linpack.c revision 60c45ed01d4f99571d468c42f609d11a099fab1e
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc.
* All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include <externs.h>
#include <fp.h>
#include <fps_ereport.h>
#include <fpstestmsg.h>
#include <linpack.h>
#ifdef __i386
#include "/shared/dp/mercury/latest/prod/include/cc/sunperf.h"
#else
#include <sunperf.h>
#endif
double fabs(double x);
extern void ___pl_dss_set_chip_cache_(int *cache_size);
static double dran(int iseed[4]);
static int LINSUB(REAL * residn, REAL * resid,
REAL * eps, REAL * x11, REAL * xn1, int fps_verbose_msg);
static int MATGEN(REAL a[], int lda, int n, REAL b[], REAL * norma);
static REAL EPSLON(REAL x);
static void MXPY(int n1, REAL y[], int n2, int ldm, REAL x[], REAL m[]);
extern int errno;
static int LAPACK_ECACHE_SIZE = 8 * 1024 * 1024;
static int MAT_SIZE;
/*
* LINPACK(int Stress, int unit, struct fps_test_ereport *report,
* int fps_verbose_msg)
* performs the single and double precision lapack test. If an
* error is found, relevant data is collected and stored in report.
*/
int
LINPACK(int Stress, int unit, struct fps_test_ereport *report,
int fps_verbose_msg)
{
char err_data[MAX_INFO_SIZE];
char l_buf[64];
int c_index;
int ret;
REAL eps;
REAL resid;
REAL residn;
REAL x11;
REAL xn1;
REAL EPS;
REAL RESID;
REAL RESIDN;
REAL X11;
REAL XN1;
uint64_t expected[5];
uint64_t observed[5];
#ifdef FPS_LAPA_UNK
#ifndef DP
if (Stress > 1000)
return (0);
#endif /* DP */
#endif /* FPS_LAPA_UNK */
if (Stress > 10000)
return (0);
/*
* make sure is no dependency on the E$ size Without this call the
* computed results will depend on the size of the E$ (
* sos10/libsunperf ) IIIi computed results != IV+/IV/III+/III ...
*/
___pl_dss_set_chip_cache_(&LAPACK_ECACHE_SIZE);
c_index = Stress;
if (2000 == c_index)
c_index = 1001;
if (3000 == c_index)
c_index = 1002;
if (4016 == c_index)
c_index = 1003;
if (5000 == c_index)
c_index = 1004;
if (6000 == c_index)
c_index = 1005;
if (7016 == c_index)
c_index = 1006;
if (8034 == c_index)
c_index = 1007;
if (9000 == c_index)
c_index = 1008;
if (10000 == c_index)
c_index = 1009;
(void) snprintf(l_buf, 63, "%s(%d,cpu=%d)", PREC, Stress, unit);
fps_msg(fps_verbose_msg, gettext(FPSM_02), l_buf, unit);
MAT_SIZE = Stress;
ret = LINSUB(&residn, &resid, &eps, &x11, &xn1, fps_verbose_msg);
if (2 == ret) {
if (errno == EAGAIN || errno == ENOMEM)
_exit(FPU_SYSCALL_TRYAGAIN);
else
_exit(FPU_SYSCALL_FAIL);
}
#ifdef FPS_LAPA_UNK
RESIDN = RESID = X11 = XN1 = 0.0000000000000000e+00;
#ifdef DP
EPS = 2.2204460492503131e-16;
#else /* DP */
EPS = 1.1920928955078125e-07;
#endif /* DP */
#else /* FPS_LAPA_UNK */
RESIDN = LinpValsA[c_index].residn;
RESID = LinpValsA[c_index].resid;
EPS = LinpValsA[c_index].eps;
X11 = LinpValsA[c_index].x11;
XN1 = LinpValsA[c_index].xn1;
#endif /* FPS_LAPA_UNK */
if ((residn == RESIDN) && (resid == RESID) && (eps == EPS) &&
(x11 == X11) && (xn1 == XN1)) {
return (0);
} else {
snprintf(err_data, sizeof (err_data),
"\nExpected: %.16e, %.16e, %.16e, %.16e, %.16e"
"\nObserved: %.16e, %.16e, %.16e, %.16e, %.16e",
RESIDN, RESID, EPS, X11, XN1, residn, resid, eps, x11, xn1);
#ifdef DP
observed[0] = *(uint64_t *)&residn;
observed[1] = *(uint64_t *)&resid;
observed[2] = *(uint64_t *)&eps;
observed[3] = *(uint64_t *)&x11;
observed[4] = *(uint64_t *)&xn1;
expected[0] = *(uint64_t *)&RESIDN;
expected[1] = *(uint64_t *)&RESID;
expected[2] = *(uint64_t *)&EPS;
expected[3] = *(uint64_t *)&X11;
expected[4] = *(uint64_t *)&XN1;
setup_fps_test_struct(IS_EREPORT_INFO, report,
6317, &observed, &expected, 5, 5, err_data);
#else
observed[0] = (uint64_t)(*(uint32_t *)&residn);
observed[1] = (uint64_t)(*(uint32_t *)&resid);
observed[2] = (uint64_t)(*(uint32_t *)&eps);
observed[3] = (uint64_t)(*(uint32_t *)&x11);
observed[4] = (uint64_t)(*(uint32_t *)&xn1);
expected[0] = (uint64_t)(*(uint32_t *)&RESIDN);
expected[1] = (uint64_t)(*(uint32_t *)&RESID);
expected[2] = (uint64_t)(*(uint32_t *)&EPS);
expected[3] = (uint64_t)(*(uint32_t *)&X11);
expected[4] = (uint64_t)(*(uint32_t *)&XN1);
setup_fps_test_struct(IS_EREPORT_INFO, report,
6316, &observed, &expected, 5, 5, err_data);
#endif
return (-1);
}
}
/*
* LINSUB(REAL *residn, REAL *resid, REAL *eps,
* REAL *x11, REAL *xn1, int fps_verbose_msg)begins
* the lapack calculation calls.
*/
static int
LINSUB(REAL *residn, REAL *resid,
REAL *eps, REAL *x11, REAL *xn1,
int fps_verbose_msg)
{
int i;
int lda;
int n;
int nr_malloc;
REAL *a;
REAL abs;
REAL *b;
REAL norma;
REAL normx;
REAL *x;
struct timeval timeout;
long info;
long *ipvt;
timeout.tv_sec = 0;
timeout.tv_usec = 10000; /* microseconds, 10ms */
nr_malloc = 0;
mallocAgain:
a = (REAL *) malloc((MAT_SIZE + 8) * (MAT_SIZE + 1) *
(size_t)sizeof (REAL));
b = (REAL *) malloc(MAT_SIZE * (size_t)sizeof (REAL));
x = (REAL *) malloc(MAT_SIZE * (size_t)sizeof (REAL));
ipvt = (long *)malloc(MAT_SIZE * (size_t)sizeof (long));
if ((NULL == a) || (NULL == b) ||
(NULL == x) || (NULL == ipvt)) {
if (NULL != a)
free(a);
if (NULL != b)
free(b);
if (NULL != x)
free(x);
if (NULL != ipvt)
free(ipvt);
/* sleep 10 ms. wait for 100 ms */
if (nr_malloc++ < 11) {
(void) select(1, NULL, NULL, NULL, &timeout);
goto mallocAgain;
}
fps_msg(fps_verbose_msg,
"Malloc failed in lapack, matrix size %d",
MAT_SIZE);
return (2);
}
lda = MAT_SIZE + 8;
n = MAT_SIZE;
(void) MATGEN(a, lda, n, b, &norma);
GEFA(n, n, a, lda, ipvt, &info);
GESL('N', n, 1, a, lda, ipvt, b, n, &info);
free(ipvt);
for (i = 0; i < n; i++) {
x[i] = b[i];
}
(void) MATGEN((REAL *) a, lda, n, b, &norma);
for (i = 0; i < n; i++) {
b[i] = -b[i];
}
MXPY(n, b, n, lda, x, (REAL *) a);
free(a);
*resid = 0.0;
normx = 0.0;
for (i = 0; i < n; i++) {
abs = (REAL)fabs((double)b[i]);
*resid = (*resid > abs) ? *resid : abs;
abs = (REAL)fabs((double)x[i]);
normx = (normx > abs) ? normx : abs;
}
free(b);
*eps = EPSLON((REAL) LP_ONE);
*residn = *resid / (n * norma * normx * (*eps));
*x11 = x[0] - 1;
*xn1 = x[n - 1] - 1;
free(x);
return (0);
}
/*
* dran(int iseed[4]) returns a random real number from a
* uniform (0,1) distribution.
*/
static double
dran(int iseed[4])
{
double r;
double value;
int ipw2;
int it1;
int it2;
int it3;
int it4;
int m1;
int m2;
int m3;
int m4;
/* Set constants */
m1 = 494;
m2 = 322;
m3 = 2508;
m4 = 2549;
ipw2 = 4096;
r = 1.0 / ipw2;
/* multiply the seed by the multiplier modulo 2**48 */
it4 = iseed[3] * m4;
it3 = it4 / ipw2;
it4 = it4 - ipw2 * it3;
it3 = it3 + iseed[2] * m4 + iseed[3] * m3;
it2 = it3 / ipw2;
it3 = it3 - ipw2 * it2;
it2 = it2 + iseed[1] * m4 + iseed[2] * m3 + iseed[3] * m2;
it1 = it2 / ipw2;
it2 = it2 - ipw2 * it1;
it1 = it1 + iseed[0] * m4 + iseed[1] * m3 + iseed[2] * m2 +
iseed[3] * m1;
it1 = it1 % ipw2;
/* return updated seed */
iseed[0] = it1;
iseed[1] = it2;
iseed[2] = it3;
iseed[3] = it4;
/* convert 48-bit integer to a real number in the interval (0,1) */
value = r * ((double)it1 + r * ((double)it2 + r * ((double)it3 +
r * ((double)it4))));
return (value);
}
/*
* MATGEN(REAL a[], int lda, int n, REAL b[], REAL *norma)
* generates matrix a and b.
*/
#define ALPHA 1.68750
static int
MATGEN(REAL a[], int lda, int n, REAL b[], REAL *norma)
{
int i;
int init[4];
int j;
REAL value;
init[0] = 1;
init[1] = 2;
init[2] = 3;
init[3] = 1325;
*norma = LP_ZERO;
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++) {
#ifdef FPS_LAPA_UNK
a[lda*j+i] =
(i < j) ? (double)(i+1) : (double)(j+ALPHA);
if (fabs(a[lda*j+i]) > *norma)
*norma = fabs(a[lda*j+i]);
} /* i */
#else
value = (REAL) dran(init) - 0.5;
a[lda * j + i] = value;
value = fabs(value);
if (value > *norma) {
*norma = value;
}
} /* i */
#endif /* FPS_LAPA_UNK */
} /* j */
for (i = 0; i < n; i++) {
b[i] = LP_ZERO;
}
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++) {
b[i] = b[i] + a[lda * j + i];
}
}
return (0);
}
/*
* IAMAX(int n, REAL dx[])finds the index of element
* having maximum absolute value.
*/
int
IAMAX(int n, REAL dx[])
{
double abs;
double dmax;
int i;
int itemp;
if (n < 1)
return (-1);
if (n == 1)
return (0);
itemp = 0;
dmax = fabs((double)dx[0]);
for (i = 1; i < n; i++) {
abs = fabs((double)dx[i]);
if (abs > dmax) {
itemp = i;
dmax = abs;
}
}
return (itemp);
}
/*
* EPSLON(REAL x) estimates unit roundoff in
* quantities of size x.
*/
static REAL
EPSLON(REAL x)
{
REAL a;
REAL abs;
REAL b;
REAL c;
REAL eps;
a = 4.0e0 / 3.0e0;
eps = LP_ZERO;
while (eps == LP_ZERO) {
b = a - LP_ONE;
c = b + b + b;
eps = (REAL)fabs((double)(c - LP_ONE));
}
abs = (REAL)fabs((double)x);
return (eps * abs);
}
/*
* MXPY(int n1, REAL y[], int n2, int ldm, REAL x[], REAL m[])
* multiplies matrix m times vector x and add the result to
* vector y.
*/
static void
MXPY(int n1, REAL y[], int n2, int ldm, REAL x[], REAL m[])
{
int i;
int j;
int jmin;
/* cleanup odd vector */
j = n2 % 2;
if (j >= 1) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = (y[i]) + x[j] * m[ldm * j + i];
}
/* cleanup odd group of two vectors */
j = n2 % 4;
if (j >= 2) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = ((y[i])
+ x[j - 1] * m[ldm * (j - 1) + i])
+ x[j] * m[ldm * j + i];
}
/* cleanup odd group of four vectors */
j = n2 % 8;
if (j >= 4) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = ((((y[i])
+ x[j - 3] * m[ldm * (j - 3) + i])
+ x[j - 2] * m[ldm * (j - 2) + i])
+ x[j - 1] * m[ldm * (j - 1) + i])
+ x[j] * m[ldm * j + i];
}
/* cleanup odd group of eight vectors */
j = n2 % 16;
if (j >= 8) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = ((((((((y[i])
+ x[j - 7] * m[ldm * (j - 7) + i])
+ x[j - 6] * m[ldm * (j - 6) + i])
+ x[j - 5] * m[ldm * (j - 5) + i])
+ x[j - 4] * m[ldm * (j - 4) + i])
+ x[j - 3] * m[ldm * (j - 3) + i])
+ x[j - 2] * m[ldm * (j - 2) + i])
+ x[j - 1] * m[ldm * (j - 1) + i])
+ x[j] * m[ldm * j + i];
}
/* main loop - groups of sixteen vectors */
jmin = (n2 % 16) + 16;
for (j = jmin - 1; j < n2; j = j + 16) {
for (i = 0; i < n1; i++)
y[i] = ((((((((((((((((y[i])
+ x[j - 15] * m[ldm * (j - 15) + i])
+ x[j - 14] * m[ldm * (j - 14) + i])
+ x[j - 13] * m[ldm * (j - 13) + i])
+ x[j - 12] * m[ldm * (j - 12) + i])
+ x[j - 11] * m[ldm * (j - 11) + i])
+ x[j - 10] * m[ldm * (j - 10) + i])
+ x[j - 9] * m[ldm * (j - 9) + i])
+ x[j - 8] * m[ldm * (j - 8) + i])
+ x[j - 7] * m[ldm * (j - 7) + i])
+ x[j - 6] * m[ldm * (j - 6) + i])
+ x[j - 5] * m[ldm * (j - 5) + i])
+ x[j - 4] * m[ldm * (j - 4) + i])
+ x[j - 3] * m[ldm * (j - 3) + i])
+ x[j - 2] * m[ldm * (j - 2) + i])
+ x[j - 1] * m[ldm * (j - 1) + i])
+ x[j] * m[ldm * j + i];
}
}