df.c revision 90a1a13596fed05f78bee9f85d396628cc310803
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <dlfcn.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <locale.h>
#include <libintl.h>
#include <stdlib.h>
#include <ftw.h>
#include <errno.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/statvfs.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <sys/mnttab.h>
#include <sys/mntent.h>
#include <sys/vfstab.h>
#include <sys/wait.h>
#include <sys/mkdev.h>
#include <sys/int_limits.h>
#include <sys/zone.h>
#include <libzfs.h>
#include "fslib.h"
extern char *default_fstype(char *);
/*
* General notice:
* String pointers in this code may point to statically allocated memory
* or dynamically allocated memory. Furthermore, a dynamically allocated
* string may be pointed to by more than one pointer. This does not pose
* a problem because malloc'ed memory is never free'd (so we don't need
* to remember which pointers point to malloc'ed memory).
*/
/*
* TRANSLATION_NOTE
* Only strings passed as arguments to the TRANSLATE macro need to
* be translated.
*/
#ifndef MNTTYPE_LOFS
#define MNTTYPE_LOFS "lofs"
#endif
#define EQ(s1, s2) (strcmp(s1, s2) == 0)
#define NEW(type) xmalloc(sizeof (type))
#define CLEAR(var) (void) memset(&(var), 0, sizeof (var))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MAX3(a, b, c) MAX(a, MAX(b, c))
#define TRANSLATE(s) new_string(gettext(s))
#define MAX_OPTIONS 36
#define N_FSTYPES 20
#define MOUNT_TABLE_ENTRIES 40 /* initial allocation */
#define MSGBUF_SIZE 1024
#define LINEBUF_SIZE 256 /* either input or output lines */
#define BLOCK_SIZE 512 /* when reporting in terms of blocks */
#define DEVNM_CMD "devnm"
#define FS_LIBPATH "/usr/lib/fs/"
#define MOUNT_TAB "/etc/mnttab"
#define VFS_TAB "/etc/vfstab"
#define REMOTE_FS "/etc/dfs/fstypes"
#define NUL '\0'
#define FALSE 0
#define TRUE 1
/*
* Formatting constants
*/
#define IBCS2_FILESYSTEM_WIDTH 15 /* Truncate to match ISC/SCO */
#define IBCS2_MOUNT_POINT_WIDTH 10 /* Truncate to match ISC/SCO */
#define FILESYSTEM_WIDTH 20
#define MOUNT_POINT_WIDTH 19
#define SPECIAL_DEVICE_WIDTH 18
#define FSTYPE_WIDTH 8
#define BLOCK_WIDTH 8
#define NFILES_WIDTH 8
#define KBYTE_WIDTH 11
#define AVAILABLE_WIDTH 10
#define SCALED_WIDTH 6
#define CAPACITY_WIDTH 9
#define BSIZE_WIDTH 6
#define FRAGSIZE_WIDTH 7
#define FSID_WIDTH 7
#define FLAG_WIDTH 8
#define NAMELEN_WIDTH 7
#define MNT_SPEC_WIDTH MOUNT_POINT_WIDTH + SPECIAL_DEVICE_WIDTH + 2
/*
* Flags for the errmsg() function
*/
#define ERR_NOFLAGS 0x0
#define ERR_NONAME 0x1 /* don't include the program name */
/* as a prefix */
#define ERR_FATAL 0x2 /* call exit after printing the */
/* message */
#define ERR_PERROR 0x4 /* append an errno explanation to */
/* the message */
#define ERR_USAGE 0x8 /* print the usage line after the */
/* message */
#define NUMBER_WIDTH 40
/*
* A numbuf_t is used when converting a number to a string representation
*/
typedef char numbuf_t[ NUMBER_WIDTH ];
/*
* We use bool_int instead of int to make clear which variables are
* supposed to be boolean
*/
typedef int bool_int;
struct mtab_entry {
bool_int mte_dev_is_valid;
dev_t mte_dev;
bool_int mte_ignore; /* the "ignore" option was set */
struct extmnttab *mte_mount;
};
struct df_request {
bool_int dfr_valid;
char *dfr_cmd_arg; /* what the user specified */
struct mtab_entry *dfr_mte;
char *dfr_fstype;
int dfr_index; /* to make qsort stable */
};
#define DFR_MOUNT_POINT(dfrp) (dfrp)->dfr_mte->mte_mount->mnt_mountp
#define DFR_SPECIAL(dfrp) (dfrp)->dfr_mte->mte_mount->mnt_special
#define DFR_FSTYPE(dfrp) (dfrp)->dfr_mte->mte_mount->mnt_fstype
#define DFR_ISMOUNTEDFS(dfrp) ((dfrp)->dfr_mte != NULL)
#define DFRP(p) ((struct df_request *)(p))
typedef void (*output_func)(struct df_request *, struct statvfs64 *);
struct df_output {
output_func dfo_func; /* function that will do the output */
int dfo_flags;
};
/*
* Output flags
*/
#define DFO_NOFLAGS 0x0
#define DFO_HEADER 0x1 /* output preceded by header */
#define DFO_STATVFS 0x2 /* must do a statvfs64(2) */
static char *program_name;
static char df_options[MAX_OPTIONS] = "-";
static size_t df_options_len = 1;
static char *o_option_arg; /* arg to the -o option */
static char *FSType;
static char *remote_fstypes[N_FSTYPES+1]; /* allocate an extra one */
/* to use as a terminator */
/*
* The following three variables support an in-memory copy of the mount table
* to speedup searches.
*/
static struct mtab_entry *mount_table; /* array of mtab_entry's */
static size_t mount_table_entries;
static size_t mount_table_allocated_entries;
static bool_int F_option;
static bool_int V_option;
static bool_int P_option; /* Added for XCU4 compliance */
static bool_int Z_option;
static bool_int v_option;
static bool_int a_option;
static bool_int b_option;
static bool_int e_option;
static bool_int g_option;
static bool_int h_option;
static bool_int k_option;
static bool_int l_option;
static bool_int m_option;
static bool_int n_option;
static bool_int t_option;
static bool_int o_option;
static bool_int tty_output;
static bool_int use_scaling;
static int scale;
static void usage(void);
static void do_devnm(int, char **);
static void do_df(int, char **) __NORETURN;
static void parse_options(int, char **);
static char *basename(char *);
static libzfs_handle_t *(*_libzfs_init)(void);
static zfs_handle_t *(*_zfs_open)(libzfs_handle_t *, const char *, int);
static void (*_zfs_close)(zfs_handle_t *);
static uint64_t (*_zfs_prop_get_int)(zfs_handle_t *, zfs_prop_t);
static libzfs_handle_t *g_zfs;
/*
* Dynamically check for libzfs, in case the user hasn't installed the SUNWzfs
* packages. A basic utility such as df shouldn't depend on optional
* filesystems.
*/
static boolean_t
load_libzfs(void)
{
void *hdl;
if (_libzfs_init != NULL)
return (g_zfs != NULL);
if ((hdl = dlopen("libzfs.so", RTLD_LAZY)) != NULL) {
_libzfs_init = (libzfs_handle_t *(*)(void))dlsym(hdl,
"libzfs_init");
_zfs_open = (zfs_handle_t *(*)())dlsym(hdl, "zfs_open");
_zfs_close = (void (*)())dlsym(hdl, "zfs_close");
_zfs_prop_get_int = (uint64_t (*)())
dlsym(hdl, "zfs_prop_get_int");
if (_libzfs_init != NULL) {
assert(_zfs_open != NULL);
assert(_zfs_close != NULL);
assert(_zfs_prop_get_int != NULL);
g_zfs = _libzfs_init();
}
}
return (g_zfs != NULL);
}
int
main(int argc, char *argv[])
{
(void) setlocale(LC_ALL, "");
#if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
#define TEXT_DOMAIN "SYS_TEST"
#endif
(void) textdomain(TEXT_DOMAIN);
program_name = basename(argv[0]);
if (EQ(program_name, DEVNM_CMD))
do_devnm(argc, argv);
parse_options(argc, argv);
/*
* The k_option implies SunOS 4.x compatibility: when the special
* device name is too long the line will be split except when the
* output has been redirected.
* This is also valid for the -h option.
*/
if (use_scaling || k_option || P_option || v_option)
tty_output = isatty(1);
do_df(argc - optind, &argv[optind]);
/* NOTREACHED */
}
/*
* Prints an error message to stderr.
*/
/* VARARGS2 */
static void
errmsg(int flags, char *fmt, ...)
{
char buf[MSGBUF_SIZE];
va_list ap;
int cc;
int offset;
if (flags & ERR_NONAME)
offset = 0;
else
offset = sprintf(buf, "%s: ", program_name);
va_start(ap, fmt);
cc = vsprintf(&buf[offset], gettext(fmt), ap);
offset += cc;
va_end(ap);
if (flags & ERR_PERROR) {
if (buf[offset-1] != ' ')
(void) strcat(buf, " ");
(void) strcat(buf, strerror(errno));
}
(void) fprintf(stderr, "%s\n", buf);
if (flags & ERR_USAGE)
usage();
if (flags & ERR_FATAL)
exit(1);
}
static void
usage(void)
{
errmsg(ERR_NONAME,
"Usage: %s [-F FSType] [-abeghklmntPVvZ]"
" [-o FSType-specific_options]"
" [directory | block_device | resource]", program_name);
exit(1);
/* NOTREACHED */
}
static char *
new_string(char *s)
{
char *p = NULL;
if (s) {
p = strdup(s);
if (p)
return (p);
errmsg(ERR_FATAL, "out of memory");
/* NOTREACHED */
}
return (p);
}
/*
* Allocate memory using malloc but terminate if the allocation fails
*/
static void *
xmalloc(size_t size)
{
void *p = malloc(size);
if (p)
return (p);
errmsg(ERR_FATAL, "out of memory");
/* NOTREACHED */
return (NULL);
}
/*
* Allocate memory using realloc but terminate if the allocation fails
*/
static void *
xrealloc(void *ptr, size_t size)
{
void *p = realloc(ptr, size);
if (p)
return (p);
errmsg(ERR_FATAL, "out of memory");
/* NOTREACHED */
return (NULL);
}
/*
* fopen the specified file for reading but terminate if the fopen fails
*/
static FILE *
xfopen(char *file)
{
FILE *fp = fopen(file, "r");
if (fp == NULL)
errmsg(ERR_FATAL + ERR_PERROR, "failed to open %s:", file);
return (fp);
}
/*
* Read remote file system types from REMOTE_FS into the
* remote_fstypes array.
*/
static void
init_remote_fs(void)
{
FILE *fp;
char line_buf[LINEBUF_SIZE];
size_t fstype_index = 0;
if ((fp = fopen(REMOTE_FS, "r")) == NULL) {
errmsg(ERR_NOFLAGS,
"Warning: can't open %s, ignored", REMOTE_FS);
return;
}
while (fgets(line_buf, sizeof (line_buf), fp) != NULL) {
char buf[LINEBUF_SIZE];
(void) sscanf(line_buf, "%s", buf);
remote_fstypes[fstype_index++] = new_string(buf);
if (fstype_index == N_FSTYPES)
break;
}
(void) fclose(fp);
}
/*
* Returns TRUE if fstype is a remote file system type;
* otherwise, returns FALSE.
*/
static int
is_remote_fs(char *fstype)
{
char **p;
static bool_int remote_fs_initialized;
if (! remote_fs_initialized) {
init_remote_fs();
remote_fs_initialized = TRUE;
}
for (p = remote_fstypes; *p; p++)
if (EQ(fstype, *p))
return (TRUE);
return (FALSE);
}
static char *
basename(char *s)
{
char *p = strrchr(s, '/');
return (p ? p+1 : s);
}
/*
* Create a new "struct extmnttab" and make sure that its fields point
* to malloc'ed memory
*/
static struct extmnttab *
mntdup(struct extmnttab *old)
{
struct extmnttab *new = NEW(struct extmnttab);
new->mnt_special = new_string(old->mnt_special);
new->mnt_mountp = new_string(old->mnt_mountp);
new->mnt_fstype = new_string(old->mnt_fstype);
new->mnt_mntopts = new_string(old->mnt_mntopts);
new->mnt_time = new_string(old->mnt_time);
new->mnt_major = old->mnt_major;
new->mnt_minor = old->mnt_minor;
return (new);
}
static void
mtab_error(char *mtab_file, int status)
{
if (status == MNT_TOOLONG)
errmsg(ERR_NOFLAGS, "a line in %s exceeds %d characters",
mtab_file, MNT_LINE_MAX);
else if (status == MNT_TOOMANY)
errmsg(ERR_NOFLAGS,
"a line in %s has too many fields", mtab_file);
else if (status == MNT_TOOFEW)
errmsg(ERR_NOFLAGS,
"a line in %s has too few fields", mtab_file);
else
errmsg(ERR_NOFLAGS,
"error while reading %s: %d", mtab_file, status);
exit(1);
/* NOTREACHED */
}
/*
* Read the mount table from the specified file.
* We keep the table in memory for faster lookups.
*/
static void
mtab_read_file(void)
{
char *mtab_file = MOUNT_TAB;
FILE *fp;
struct extmnttab mtab;
int status;
fp = xfopen(mtab_file);
resetmnttab(fp);
mount_table_allocated_entries = MOUNT_TABLE_ENTRIES;
mount_table_entries = 0;
mount_table = xmalloc(
mount_table_allocated_entries * sizeof (struct mtab_entry));
while ((status = getextmntent(fp, &mtab, sizeof (struct extmnttab)))
== 0) {
struct mtab_entry *mtep;
if (mount_table_entries == mount_table_allocated_entries) {
mount_table_allocated_entries += MOUNT_TABLE_ENTRIES;
mount_table = xrealloc(mount_table,
mount_table_allocated_entries *
sizeof (struct mtab_entry));
}
mtep = &mount_table[mount_table_entries++];
mtep->mte_mount = mntdup(&mtab);
mtep->mte_dev_is_valid = FALSE;
mtep->mte_ignore = (hasmntopt((struct mnttab *)&mtab,
MNTOPT_IGNORE) != NULL);
}
(void) fclose(fp);
if (status == -1) /* reached EOF */
return;
mtab_error(mtab_file, status);
/* NOTREACHED */
}
/*
* We use this macro when we want to record the option for the purpose of
* passing it to the FS-specific df
*/
#define SET_OPTION(opt) opt##_option = TRUE, \
df_options[df_options_len++] = arg
static void
parse_options(int argc, char *argv[])
{
int arg;
opterr = 0; /* getopt shouldn't complain about unknown options */
while ((arg = getopt(argc, argv, "F:o:abehkVtgnlmPvZ")) != EOF) {
if (arg == 'F') {
if (F_option)
errmsg(ERR_FATAL + ERR_USAGE,
"more than one FSType specified");
F_option = 1;
FSType = optarg;
} else if (arg == 'V' && ! V_option) {
V_option = TRUE;
} else if (arg == 'v' && ! v_option) {
v_option = TRUE;
} else if (arg == 'P' && ! P_option) {
SET_OPTION(P);
} else if (arg == 'a' && ! a_option) {
SET_OPTION(a);
} else if (arg == 'b' && ! b_option) {
SET_OPTION(b);
} else if (arg == 'e' && ! e_option) {
SET_OPTION(e);
} else if (arg == 'g' && ! g_option) {
SET_OPTION(g);
} else if (arg == 'h') {
use_scaling = TRUE;
scale = 1024;
} else if (arg == 'k' && ! k_option) {
SET_OPTION(k);
} else if (arg == 'l' && ! l_option) {
SET_OPTION(l);
} else if (arg == 'm' && ! m_option) {
SET_OPTION(m);
} else if (arg == 'n' && ! n_option) {
SET_OPTION(n);
} else if (arg == 't' && ! t_option) {
SET_OPTION(t);
} else if (arg == 'o') {
if (o_option)
errmsg(ERR_FATAL + ERR_USAGE,
"the -o option can only be specified once");
o_option = TRUE;
o_option_arg = optarg;
} else if (arg == 'Z') {
SET_OPTION(Z);
} else if (arg == '?') {
errmsg(ERR_USAGE, "unknown option: %c", optopt);
}
}
/*
* Option sanity checks
*/
if (g_option && o_option)
errmsg(ERR_FATAL, "-o and -g options are incompatible");
if (l_option && o_option)
errmsg(ERR_FATAL, "-o and -l options are incompatible");
if (n_option && o_option)
errmsg(ERR_FATAL, "-o and -n options are incompatible");
if (use_scaling && o_option)
errmsg(ERR_FATAL, "-o and -h options are incompatible");
}
/*
* Check if the user-specified argument is a resource name.
* A resource name is whatever is placed in the mnt_special field of
* struct mnttab. In the case of NFS, a resource name has the form
* hostname:pathname
* We try to find an exact match between the user-specified argument
* and the mnt_special field of a mount table entry.
* We also use the heuristic of removing the basename from the user-specified
* argument and repeating the test until we get a match. This works
* fine for NFS but may fail for other remote file system types. However,
* it is guaranteed that the function will not fail if the user specifies
* the exact resource name.
* If successful, this function sets the 'dfr_mte' field of '*dfrp'
*/
static void
resource_mount_entry(struct df_request *dfrp)
{
char *name;
/*
* We need our own copy since we will modify the string
*/
name = new_string(dfrp->dfr_cmd_arg);
for (;;) {
char *p;
int i;
/*
* Compare against all known mount points.
* We start from the most recent mount, which is at the
* end of the array.
*/
for (i = mount_table_entries - 1; i >= 0; i--) {
struct mtab_entry *mtep = &mount_table[i];
if (EQ(name, mtep->mte_mount->mnt_special)) {
dfrp->dfr_mte = mtep;
break;
}
}
/*
* Remove the last component of the pathname.
* If there is no such component, this is not a resource name.
*/
p = strrchr(name, '/');
if (p == NULL)
break;
*p = NUL;
}
}
/*
* Try to match the command line argument which is a block special device
* with the special device of one of the mounted file systems.
* If one is found, set the appropriate field of 'dfrp' to the mount
* table entry.
*/
static void
bdev_mount_entry(struct df_request *dfrp)
{
int i;
char *special = dfrp->dfr_cmd_arg;
/*
* Compare against all known mount points.
* We start from the most recent mount, which is at the
* end of the array.
*/
for (i = mount_table_entries - 1; i >= 0; i--) {
struct mtab_entry *mtep = &mount_table[i];
if (EQ(special, mtep->mte_mount->mnt_special)) {
dfrp->dfr_mte = mtep;
break;
}
}
}
static struct mtab_entry *
devid_matches(int i, dev_t devno)
{
struct mtab_entry *mtep = &mount_table[i];
struct extmnttab *mtp = mtep->mte_mount;
/* int len = strlen(mtp->mnt_mountp); */
if (EQ(mtp->mnt_fstype, MNTTYPE_SWAP))
return (NULL);
/*
* check if device numbers match. If there is a cached device number
* in the mtab_entry, use it, otherwise get the device number
* either from the mnttab entry or by stat'ing the mount point.
*/
if (! mtep->mte_dev_is_valid) {
struct stat64 st;
dev_t dev = NODEV;
dev = makedev(mtp->mnt_major, mtp->mnt_minor);
if (dev == 0)
dev = NODEV;
if (dev == NODEV) {
if (stat64(mtp->mnt_mountp, &st) == -1) {
return (NULL);
} else {
dev = st.st_dev;
}
}
mtep->mte_dev = dev;
mtep->mte_dev_is_valid = TRUE;
}
if (mtep->mte_dev == devno) {
return (mtep);
}
return (NULL);
}
/*
* Find the mount point under which the user-specified path resides
* and set the 'dfr_mte' field of '*dfrp' to point to the mount table entry.
*/
static void
path_mount_entry(struct df_request *dfrp, dev_t devno)
{
char dirpath[MAXPATHLEN];
char *dir = dfrp->dfr_cmd_arg;
struct mtab_entry *match, *tmatch;
int i;
/*
* Expand the given path to get a canonical version (i.e. an absolute
* path without symbolic links).
*/
if (realpath(dir, dirpath) == NULL) {
errmsg(ERR_PERROR, "cannot canonicalize %s:", dir);
return;
}
/*
* If the mnt point is lofs, search from the top of entries from
* /etc/mnttab and return the entry that best matches the pathname.
* For non-lofs mount points, return the first entry from the bottom
* of the entries in /etc/mnttab that matches on the devid field
*/
match = NULL;
if (dfrp->dfr_fstype && EQ(dfrp->dfr_fstype, MNTTYPE_LOFS)) {
struct extmnttab *entryp;
char *path, *mountp;
char p, m;
int score;
int best_score = 0;
int best_index = -1;
for (i = 0; i < mount_table_entries; i++) {
entryp = mount_table[i].mte_mount;
if (!EQ(entryp->mnt_fstype, MNTTYPE_LOFS))
continue;
path = dirpath;
mountp = entryp->mnt_mountp;
score = 0;
/*
* Count the number of matching characters
* until either path or mountpoint is exhausted
*/
while ((p = *path++) == (m = *mountp++)) {
score++;
if (p == '\0' || m == '\0')
break;
}
/* Both exhausted so we have a match */
if (p == '\0' && m == '\0') {
best_index = i;
break;
}
/*
* We have exhausted the mountpoint and the current
* character in the path is a '/' hence the full path
* traverses this mountpoint.
* Record this as the best candidate so far.
*/
if (p == '/' && m == '\0') {
if (score > best_score) {
best_index = i;
best_score = score;
}
}
}
if (best_index > -1)
match = &mount_table[best_index];
} else {
for (i = mount_table_entries - 1; i >= 0; i--) {
if (tmatch = devid_matches(i, devno)) {
/*
* If executing in a zone, there might be lofs
* mounts for which the real mount point is
* invisible; accept the "best fit" for this
* devid.
*/
match = tmatch;
if (!EQ(match->mte_mount->mnt_fstype,
MNTTYPE_LOFS)) {
break;
}
}
}
}
if (! match) {
errmsg(ERR_NOFLAGS,
"Could not find mount point for %s", dir);
return;
}
dfrp->dfr_mte = match;
}
/*
* Execute a single FS-specific df command for all given requests
* Return 0 if successful, 1 otherwise.
*/
static int
run_fs_specific_df(struct df_request request_list[], int entries)
{
int i;
int argv_index;
char **argv;
size_t size;
pid_t pid;
int status;
char cmd_path[MAXPATHLEN];
char *fstype;
if (entries == 0)
return (0);
fstype = request_list[0].dfr_fstype;
if (F_option && ! EQ(FSType, fstype))
return (0);
(void) sprintf(cmd_path, "%s%s/df", FS_LIBPATH, fstype);
/*
* Argv entries:
* 1 for the path
* 2 for -o <options>
* 1 for the generic options that we propagate
* 1 for the terminating NULL pointer
* n for the number of user-specified arguments
*/
size = (5 + entries) * sizeof (char *);
argv = xmalloc(size);
(void) memset(argv, 0, size);
argv[0] = cmd_path;
argv_index = 1;
if (o_option) {
argv[argv_index++] = "-o";
argv[argv_index++] = o_option_arg;
}
/*
* Check if we need to propagate any generic options
*/
if (df_options_len > 1)
argv[argv_index++] = df_options;
/*
* If there is a user-specified path, we pass that to the
* FS-specific df. Otherwise, we are guaranteed to have a mount
* point, since a request without a user path implies that
* we are reporting only on mounted file systems.
*/
for (i = 0; i < entries; i++) {
struct df_request *dfrp = &request_list[i];
argv[argv_index++] = (dfrp->dfr_cmd_arg == NULL)
? DFR_MOUNT_POINT(dfrp)
: dfrp->dfr_cmd_arg;
}
if (V_option) {
for (i = 0; i < argv_index-1; i++)
(void) printf("%s ", argv[i]);
(void) printf("%s\n", argv[i]);
return (0);
}
pid = fork();
if (pid == -1) {
errmsg(ERR_PERROR, "cannot fork process:");
return (1);
} else if (pid == 0) {
(void) execv(cmd_path, argv);
if (errno == ENOENT)
errmsg(ERR_NOFLAGS,
"operation not applicable for FSType %s",
fstype);
else
errmsg(ERR_PERROR, "cannot execute %s:", cmd_path);
exit(2);
}
/*
* Reap the child
*/
for (;;) {
pid_t wpid = waitpid(pid, &status, 0);
if (wpid == -1)
if (errno == EINTR)
continue;
else {
errmsg(ERR_PERROR, "waitpid error:");
return (1);
}
else
break;
}
return ((WIFEXITED(status) && WEXITSTATUS(status) == 0) ? 0 : 1);
}
/*
* Remove from the request list all requests that do not apply.
* Notice that the subsequent processing of the requests depends on
* the sanity checking performed by this function.
*/
static int
prune_list(struct df_request request_list[],
size_t n_requests,
size_t *valid_requests)
{
size_t i;
size_t n_valid = 0;
int errors = 0;
for (i = 0; i < n_requests; i++) {
struct df_request *dfrp = &request_list[i];
/*
* Skip file systems that are not mounted if either the
* -l or -n options were specified. If none of these options
* are present, the appropriate FS-specific df will be invoked.
*/
if (! DFR_ISMOUNTEDFS(dfrp)) {
if (l_option || n_option) {
errmsg(ERR_NOFLAGS,
"%s option incompatible with unmounted "
"special device (%s)",
l_option ? "-l" : "-n", dfrp->dfr_cmd_arg);
dfrp->dfr_valid = FALSE;
errors++;
}
else
n_valid++;
continue;
}
/*
* Check for inconsistency between the argument of -F and
* the actual file system type.
* If there is an inconsistency and the user specified a
* path, this is an error since we are asked to interpret
* the path using the wrong file system type. If there is
* no path associated with this request, we quietly ignore it.
*/
if (F_option && ! EQ(dfrp->dfr_fstype, FSType)) {
dfrp->dfr_valid = FALSE;
if (dfrp->dfr_cmd_arg != NULL) {
errmsg(ERR_NOFLAGS,
"Warning: %s mounted as a %s file system",
dfrp->dfr_cmd_arg, dfrp->dfr_fstype);
errors++;
}
continue;
}
/*
* Skip remote file systems if the -l option is present
*/
if (l_option && is_remote_fs(dfrp->dfr_fstype)) {
if (dfrp->dfr_cmd_arg != NULL) {
errmsg(ERR_NOFLAGS,
"Warning: %s is not a local file system",
dfrp->dfr_cmd_arg);
errors++;
}
dfrp->dfr_valid = FALSE;
continue;
}
/*
* Skip file systems mounted as "ignore" unless the -a option
* is present, or the user explicitly specified them on
* the command line.
*/
if (dfrp->dfr_mte->mte_ignore &&
! (a_option || dfrp->dfr_cmd_arg)) {
dfrp->dfr_valid = FALSE;
continue;
}
n_valid++;
}
*valid_requests = n_valid;
return (errors);
}
/*
* Print the appropriate header for the requested output format.
* Options are checked in order of their precedence.
*/
static void
print_header(void)
{
if (use_scaling) { /* this comes from the -h option */
int arg = 'h';
(void) printf("%-*s %*s %*s %*s %-*s %s\n",
FILESYSTEM_WIDTH, TRANSLATE("Filesystem"),
SCALED_WIDTH, TRANSLATE("Size"),
SCALED_WIDTH, TRANSLATE("Used"),
AVAILABLE_WIDTH, TRANSLATE("Available"),
CAPACITY_WIDTH, TRANSLATE("Capacity"),
TRANSLATE("Mounted on"));
SET_OPTION(h);
return;
}
if (k_option) {
int arg = 'h';
(void) printf(gettext("%-*s %*s %*s %*s %-*s %s\n"),
FILESYSTEM_WIDTH, TRANSLATE("Filesystem"),
KBYTE_WIDTH, TRANSLATE("1024-blocks"),
KBYTE_WIDTH, TRANSLATE("Used"),
KBYTE_WIDTH, TRANSLATE("Available"),
CAPACITY_WIDTH, TRANSLATE("Capacity"),
TRANSLATE("Mounted on"));
SET_OPTION(h);
return;
}
if (m_option) {
int arg = 'h';
(void) printf(gettext("%-*s %*s %*s %*s %-*s %s\n"),
FILESYSTEM_WIDTH, TRANSLATE("Filesystem"),
KBYTE_WIDTH, TRANSLATE("1M-blocks"),
KBYTE_WIDTH, TRANSLATE("Used"),
KBYTE_WIDTH, TRANSLATE("Available"),
CAPACITY_WIDTH, TRANSLATE("Capacity"),
TRANSLATE("Mounted on"));
SET_OPTION(h);
return;
}
/* Added for XCU4 compliance */
if (P_option) {
int arg = 'h';
(void) printf(gettext("%-*s %*s %*s %*s %-*s %s\n"),
FILESYSTEM_WIDTH, TRANSLATE("Filesystem"),
KBYTE_WIDTH, TRANSLATE("512-blocks"),
KBYTE_WIDTH, TRANSLATE("Used"),
KBYTE_WIDTH, TRANSLATE("Available"),
CAPACITY_WIDTH, TRANSLATE("Capacity"),
TRANSLATE("Mounted on"));
SET_OPTION(h);
return;
}
/* End XCU4 */
if (v_option) {
(void) printf("%-*s %-*s %*s %*s %*s %-*s\n",
IBCS2_MOUNT_POINT_WIDTH, TRANSLATE("Mount Dir"),
IBCS2_FILESYSTEM_WIDTH, TRANSLATE("Filesystem"),
BLOCK_WIDTH, TRANSLATE("blocks"),
BLOCK_WIDTH, TRANSLATE("used"),
BLOCK_WIDTH, TRANSLATE("free"),
CAPACITY_WIDTH, TRANSLATE(" %used"));
return;
}
if (e_option) {
(void) printf(gettext("%-*s %*s\n"),
FILESYSTEM_WIDTH, TRANSLATE("Filesystem"),
BLOCK_WIDTH, TRANSLATE("ifree"));
return;
}
if (b_option) {
(void) printf(gettext("%-*s %*s\n"),
FILESYSTEM_WIDTH, TRANSLATE("Filesystem"),
BLOCK_WIDTH, TRANSLATE("avail"));
return;
}
}
/*
* Convert an unsigned long long to a string representation and place the
* result in the caller-supplied buffer.
* The given number is in units of "unit_from" size, but the
* converted number will be in units of "unit_to" size. The unit sizes
* must be powers of 2.
* The value "(unsigned long long)-1" is a special case and is always
* converted to "-1".
* Returns a pointer to the caller-supplied buffer.
*/
static char *
number_to_string(
char *buf, /* put the result here */
unsigned long long number, /* convert this number */
int unit_from, /* from units of this size */
int unit_to) /* to units of this size */
{
if ((long long)number == (long long)-1)
(void) strcpy(buf, "-1");
else {
if (unit_from == unit_to)
(void) sprintf(buf, "%llu", number);
else if (unit_from < unit_to)
(void) sprintf(buf, "%llu",
number / (unsigned long long)(unit_to / unit_from));
else
(void) sprintf(buf, "%llu",
number * (unsigned long long)(unit_from / unit_to));
}
return (buf);
}
/*
* Convert an unsigned long long to a string representation and place the
* result in the caller-supplied buffer.
* The given number is in units of "unit_from" size,
* this will first be converted to a number in 1024 or 1000 byte size,
* depending on the scaling factor.
* Then the number is scaled down until it is small enough to be in a good
* human readable format i.e. in the range 0 thru scale-1.
* If it's smaller than 10 there's room enough to provide one decimal place.
* The value "(unsigned long long)-1" is a special case and is always
* converted to "-1".
* Returns a pointer to the caller-supplied buffer.
*/
static char *
number_to_scaled_string(
numbuf_t buf, /* put the result here */
unsigned long long number, /* convert this number */
int unit_from,
int scale)
{
unsigned long long save = 0;
char *M = "KMGTPE"; /* Measurement: kilo, mega, giga, tera, peta, exa */
char *uom = M; /* unit of measurement, initially 'K' (=M[0]) */
if ((long long)number == (long long)-1) {
(void) strcpy(buf, "-1");
return (buf);
}
/*
* Convert number from unit_from to given scale (1024 or 1000).
* This means multiply number by unit_from and divide by scale.
*
* Would like to multiply by unit_from and then divide by scale,
* but if the first multiplication would overflow, then need to
* divide by scale and then multiply by unit_from.
*/
if (number > (UINT64_MAX / (unsigned long long)unit_from)) {
number = (number / (unsigned long long)scale) *
(unsigned long long)unit_from;
} else {
number = (number * (unsigned long long)unit_from) /
(unsigned long long)scale;
}
/*
* Now we have number as a count of scale units.
* Stop scaling when we reached exa bytes, then something is
* probably wrong with our number.
*/
while ((number >= scale) && (*uom != 'E')) {
uom++; /* next unit of measurement */
save = number;
number = (number + (scale / 2)) / scale;
}
/* check if we should output a decimal place after the point */
if (save && ((save / scale) < 10)) {
/* sprintf() will round for us */
float fnum = (float)save / scale;
(void) sprintf(buf, "%2.1f%c", fnum, *uom);
} else {
(void) sprintf(buf, "%4llu%c", number, *uom);
}
return (buf);
}
/*
* The statvfs() implementation allows us to return only two values, the total
* number of blocks and the number of blocks free. The equation 'used = total -
* free' will not work for ZFS filesystems, due to the nature of pooled storage.
* We choose to return values in the statvfs structure that will produce correct
* results for 'used' and 'available', but not 'total'. This function will open
* the underlying ZFS dataset if necessary and get the real value.
*/
static void
adjust_total_blocks(struct df_request *dfrp, fsblkcnt64_t *total,
uint64_t blocksize)
{
char *dataset, *slash;
boolean_t first = TRUE;
uint64_t quota = 0;
if (strcmp(DFR_FSTYPE(dfrp), MNTTYPE_ZFS) != 0 || !load_libzfs())
return;
/*
* We want to get the total size for this filesystem as bounded by any
* quotas. In order to do this, we start at the current filesystem and
* work upwards looking for the smallest quota. When we reach the
* pool itself, the quota is the amount used plus the amount
* available.
*/
if ((dataset = strdup(DFR_SPECIAL(dfrp))) == NULL)
return;
slash = dataset + strlen(dataset);
while (slash != NULL) {
zfs_handle_t *zhp;
uint64_t this_quota;
*slash = '\0';
zhp = _zfs_open(g_zfs, dataset, ZFS_TYPE_DATASET);
if (zhp == NULL)
break;
/* true at first iteration of loop */
if (first) {
quota = _zfs_prop_get_int(zhp, ZFS_PROP_REFQUOTA);
if (quota == 0)
quota = UINT64_MAX;
first = FALSE;
}
this_quota = _zfs_prop_get_int(zhp, ZFS_PROP_QUOTA);
if (this_quota && this_quota < quota)
quota = this_quota;
/* true at last iteration of loop */
if ((slash = strrchr(dataset, '/')) == NULL) {
uint64_t size;
size = _zfs_prop_get_int(zhp, ZFS_PROP_USED) +
_zfs_prop_get_int(zhp, ZFS_PROP_AVAILABLE);
if (size < quota)
quota = size;
}
_zfs_close(zhp);
}
/*
* Modify total only if we managed to get some stats from libzfs.
*/
if (quota != 0)
*total = quota / blocksize;
free(dataset);
}
/*
* The output will appear properly columnized regardless of the names of
* the various fields
*/
static void
g_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
fsblkcnt64_t available_blocks = fsp->f_bavail;
fsblkcnt64_t total_blocks = fsp->f_blocks;
numbuf_t total_blocks_buf;
numbuf_t total_files_buf;
numbuf_t free_blocks_buf;
numbuf_t available_blocks_buf;
numbuf_t free_files_buf;
numbuf_t fname_buf;
char *temp_buf;
#define DEFINE_STR_LEN(var) \
static char *var##_str; \
static size_t var##_len
#define SET_STR_LEN(name, var)\
if (! var##_str) {\
var##_str = TRANSLATE(name); \
var##_len = strlen(var##_str); \
}
DEFINE_STR_LEN(block_size);
DEFINE_STR_LEN(frag_size);
DEFINE_STR_LEN(total_blocks);
DEFINE_STR_LEN(free_blocks);
DEFINE_STR_LEN(available);
DEFINE_STR_LEN(total_files);
DEFINE_STR_LEN(free_files);
DEFINE_STR_LEN(fstype);
DEFINE_STR_LEN(fsys_id);
DEFINE_STR_LEN(fname);
DEFINE_STR_LEN(flag);
/*
* TRANSLATION_NOTE
* The first argument of each of the following macro invocations is a
* string that needs to be translated.
*/
SET_STR_LEN("block size", block_size);
SET_STR_LEN("frag size", frag_size);
SET_STR_LEN("total blocks", total_blocks);
SET_STR_LEN("free blocks", free_blocks);
SET_STR_LEN("available", available);
SET_STR_LEN("total files", total_files);
SET_STR_LEN("free files", free_files);
SET_STR_LEN("fstype", fstype);
SET_STR_LEN("filesys id", fsys_id);
SET_STR_LEN("filename length", fname);
SET_STR_LEN("flag", flag);
#define NCOL1_WIDTH (int)MAX3(BLOCK_WIDTH, NFILES_WIDTH, FSTYPE_WIDTH)
#define NCOL2_WIDTH (int)MAX3(BLOCK_WIDTH, FSID_WIDTH, FLAG_WIDTH) + 2
#define NCOL3_WIDTH (int)MAX3(BSIZE_WIDTH, BLOCK_WIDTH, NAMELEN_WIDTH)
#define NCOL4_WIDTH (int)MAX(FRAGSIZE_WIDTH, NFILES_WIDTH)
#define SCOL1_WIDTH (int)MAX3(total_blocks_len, free_files_len, fstype_len)
#define SCOL2_WIDTH (int)MAX3(free_blocks_len, fsys_id_len, flag_len)
#define SCOL3_WIDTH (int)MAX3(block_size_len, available_len, fname_len)
#define SCOL4_WIDTH (int)MAX(frag_size_len, total_files_len)
temp_buf = xmalloc(
MAX(MOUNT_POINT_WIDTH, strlen(DFR_MOUNT_POINT(dfrp)))
+ MAX(SPECIAL_DEVICE_WIDTH, strlen(DFR_SPECIAL(dfrp)))
+ 20); /* plus slop - nulls & formatting */
(void) sprintf(temp_buf, "%-*s(%-*s):",
MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp),
SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp));
(void) printf("%-*s %*lu %-*s %*lu %-*s\n",
NCOL1_WIDTH + 1 + SCOL1_WIDTH + 1 + NCOL2_WIDTH + 1 + SCOL2_WIDTH,
temp_buf,
NCOL3_WIDTH, fsp->f_bsize, SCOL3_WIDTH, block_size_str,
NCOL4_WIDTH, fsp->f_frsize, SCOL4_WIDTH, frag_size_str);
free(temp_buf);
/*
* Adjust available_blocks value - it can be less than 0 on
* a 4.x file system. Reset it to 0 in order to avoid printing
* negative numbers.
*/
if ((long long)available_blocks < (long long)0)
available_blocks = (fsblkcnt64_t)0;
adjust_total_blocks(dfrp, &total_blocks, fsp->f_frsize);
(void) printf("%*s %-*s %*s %-*s %*s %-*s %*s %-*s\n",
NCOL1_WIDTH, number_to_string(total_blocks_buf,
total_blocks, fsp->f_frsize, 512),
SCOL1_WIDTH, total_blocks_str,
NCOL2_WIDTH, number_to_string(free_blocks_buf,
fsp->f_bfree, fsp->f_frsize, 512),
SCOL2_WIDTH, free_blocks_str,
NCOL3_WIDTH, number_to_string(available_blocks_buf,
available_blocks, fsp->f_frsize, 512),
SCOL3_WIDTH, available_str,
NCOL4_WIDTH, number_to_string(total_files_buf,
fsp->f_files, 1, 1),
SCOL4_WIDTH, total_files_str);
(void) printf("%*s %-*s %*lu %-*s %s\n",
NCOL1_WIDTH, number_to_string(free_files_buf,
fsp->f_ffree, 1, 1),
SCOL1_WIDTH, free_files_str,
NCOL2_WIDTH, fsp->f_fsid, SCOL2_WIDTH, fsys_id_str,
fsp->f_fstr);
(void) printf("%*s %-*s %#*.*lx %-*s %*s %-*s\n\n",
NCOL1_WIDTH, fsp->f_basetype, SCOL1_WIDTH, fstype_str,
NCOL2_WIDTH, NCOL2_WIDTH-2, fsp->f_flag, SCOL2_WIDTH, flag_str,
NCOL3_WIDTH, number_to_string(fname_buf,
(unsigned long long)fsp->f_namemax, 1, 1),
SCOL3_WIDTH, fname_str);
}
static void
k_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
fsblkcnt64_t total_blocks = fsp->f_blocks;
fsblkcnt64_t free_blocks = fsp->f_bfree;
fsblkcnt64_t available_blocks = fsp->f_bavail;
fsblkcnt64_t used_blocks;
char *file_system = DFR_SPECIAL(dfrp);
numbuf_t total_blocks_buf;
numbuf_t used_blocks_buf;
numbuf_t available_blocks_buf;
char capacity_buf[LINEBUF_SIZE];
/*
* If the free block count is -1, don't trust anything but the total
* number of blocks.
*/
if (free_blocks == (fsblkcnt64_t)-1) {
used_blocks = (fsblkcnt64_t)-1;
(void) strcpy(capacity_buf, " 100%");
} else {
fsblkcnt64_t reserved_blocks = free_blocks - available_blocks;
used_blocks = total_blocks - free_blocks;
/*
* The capacity estimation is bogus when available_blocks is 0
* and the super-user has allocated more space. The reason
* is that reserved_blocks is inaccurate in that case, because
* when the super-user allocates space, free_blocks is updated
* but available_blocks is not (since it can't drop below 0).
*
* XCU4 and POSIX.2 require that any fractional result of the
* capacity estimation be rounded to the next highest integer,
* hence the addition of 0.5.
*/
(void) sprintf(capacity_buf, "%5.0f%%",
(total_blocks == 0) ? 0.0 :
((double)used_blocks /
(double)(total_blocks - reserved_blocks))
* 100.0 + 0.5);
}
/*
* The available_blocks can be less than 0 on a 4.x file system.
* Reset it to 0 in order to avoid printing negative numbers.
*/
if ((long long)available_blocks < (long long)0)
available_blocks = (fsblkcnt64_t)0;
/*
* Print long special device names (usually NFS mounts) in a line
* by themselves when the output is directed to a terminal.
*/
if (tty_output && strlen(file_system) > (size_t)FILESYSTEM_WIDTH) {
(void) printf("%s\n", file_system);
file_system = "";
}
adjust_total_blocks(dfrp, &total_blocks, fsp->f_frsize);
if (use_scaling) { /* comes from the -h option */
(void) printf("%-*s %*s %*s %*s %-*s %-s\n",
FILESYSTEM_WIDTH, file_system,
SCALED_WIDTH, number_to_scaled_string(total_blocks_buf,
total_blocks, fsp->f_frsize, scale),
SCALED_WIDTH, number_to_scaled_string(used_blocks_buf,
used_blocks, fsp->f_frsize, scale),
AVAILABLE_WIDTH, number_to_scaled_string(available_blocks_buf,
available_blocks, fsp->f_frsize, scale),
CAPACITY_WIDTH, capacity_buf,
DFR_MOUNT_POINT(dfrp));
return;
}
if (v_option) {
(void) printf("%-*.*s %-*.*s %*lld %*lld %*lld %-.*s\n",
IBCS2_MOUNT_POINT_WIDTH, IBCS2_MOUNT_POINT_WIDTH,
DFR_MOUNT_POINT(dfrp),
IBCS2_FILESYSTEM_WIDTH, IBCS2_FILESYSTEM_WIDTH, file_system,
BLOCK_WIDTH, total_blocks,
BLOCK_WIDTH, used_blocks,
BLOCK_WIDTH, available_blocks,
CAPACITY_WIDTH, capacity_buf);
return;
}
if (P_option && !k_option && !m_option) {
(void) printf("%-*s %*s %*s %*s %-*s %-s\n",
FILESYSTEM_WIDTH, file_system,
KBYTE_WIDTH, number_to_string(total_blocks_buf,
total_blocks, fsp->f_frsize, 512),
KBYTE_WIDTH, number_to_string(used_blocks_buf,
used_blocks, fsp->f_frsize, 512),
KBYTE_WIDTH, number_to_string(available_blocks_buf,
available_blocks, fsp->f_frsize, 512),
CAPACITY_WIDTH, capacity_buf,
DFR_MOUNT_POINT(dfrp));
} else if (m_option) {
(void) printf("%-*s %*s %*s %*s %-*s %-s\n",
FILESYSTEM_WIDTH, file_system,
KBYTE_WIDTH, number_to_string(total_blocks_buf,
total_blocks, fsp->f_frsize, 1024*1024),
KBYTE_WIDTH, number_to_string(used_blocks_buf,
used_blocks, fsp->f_frsize, 1024*1024),
KBYTE_WIDTH, number_to_string(available_blocks_buf,
available_blocks, fsp->f_frsize, 1024*1024),
CAPACITY_WIDTH, capacity_buf,
DFR_MOUNT_POINT(dfrp));
} else {
(void) printf("%-*s %*s %*s %*s %-*s %-s\n",
FILESYSTEM_WIDTH, file_system,
KBYTE_WIDTH, number_to_string(total_blocks_buf,
total_blocks, fsp->f_frsize, 1024),
KBYTE_WIDTH, number_to_string(used_blocks_buf,
used_blocks, fsp->f_frsize, 1024),
KBYTE_WIDTH, number_to_string(available_blocks_buf,
available_blocks, fsp->f_frsize, 1024),
CAPACITY_WIDTH, capacity_buf,
DFR_MOUNT_POINT(dfrp));
}
}
/*
* The following is for internationalization support.
*/
static bool_int strings_initialized;
static char *files_str;
static char *blocks_str;
static char *total_str;
static char *kilobytes_str;
static void
strings_init(void)
{
total_str = TRANSLATE("total");
files_str = TRANSLATE("files");
blocks_str = TRANSLATE("blocks");
kilobytes_str = TRANSLATE("kilobytes");
strings_initialized = TRUE;
}
#define STRINGS_INIT() if (!strings_initialized) strings_init()
static void
t_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
fsblkcnt64_t total_blocks = fsp->f_blocks;
numbuf_t total_blocks_buf;
numbuf_t total_files_buf;
numbuf_t free_blocks_buf;
numbuf_t free_files_buf;
STRINGS_INIT();
adjust_total_blocks(dfrp, &total_blocks, fsp->f_frsize);
(void) printf("%-*s(%-*s): %*s %s %*s %s\n",
MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp),
SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp),
BLOCK_WIDTH, number_to_string(free_blocks_buf,
fsp->f_bfree, fsp->f_frsize, 512),
blocks_str,
NFILES_WIDTH, number_to_string(free_files_buf,
fsp->f_ffree, 1, 1),
files_str);
/*
* The total column used to use the same space as the mnt pt & special
* dev fields. However, this doesn't work with massive special dev
* fields * (eg > 500 chars) causing an enormous amount of white space
* before the total column (see bug 4100411). So the code was
* simplified to set the total column at the usual gap.
* This had the side effect of fixing a bug where the previously
* used static buffer was overflowed by the same massive special dev.
*/
(void) printf("%*s: %*s %s %*s %s\n",
MNT_SPEC_WIDTH, total_str,
BLOCK_WIDTH, number_to_string(total_blocks_buf,
total_blocks, fsp->f_frsize, 512),
blocks_str,
NFILES_WIDTH, number_to_string(total_files_buf,
fsp->f_files, 1, 1),
files_str);
}
static void
eb_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
numbuf_t free_files_buf;
numbuf_t free_kbytes_buf;
STRINGS_INIT();
(void) printf("%-*s(%-*s): %*s %s\n",
MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp),
SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp),
MAX(KBYTE_WIDTH, NFILES_WIDTH),
number_to_string(free_kbytes_buf,
fsp->f_bfree, fsp->f_frsize, 1024),
kilobytes_str);
(void) printf("%-*s(%-*s): %*s %s\n",
MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp),
SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp),
MAX(NFILES_WIDTH, NFILES_WIDTH),
number_to_string(free_files_buf, fsp->f_ffree, 1, 1),
files_str);
}
static void
e_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
numbuf_t free_files_buf;
(void) printf("%-*s %*s\n",
FILESYSTEM_WIDTH, DFR_SPECIAL(dfrp),
NFILES_WIDTH,
number_to_string(free_files_buf, fsp->f_ffree, 1, 1));
}
static void
b_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
numbuf_t free_blocks_buf;
(void) printf("%-*s %*s\n",
FILESYSTEM_WIDTH, DFR_SPECIAL(dfrp),
BLOCK_WIDTH, number_to_string(free_blocks_buf,
fsp->f_bfree, fsp->f_frsize, 1024));
}
/* ARGSUSED */
static void
n_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
(void) printf("%-*s: %-*s\n",
MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp),
FSTYPE_WIDTH, dfrp->dfr_fstype);
}
static void
default_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
numbuf_t free_blocks_buf;
numbuf_t free_files_buf;
STRINGS_INIT();
(void) printf("%-*s(%-*s):%*s %s %*s %s\n",
MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp),
SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp),
BLOCK_WIDTH, number_to_string(free_blocks_buf,
fsp->f_bfree, fsp->f_frsize, 512),
blocks_str,
NFILES_WIDTH, number_to_string(free_files_buf,
fsp->f_ffree, 1, 1),
files_str);
}
/* ARGSUSED */
static void
V_output(struct df_request *dfrp, struct statvfs64 *fsp)
{
char temp_buf[LINEBUF_SIZE];
if (df_options_len > 1)
(void) strcat(strcpy(temp_buf, df_options), " ");
else
temp_buf[0] = NUL;
(void) printf("%s -F %s %s%s\n",
program_name, dfrp->dfr_fstype, temp_buf,
dfrp->dfr_cmd_arg ? dfrp->dfr_cmd_arg: DFR_SPECIAL(dfrp));
}
/*
* This function is used to sort the array of df_requests according to fstype
*/
static int
df_reqcomp(const void *p1, const void *p2)
{
int v = strcmp(DFRP(p1)->dfr_fstype, DFRP(p2)->dfr_fstype);
if (v != 0)
return (v);
else
return (DFRP(p1)->dfr_index - DFRP(p2)->dfr_index);
}
static void
vfs_error(char *file, int status)
{
if (status == VFS_TOOLONG)
errmsg(ERR_NOFLAGS, "a line in %s exceeds %d characters",
file, MNT_LINE_MAX);
else if (status == VFS_TOOMANY)
errmsg(ERR_NOFLAGS, "a line in %s has too many fields", file);
else if (status == VFS_TOOFEW)
errmsg(ERR_NOFLAGS, "a line in %s has too few fields", file);
else
errmsg(ERR_NOFLAGS, "error while reading %s: %d", file, status);
}
/*
* Try to determine the fstype for the specified block device.
* Return in order of decreasing preference:
* file system type from vfstab
* file system type as specified by -F option
* default file system type
*/
static char *
find_fstype(char *special)
{
struct vfstab vtab;
FILE *fp;
int status;
char *vfstab_file = VFS_TAB;
fp = xfopen(vfstab_file);
status = getvfsspec(fp, &vtab, special);
(void) fclose(fp);
if (status > 0)
vfs_error(vfstab_file, status);
if (status == 0) {
if (F_option && ! EQ(FSType, vtab.vfs_fstype))
errmsg(ERR_NOFLAGS,
"warning: %s is of type %s", special, vtab.vfs_fstype);
return (new_string(vtab.vfs_fstype));
}
else
return (F_option ? FSType : default_fstype(special));
}
/*
* When this function returns, the following fields are filled for all
* valid entries in the requests[] array:
* dfr_mte (if the file system is mounted)
* dfr_fstype
* dfr_index
*
* The function returns the number of errors that occurred while building
* the request list.
*/
static int
create_request_list(
int argc,
char *argv[],
struct df_request *requests_p[],
size_t *request_count)
{
struct df_request *requests;
struct df_request *dfrp;
size_t size;
size_t i;
size_t request_index = 0;
size_t max_requests;
int errors = 0;
/*
* If no args, use the mounted file systems, otherwise use the
* user-specified arguments.
*/
if (argc == 0) {
mtab_read_file();
max_requests = mount_table_entries;
} else
max_requests = argc;
size = max_requests * sizeof (struct df_request);
requests = xmalloc(size);
(void) memset(requests, 0, size);
if (argc == 0) {
/*
* If -Z wasn't specified, we skip mounts in other
* zones. This obviously is a noop in a non-global
* zone.
*/
boolean_t showall = (getzoneid() != GLOBAL_ZONEID) || Z_option;
struct zone_summary *zsp;
if (!showall) {
zsp = fs_get_zone_summaries();
if (zsp == NULL)
errmsg(ERR_FATAL,
"unable to retrieve list of zones");
}
for (i = 0; i < mount_table_entries; i++) {
struct extmnttab *mtp = mount_table[i].mte_mount;
if (EQ(mtp->mnt_fstype, MNTTYPE_SWAP))
continue;
if (!showall) {
if (fs_mount_in_other_zone(zsp,
mtp->mnt_mountp))
continue;
}
dfrp = &requests[request_index++];
dfrp->dfr_mte = &mount_table[i];
dfrp->dfr_fstype = mtp->mnt_fstype;
dfrp->dfr_index = i;
dfrp->dfr_valid = TRUE;
}
} else {
struct stat64 *arg_stat; /* array of stat structures */
bool_int *valid_stat; /* which structures are valid */
arg_stat = xmalloc(argc * sizeof (struct stat64));
valid_stat = xmalloc(argc * sizeof (bool_int));
/*
* Obtain stat64 information for each argument before
* constructing the list of mounted file systems. By
* touching all these places we force the automounter
* to establish any mounts required to access the arguments,
* so that the corresponding mount table entries will exist
* when we look for them.
* It is still possible that the automounter may timeout
* mounts between the time we read the mount table and the
* time we process the request. Even in that case, when
* we issue the statvfs64(2) for the mount point, the file
* system will be mounted again. The only problem will
* occur if the automounter maps change in the meantime
* and the mount point is eliminated.
*/
for (i = 0; i < argc; i++)
valid_stat[i] = (stat64(argv[i], &arg_stat[i]) == 0);
mtab_read_file();
for (i = 0; i < argc; i++) {
char *arg = argv[i];
dfrp = &requests[request_index];
dfrp->dfr_index = request_index;
dfrp->dfr_cmd_arg = arg;
if (valid_stat[i]) {
dfrp->dfr_fstype = arg_stat[i].st_fstype;
if (S_ISBLK(arg_stat[i].st_mode)) {
bdev_mount_entry(dfrp);
dfrp->dfr_valid = TRUE;
} else if (S_ISDIR(arg_stat[i].st_mode) ||
S_ISREG(arg_stat[i].st_mode) ||
S_ISFIFO(arg_stat[i].st_mode)) {
path_mount_entry(dfrp,
arg_stat[i].st_dev);
if (! DFR_ISMOUNTEDFS(dfrp)) {
errors++;
continue;
}
dfrp->dfr_valid = TRUE;
}
} else {
resource_mount_entry(dfrp);
dfrp->dfr_valid = DFR_ISMOUNTEDFS(dfrp);
}
/*
* If we haven't managed to verify that the request
* is valid, we must have gotten a bad argument.
*/
if (!dfrp->dfr_valid) {
errmsg(ERR_NOFLAGS,
"(%-10s) not a block device, directory or "
"mounted resource", arg);
errors++;
continue;
}
/*
* Determine the file system type.
*/
if (DFR_ISMOUNTEDFS(dfrp))
dfrp->dfr_fstype =
dfrp->dfr_mte->mte_mount->mnt_fstype;
else
dfrp->dfr_fstype =
find_fstype(dfrp->dfr_cmd_arg);
request_index++;
}
}
*requests_p = requests;
*request_count = request_index;
return (errors);
}
/*
* Select the appropriate function and flags to use for output.
* Notice that using both -e and -b options produces a different form of
* output than either of those two options alone; this is the behavior of
* the SVR4 df.
*/
static struct df_output *
select_output(void)
{
static struct df_output dfo;
/*
* The order of checking options follows the option precedence
* rules as they are listed in the man page.
*/
if (use_scaling) { /* comes from the -h option */
dfo.dfo_func = k_output;
dfo.dfo_flags = DFO_HEADER + DFO_STATVFS;
} else if (V_option) {
dfo.dfo_func = V_output;
dfo.dfo_flags = DFO_NOFLAGS;
} else if (g_option) {
dfo.dfo_func = g_output;
dfo.dfo_flags = DFO_STATVFS;
} else if (k_option || m_option || P_option || v_option) {
dfo.dfo_func = k_output;
dfo.dfo_flags = DFO_HEADER + DFO_STATVFS;
} else if (t_option) {
dfo.dfo_func = t_output;
dfo.dfo_flags = DFO_STATVFS;
} else if (b_option && e_option) {
dfo.dfo_func = eb_output;
dfo.dfo_flags = DFO_STATVFS;
} else if (b_option) {
dfo.dfo_func = b_output;
dfo.dfo_flags = DFO_HEADER + DFO_STATVFS;
} else if (e_option) {
dfo.dfo_func = e_output;
dfo.dfo_flags = DFO_HEADER + DFO_STATVFS;
} else if (n_option) {
dfo.dfo_func = n_output;
dfo.dfo_flags = DFO_NOFLAGS;
} else {
dfo.dfo_func = default_output;
dfo.dfo_flags = DFO_STATVFS;
}
return (&dfo);
}
/*
* The (argc,argv) pair contains all the non-option arguments
*/
static void
do_df(int argc, char *argv[])
{
size_t i;
struct df_request *requests; /* array of requests */
size_t n_requests;
struct df_request *dfrp;
int errors;
errors = create_request_list(argc, argv, &requests, &n_requests);
if (n_requests == 0)
exit(errors);
/*
* If we are going to run the FSType-specific df command,
* rearrange the requests so that we can issue a single command
* per file system type.
*/
if (o_option) {
size_t j;
/*
* qsort is not a stable sorting method (i.e. requests of
* the same file system type may be swapped, and hence appear
* in the output in a different order from the one in which
* they were listed in the command line). In order to force
* stability, we use the dfr_index field which is unique
* for each request.
*/
qsort(requests,
n_requests, sizeof (struct df_request), df_reqcomp);
for (i = 0; i < n_requests; i = j) {
char *fstype = requests[i].dfr_fstype;
for (j = i+1; j < n_requests; j++)
if (! EQ(fstype, requests[j].dfr_fstype))
break;
/*
* At this point, requests in the range [i,j) are
* of the same type.
*
* If the -F option was used, and the user specified
* arguments, the filesystem types must match
*
* XXX: the alternative of doing this check here is to
* invoke prune_list, but then we have to
* modify this code to ignore invalid requests.
*/
if (F_option && ! EQ(fstype, FSType)) {
size_t k;
for (k = i; k < j; k++) {
dfrp = &requests[k];
if (dfrp->dfr_cmd_arg != NULL) {
errmsg(ERR_NOFLAGS,
"Warning: %s mounted as a "
"%s file system",
dfrp->dfr_cmd_arg,
dfrp->dfr_fstype);
errors++;
}
}
} else
errors += run_fs_specific_df(&requests[i], j-i);
}
} else {
size_t valid_requests;
/*
* We have to prune the request list to avoid printing a header
* if there are no valid requests
*/
errors += prune_list(requests, n_requests, &valid_requests);
if (valid_requests) {
struct df_output *dfop = select_output();
/* indicates if we already printed out a header line */
int printed_header = 0;
for (i = 0; i < n_requests; i++) {
dfrp = &requests[i];
if (! dfrp->dfr_valid)
continue;
/*
* If we don't have a mount point,
* this must be a block device.
*/
if (DFR_ISMOUNTEDFS(dfrp)) {
struct statvfs64 stvfs;
if ((dfop->dfo_flags & DFO_STATVFS) &&
statvfs64(DFR_MOUNT_POINT(dfrp),
&stvfs) == -1) {
errmsg(ERR_PERROR,
"cannot statvfs %s:",
DFR_MOUNT_POINT(dfrp));
errors++;
continue;
}
if ((!printed_header) &&
(dfop->dfo_flags & DFO_HEADER)) {
print_header();
printed_header = 1;
}
(*dfop->dfo_func)(dfrp, &stvfs);
} else {
/*
* -h option only works for
* mounted filesystems
*/
if (use_scaling) {
errmsg(ERR_NOFLAGS,
"-h option incompatible with unmounted special device (%s)",
dfrp->dfr_cmd_arg);
errors++;
continue;
}
errors += run_fs_specific_df(dfrp, 1);
}
}
}
}
exit(errors);
}
/*
* The rest of this file implements the devnm command
*/
static char *
find_dev_name(char *file, dev_t dev)
{
struct df_request dfreq;
dfreq.dfr_cmd_arg = file;
dfreq.dfr_fstype = 0;
dfreq.dfr_mte = NULL;
path_mount_entry(&dfreq, dev);
return (DFR_ISMOUNTEDFS(&dfreq) ? DFR_SPECIAL(&dfreq) : NULL);
}
static void
do_devnm(int argc, char *argv[])
{
int arg;
int errors = 0;
char *dev_name;
if (argc == 1)
errmsg(ERR_NONAME, "Usage: %s name ...", DEVNM_CMD);
mtab_read_file();
for (arg = 1; arg < argc; arg++) {
char *file = argv[arg];
struct stat64 st;
if (stat64(file, &st) == -1) {
errmsg(ERR_PERROR, "%s: ", file);
errors++;
continue;
}
if (! is_remote_fs(st.st_fstype) &&
! EQ(st.st_fstype, MNTTYPE_TMPFS) &&
(dev_name = find_dev_name(file, st.st_dev)))
(void) printf("%s %s\n", dev_name, file);
else
errmsg(ERR_NOFLAGS,
"%s not found", file);
}
exit(errors);
/* NOTREACHED */
}