->len;
prp->num_recs += prp->next->num_recs;
tp = prp->next;
remque(tp);
free(tp);
}
}
if (lrp->lbp->num_pr_queued > MAX_RECS_TO_DELAY) {
prp = lrp->lbp->prp;
if (lrp->lbp->last_record_offset ==
prp->start_offset) {
/* adjust the offset for the entire buffer */
lrp->lbp->last_record_offset =
prp->start_offset + prp->len;
nfslog_rewrite_bufheader(lrp->lbp);
tp = prp->next;
if (tp != prp)
remque(prp);
else
tp = NULL;
lrp->lbp->prp = tp;
lrp->lbp->num_pr_queued -= prp->num_recs;
free(prp);
}
}
}
/*
* nfslog_get_logrecord is responsible for retrieving the next log record
* from the buffer file. This would normally be very straightforward but there
* is the added complexity of attempting to order the requests coming out of
* the buffer file. The fundamental problems is that the kernel nfs logging
* functionality does not guarantee that the records were written to the file
* in the order that the NFS server processed them. This can cause a problem
* in the fh -> pathname mapping in the case were a lookup for a file comes
* later in the buffer file than other operations on the lookup's target.
* The fh mapping database will not have an entry and will therefore not
* be able to map the fh to a name.
*
* So to solve this problem, the kernel nfs logging code tags each record
* with a monotonically increasing id and is guaranteed to be allocated
* in the order that the requests were processed. Realize however that
* this processing guarantee is essentially for one thread on one client.
* This id mechanism does not order all requests since it is only the
* single client/single thread case that is most concerning to us here.
*
* This function will do the 'sorting' of the requests as they are
* read from the buffer file. The sorting needs to take into account
* that some ids may be missing (operations not logged but ids allocated)
* and that the id field will eventually wrap over MAXINT.
*
* Complexity to solve the fh -> pathname mapping issue.
*/
struct nfslog_lr *
nfslog_get_logrecord(struct nfslog_buf *lbp)
{
/* figure out what the next should be if the world were perfect */
unsigned int next_rec_id = lbp->last_rec_id + 1;
struct nfslog_lr *lrp = NULL;
/*
* First we check the queued records on the log buffer struct
* to see if the one we want is there. The records are sorted
* on the record id during the insertions to the queue so that
* this check is easy.
*/
if (lbp->lrps != NULL) {
/* Does the first record match ? */
if (lbp->lrps->log_record.re_header.rh_rec_id == next_rec_id) {
lrp = remove_lrp_from_lb(lbp, lbp->lrps);
lbp->last_rec_id = lrp->log_record.re_header.rh_rec_id;
} else {
/*
* Here we are checking for wrap of the record id
* since it is an unsigned in. The idea is that
* if there is a huge span between what we expect
* and what is queued then we need to flush/empty
* the queued records first.
*/
if (next_rec_id <
lbp->lrps->log_record.re_header.rh_rec_id &&
((lbp->lrps->log_record.re_header.rh_rec_id -
next_rec_id) > (MAXINT / 2))) {
lrp = remove_lrp_from_lb(lbp, lbp->lrps);
lbp->last_rec_id =
lrp->log_record.re_header.rh_rec_id;
}
}
}
/*
* So the first queued record didn't match (or there were no queued
* records to look at). Now we go to the buffer file looking for
* the expected log record based on its id. We loop looking for
* a matching records and save/queue the records that don't match.
* Note that we will queue a maximum number to handle the case
* of a missing record id or a queue that is very confused. We don't
* want to consume too much memory.
*/
while (lrp == NULL) {
/* Have we queued too many for this buffer? */
if (lbp->num_lrps >= MAX_LRS_READ_AHEAD) {
lrp = remove_lrp_from_lb(lbp, lbp->lrps);
lbp->last_rec_id = lrp->log_record.re_header.rh_rec_id;
break;
}
/*
* Get a record from the buffer file. If none are available,
* this is probably and EOF condition (could be a read error
* as well but that is masked. :-(). No records in the
* file means that we need to pull any queued records
* so that we don't miss any in the processing.
*/
if ((lrp = nfslog_read_buffer(lbp)) == NULL) {
if (lbp->lrps != NULL) {
lrp = remove_lrp_from_lb(lbp, lbp->lrps);
lbp->last_rec_id =
lrp->log_record.re_header.rh_rec_id;
} else {
return (NULL); /* it was really and EOF */
}
} else {
/*
* Just read a record from the buffer file and now we
* need to XDR the record header so that we can take
* a look at the record id.
*/
if (!xdr_nfslog_request_record(&lrp->xdrs,
&lrp->log_record)) {
/* Free and return EOF/NULL on error */
nfslog_free_logrecord(lrp, FALSE);
return (NULL);
}
/*
* If the new record is less than or matches the
* expected record id, then we return this record
*/
if (lrp->log_record.re_header.rh_rec_id <=
next_rec_id) {
lbp->last_rec_id =
lrp->log_record.re_header.rh_rec_id;
} else {
/*
* This is not the one we were looking
* for; queue it for later processing
* (queueing sorts on record id)
*/
insert_lrp_to_lb(lbp, lrp);
lrp = NULL;
}
}
}
return (lrp);
}
/*
* Free the log record provided.
* This is complex because the associated XDR streams also need to be freed
* since allocation could have occured during the DECODE phase. The record
* header, args and results need to be XDR_FREEd. The xdr funtions will
* be provided if a free needs to be done.
*
* Note that caller tells us if the record being freed was processed.
* If so, then the buffer header should be updated. Updating the buffer
* header keeps track of where the nfslogd daemon left off in its processing
* if it is unable to complete the entire file.
*/
void
nfslog_free_logrecord(struct nfslog_lr *lrp, bool_t processing_complete)
{
caddr_t buffer;
nfslog_request_record *reqrec;
if (processing_complete) {
nfslog_ins_last_rec_processed(lrp);
}
reqrec = &lrp->log_record;
buffer = (lrp->buffer != NULL ? lrp->buffer : (caddr_t)lrp->record);
xdrmem_create(&lrp->xdrs, buffer, lrp->recsize, XDR_FREE);
(void) xdr_nfslog_request_record(&lrp->xdrs, reqrec);
if (lrp->xdrargs != NULL && reqrec->re_rpc_arg)
(*lrp->xdrargs)(&lrp->xdrs, reqrec->re_rpc_arg);
if (reqrec->re_rpc_arg)
free(reqrec->re_rpc_arg);
if (lrp->xdrres != NULL && reqrec->re_rpc_res)
(*lrp->xdrres)(&lrp->xdrs, reqrec->re_rpc_res);
if (reqrec->re_rpc_res)
free(reqrec->re_rpc_res);
free_lrp(lrp);
}
static void
free_lrp(struct nfslog_lr *lrp)
{
if (lrp->buffer != NULL)
free(lrp->buffer);
free(lrp);
}
/*
* Utility function used elsewhere
*/
void
nfslog_opaque_print_buf(void *buf, int len, char *outbuf, int *outbufoffsetp,
int maxoffset)
{
int i, j;
uint_t *ip;
uchar_t *u_buf = (uchar_t *)buf;
int outbufoffset = *outbufoffsetp;
outbufoffset += sprintf(&outbuf[outbufoffset], " \"");
if (len <= sizeof (int)) {
for (j = 0; (j < len) && (outbufoffset < maxoffset);
j++, u_buf++)
outbufoffset += sprintf(&outbuf[outbufoffset],
"%02x", *u_buf);
return;
}
/* More than 4 bytes, print with spaces in integer offsets */
j = (int)((uintptr_t)buf % sizeof (int));
i = 0;
if (j > 0) {
i = sizeof (int) - j;
for (; (j < sizeof (int)) && (outbufoffset < maxoffset);
j++, u_buf++)
outbufoffset += sprintf(&outbuf[outbufoffset],
"%02x", *u_buf);
}
/* LINTED */
ip = (uint_t *)u_buf;
for (; ((i + sizeof (int)) <= len) && (outbufoffset < maxoffset);
i += sizeof (int), ip++) {
outbufoffset += sprintf(&outbuf[outbufoffset], " %08x", *ip);
}
if (i < len) {
/* Last element not int */
u_buf = (uchar_t *)ip;
if (i > j) /* not first element */
outbufoffset += sprintf(&outbuf[outbufoffset], " ");
for (; (i < len) && (outbufoffset < maxoffset); i++, u_buf++) {
outbufoffset += sprintf(&outbuf[outbufoffset],
"%02x", *u_buf);
}
}
if (outbufoffset < maxoffset)
outbufoffset += sprintf(&outbuf[outbufoffset], "\"");
*outbufoffsetp = outbufoffset;
}