tree.c revision 8a40a695ee676a322b094e9afe5375567bfb51e3
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* tree.c -- routines for manipulating the prop tree
*
* the actions in escparse.y call these routines to construct
* the parse tree. these routines, in turn, call the check_X()
* routines for semantic checking.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <strings.h>
#include <alloca.h>
#include "alloc.h"
#include "out.h"
#include "stats.h"
#include "stable.h"
#include "literals.h"
#include "lut.h"
#include "esclex.h"
#include "tree.h"
#include "check.h"
#include "ptree.h"
static struct node *Root;
static char *Newname;
static struct stats *Faultcount;
static struct stats *Upsetcount;
static struct stats *Defectcount;
static struct stats *Errorcount;
static struct stats *Ereportcount;
static struct stats *SERDcount;
static struct stats *STATcount;
static struct stats *ASRUcount;
static struct stats *FRUcount;
static struct stats *Configcount;
static struct stats *Propcount;
static struct stats *Maskcount;
static struct stats *Nodecount;
static struct stats *Namecount;
static struct stats *Nodesize;
void
tree_init(void)
{
Faultcount = stats_new_counter("parser.fault", "fault decls", 1);
Upsetcount = stats_new_counter("parser.upset", "upset decls", 1);
Defectcount = stats_new_counter("parser.defect", "defect decls", 1);
Errorcount = stats_new_counter("parser.error", "error decls", 1);
Ereportcount = stats_new_counter("parser.ereport", "ereport decls", 1);
SERDcount = stats_new_counter("parser.SERD", "SERD engine decls", 1);
STATcount = stats_new_counter("parser.STAT", "STAT engine decls", 1);
ASRUcount = stats_new_counter("parser.ASRU", "ASRU decls", 1);
FRUcount = stats_new_counter("parser.FRU", "FRU decls", 1);
Configcount = stats_new_counter("parser.config", "config stmts", 1);
Propcount = stats_new_counter("parser.prop", "prop stmts", 1);
Maskcount = stats_new_counter("parser.mask", "mask stmts", 1);
Nodecount = stats_new_counter("parser.node", "nodes created", 1);
Namecount = stats_new_counter("parser.name", "names created", 1);
Nodesize =
stats_new_counter("parser.nodesize", "sizeof(struct node)", 1);
stats_counter_add(Nodesize, sizeof (struct node));
}
void
tree_fini(void)
{
stats_delete(Faultcount);
stats_delete(Upsetcount);
stats_delete(Defectcount);
stats_delete(Errorcount);
stats_delete(Ereportcount);
stats_delete(SERDcount);
stats_delete(STATcount);
stats_delete(ASRUcount);
stats_delete(FRUcount);
stats_delete(Configcount);
stats_delete(Propcount);
stats_delete(Maskcount);
stats_delete(Nodecount);
stats_delete(Namecount);
stats_delete(Nodesize);
/* free entire parse tree */
tree_free(Root);
/* free up the luts we keep for decls */
lut_free(Faults, NULL, NULL);
Faults = NULL;
lut_free(Upsets, NULL, NULL);
Upsets = NULL;
lut_free(Defects, NULL, NULL);
Defects = NULL;
lut_free(Errors, NULL, NULL);
Errors = NULL;
lut_free(Ereports, NULL, NULL);
Ereports = NULL;
lut_free(Ereportenames, NULL, NULL);
Ereportenames = NULL;
lut_free(SERDs, NULL, NULL);
SERDs = NULL;
lut_free(STATs, NULL, NULL);
STATs = NULL;
lut_free(ASRUs, NULL, NULL);
ASRUs = NULL;
lut_free(FRUs, NULL, NULL);
FRUs = NULL;
lut_free(Configs, NULL, NULL);
Configs = NULL;
Props = Lastprops = NULL;
Masks = Lastmasks = NULL;
Problems = Lastproblems = NULL;
if (Newname != NULL) {
FREE(Newname);
Newname = NULL;
}
}
struct node *
newnode(enum nodetype t, const char *file, int line)
{
struct node *ret = MALLOC(sizeof (*ret));
stats_counter_bump(Nodecount);
bzero(ret, sizeof (*ret));
ret->t = t;
ret->file = (file == NULL) ? "<nofile>" : file;
ret->line = line;
return (ret);
}
/*ARGSUSED*/
void
tree_free(struct node *root)
{
if (root == NULL)
return;
switch (root->t) {
case T_NAME:
tree_free(root->u.name.child);
tree_free(root->u.name.next);
break;
case T_FUNC:
tree_free(root->u.func.arglist);
break;
case T_AND:
case T_OR:
case T_EQ:
case T_NE:
case T_ADD:
case T_DIV:
case T_MOD:
case T_MUL:
case T_SUB:
case T_LT:
case T_LE:
case T_GT:
case T_GE:
case T_BITAND:
case T_BITOR:
case T_BITXOR:
case T_BITNOT:
case T_LSHIFT:
case T_RSHIFT:
case T_NVPAIR:
case T_ASSIGN:
case T_CONDIF:
case T_CONDELSE:
case T_LIST:
tree_free(root->u.expr.left);
tree_free(root->u.expr.right);
break;
case T_EVENT:
tree_free(root->u.event.ename);
tree_free(root->u.event.epname);
tree_free(root->u.event.eexprlist);
break;
case T_NOT:
tree_free(root->u.expr.left);
break;
case T_ARROW:
tree_free(root->u.arrow.lhs);
tree_free(root->u.arrow.nnp);
tree_free(root->u.arrow.knp);
tree_free(root->u.arrow.rhs);
break;
case T_PROP:
case T_MASK:
tree_free(root->u.stmt.np);
break;
case T_FAULT:
case T_UPSET:
case T_DEFECT:
case T_ERROR:
case T_EREPORT:
case T_ASRU:
case T_FRU:
case T_SERD:
case T_STAT:
case T_CONFIG:
tree_free(root->u.stmt.np);
if (root->u.stmt.nvpairs)
tree_free(root->u.stmt.nvpairs);
if (root->u.stmt.lutp)
lut_free(root->u.stmt.lutp, NULL, NULL);
break;
case T_TIMEVAL:
case T_NUM:
case T_QUOTE:
case T_GLOBID:
case T_NOTHING:
break;
default:
out(O_DIE,
"internal error: tree_free unexpected nodetype: %d",
root->t);
/*NOTREACHED*/
}
bzero(root, sizeof (*root));
FREE(root);
}
static int
tree_treecmp(struct node *np1, struct node *np2, enum nodetype t,
lut_cmp cmp_func)
{
if (np1 == NULL || np2 == NULL)
return (0);
if (np1->t != np2->t)
return (1);
ASSERT(cmp_func != NULL);
if (np1->t == t)
return ((*cmp_func)(np1, np2));
switch (np1->t) {
case T_NAME:
if (tree_treecmp(np1->u.name.child, np2->u.name.child, t,
cmp_func))
return (1);
return (tree_treecmp(np1->u.name.next, np2->u.name.next, t,
cmp_func));
/*NOTREACHED*/
break;
case T_FUNC:
return (tree_treecmp(np1->u.func.arglist, np2->u.func.arglist,
t, cmp_func));
/*NOTREACHED*/
break;
case T_AND:
case T_OR:
case T_EQ:
case T_NE:
case T_ADD:
case T_DIV:
case T_MOD:
case T_MUL:
case T_SUB:
case T_LT:
case T_LE:
case T_GT:
case T_GE:
case T_BITAND:
case T_BITOR:
case T_BITXOR:
case T_BITNOT:
case T_LSHIFT:
case T_RSHIFT:
case T_NVPAIR:
case T_ASSIGN:
case T_CONDIF:
case T_CONDELSE:
case T_LIST:
if (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
cmp_func))
return (1);
return (tree_treecmp(np1->u.expr.right, np2->u.expr.right, t,
cmp_func));
/*NOTREACHED*/
break;
case T_EVENT:
if (tree_treecmp(np1->u.event.ename, np2->u.event.ename, t,
cmp_func))
return (1);
if (tree_treecmp(np1->u.event.epname, np2->u.event.epname, t,
cmp_func))
return (1);
return (tree_treecmp(np1->u.event.eexprlist,
np2->u.event.eexprlist, t, cmp_func));
/*NOTREACHED*/
break;
case T_NOT:
return (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
cmp_func));
/*NOTREACHED*/
break;
case T_ARROW:
if (tree_treecmp(np1->u.arrow.lhs, np2->u.arrow.lhs, t,
cmp_func))
return (1);
if (tree_treecmp(np1->u.arrow.nnp, np2->u.arrow.nnp, t,
cmp_func))
return (1);
if (tree_treecmp(np1->u.arrow.knp, np2->u.arrow.knp, t,
cmp_func))
return (1);
return (tree_treecmp(np1->u.arrow.rhs, np2->u.arrow.rhs, t,
cmp_func));
/*NOTREACHED*/
break;
case T_PROP:
case T_MASK:
return (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t,
cmp_func));
/*NOTREACHED*/
break;
case T_FAULT:
case T_UPSET:
case T_DEFECT:
case T_ERROR:
case T_EREPORT:
case T_ASRU:
case T_FRU:
case T_SERD:
case T_STAT:
if (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t, cmp_func))
return (1);
return (tree_treecmp(np1->u.stmt.nvpairs, np2->u.stmt.nvpairs,
t, cmp_func));
/*NOTREACHED*/
break;
case T_TIMEVAL:
case T_NUM:
case T_QUOTE:
case T_GLOBID:
case T_NOTHING:
break;
default:
out(O_DIE,
"internal error: tree_treecmp unexpected nodetype: %d",
np1->t);
/*NOTREACHED*/
break;
}
return (0);
}
struct node *
tree_root(struct node *np)
{
if (np)
Root = np;
return (Root);
}
struct node *
tree_nothing(void)
{
return (newnode(T_NOTHING, L_nofile, 0));
}
struct node *
tree_expr(enum nodetype t, struct node *left, struct node *right)
{
struct node *ret;
ASSERTinfo(left != NULL || right != NULL, ptree_nodetype2str(t));
ret = newnode(t,
(left) ? left->file : right->file,
(left) ? left->line : right->line);
ret->u.expr.left = left;
ret->u.expr.right = right;
check_expr(ret);
return (ret);
}
/*
* ename_compress -- convert event class name in to more space-efficient form
*
* this routine is called after the parser has completed an "ename", which
* is that part of an event that contains the class name (like ereport.x.y.z).
* after this routine gets done with the ename, two things are true:
* 1. the ename uses only a single struct node
* 2. ename->u.name.s contains the *complete* class name, dots and all,
* entered into the string table.
*
* so in addition to saving space by using fewer struct nodes, this routine
* allows consumers of the fault tree to assume the ename is a single
* string, rather than a linked list of strings.
*/
static struct node *
ename_compress(struct node *ename)
{
char *buf;
char *cp;
int len = 0;
struct node *np;
if (ename == NULL)
return (ename);
ASSERT(ename->t == T_NAME);
if (ename->u.name.next == NULL)
return (ename); /* no compression to be applied here */
for (np = ename; np != NULL; np = np->u.name.next) {
ASSERT(np->t == T_NAME);
len++; /* room for '.' and final '\0' */
len += strlen(np->u.name.s);
}
cp = buf = alloca(len);
for (np = ename; np != NULL; np = np->u.name.next) {
ASSERT(np->t == T_NAME);
if (np != ename)
*cp++ = '.';
(void) strcpy(cp, np->u.name.s);
cp += strlen(cp);
}
ename->u.name.s = stable(buf);
tree_free(ename->u.name.next);
ename->u.name.next = NULL;
ename->u.name.last = ename;
return (ename);
}
struct node *
tree_event(struct node *ename, struct node *epname, struct node *eexprlist)
{
struct node *ret;
ASSERT(ename != NULL);
ret = newnode(T_EVENT, ename->file, ename->line);
ret->u.event.ename = ename_compress(ename);
ret->u.event.epname = epname;
ret->u.event.eexprlist = eexprlist;
check_event(ret);
return (ret);
}
struct node *
tree_name(const char *s, enum itertype it, const char *file, int line)
{
struct node *ret = newnode(T_NAME, file, line);
ASSERT(s != NULL);
stats_counter_bump(Namecount);
ret->u.name.t = N_UNSPEC;
ret->u.name.s = stable(s);
ret->u.name.it = it;
ret->u.name.last = ret;
if (it == IT_ENAME) {
/* PHASE2, possible optimization: convert to table driven */
if (s == L_fault)
ret->u.name.t = N_FAULT;
else if (s == L_upset)
ret->u.name.t = N_UPSET;
else if (s == L_defect)
ret->u.name.t = N_DEFECT;
else if (s == L_error)
ret->u.name.t = N_ERROR;
else if (s == L_ereport)
ret->u.name.t = N_EREPORT;
else if (s == L_serd)
ret->u.name.t = N_SERD;
else if (s == L_stat)
ret->u.name.t = N_STAT;
else
outfl(O_ERR, file, line, "unknown class: %s", s);
}
return (ret);
}
struct node *
tree_iname(const char *s, const char *file, int line)
{
struct node *ret;
char *ss;
char *ptr;
ASSERT(s != NULL && *s != '\0');
ss = STRDUP(s);
ptr = &ss[strlen(ss) - 1];
if (!isdigit(*ptr)) {
outfl(O_ERR, file, line,
"instanced name expected (i.e. \"x0/y1\")");
FREE(ss);
return (tree_name(s, IT_NONE, file, line));
}
while (ptr > ss && isdigit(*(ptr - 1)))
ptr--;
ret = newnode(T_NAME, file, line);
stats_counter_bump(Namecount);
ret->u.name.child = tree_num(ptr, file, line);
*ptr = '\0';
ret->u.name.t = N_UNSPEC;
ret->u.name.s = stable(ss);
ret->u.name.it = IT_NONE;
ret->u.name.last = ret;
FREE(ss);
return (ret);
}
struct node *
tree_globid(const char *s, const char *file, int line)
{
struct node *ret = newnode(T_GLOBID, file, line);
ASSERT(s != NULL);
ret->u.globid.s = stable(s);
return (ret);
}
struct node *
tree_name_append(struct node *np1, struct node *np2)
{
ASSERT(np1 != NULL && np2 != NULL);
if (np1->t != T_NAME)
outfl(O_DIE, np1->file, np1->line,
"tree_name_append: internal error (np1 type %d)", np1->t);
if (np2->t != T_NAME)
outfl(O_DIE, np2->file, np2->line,
"tree_name_append: internal error (np2 type %d)", np2->t);
ASSERT(np1->u.name.last != NULL);
np1->u.name.last->u.name.next = np2;
np1->u.name.last = np2;
return (np1);
}
/*
* tree_name_repairdash -- repair a class name that contained a dash
*
* this routine is called by the parser when a dash is encountered
* in a class name. the event protocol allows the dashes but our
* lexer considers them a separate token (arithmetic minus). an extra
* rule in the parser catches this case and calls this routine to fixup
* the last component of the class name (so far) by constructing the
* new stable entry for a name including the dash.
*/
struct node *
tree_name_repairdash(struct node *np, const char *s)
{
int len;
char *buf;
ASSERT(np != NULL && s != NULL);
if (np->t != T_NAME)
outfl(O_DIE, np->file, np->line,
"tree_name_repairdash: internal error (np type %d)",
np->t);
ASSERT(np->u.name.last != NULL);
len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
buf = MALLOC(len);
(void) snprintf(buf, len, "%s-%s", np->u.name.last->u.name.s, s);
np->u.name.last->u.name.s = stable(buf);
FREE(buf);
return (np);
}
struct node *
tree_name_repairdash2(const char *s, struct node *np)
{
int len;
char *buf;
ASSERT(np != NULL && s != NULL);
if (np->t != T_NAME)
outfl(O_DIE, np->file, np->line,
"tree_name_repairdash: internal error (np type %d)",
np->t);
ASSERT(np->u.name.last != NULL);
len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
buf = MALLOC(len);
(void) snprintf(buf, len, "%s-%s", s, np->u.name.last->u.name.s);
np->u.name.last->u.name.s = stable(buf);
FREE(buf);
return (np);
}
struct node *
tree_name_iterator(struct node *np1, struct node *np2)
{
ASSERT(np1 != NULL);
ASSERT(np2 != NULL);
ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
np1->u.name.child = np2;
check_name_iterator(np1);
return (np1);
}
struct node *
tree_timeval(const char *s, const char *suffix, const char *file, int line)
{
struct node *ret = newnode(T_TIMEVAL, file, line);
const unsigned long long *ullp;
ASSERT(s != NULL);
ASSERT(suffix != NULL);
if ((ullp = lex_s2ullp_lut_lookup(Timesuffixlut, suffix)) == NULL) {
outfl(O_ERR, file, line,
"unrecognized number suffix: %s", suffix);
/* still construct a valid timeval node so parsing continues */
ret->u.ull = 1;
} else {
ret->u.ull = (unsigned long long)strtoul(s, NULL, 0) * *ullp;
}
return (ret);
}
struct node *
tree_num(const char *s, const char *file, int line)
{
struct node *ret = newnode(T_NUM, file, line);
ret->u.ull = (unsigned long long)strtoul(s, NULL, 0);
return (ret);
}
struct node *
tree_quote(const char *s, const char *file, int line)
{
struct node *ret = newnode(T_QUOTE, file, line);
ret->u.quote.s = stable(s);
return (ret);
}
struct node *
tree_func(const char *s, struct node *np, const char *file, int line)
{
struct node *ret = newnode(T_FUNC, file, line);
ret->u.func.s = s;
ret->u.func.arglist = np;
check_func(ret);
return (ret);
}
/*
* given a list from a prop or mask statement or a function argument,
* convert all iterators to explicit iterators by inventing appropriate
* iterator names.
*/
static void
make_explicit(struct node *np, int eventonly)
{
struct node *pnp; /* component of pathname */
struct node *pnp2;
int count;
static size_t namesz;
if (Newname == NULL) {
namesz = 200;
Newname = MALLOC(namesz);
}
if (np == NULL)
return; /* all done */
switch (np->t) {
case T_ASSIGN:
case T_CONDIF:
case T_CONDELSE:
case T_NE:
case T_EQ:
case T_LT:
case T_LE:
case T_GT:
case T_GE:
case T_BITAND:
case T_BITOR:
case T_BITXOR:
case T_BITNOT:
case T_LSHIFT:
case T_RSHIFT:
case T_LIST:
case T_AND:
case T_OR:
case T_NOT:
case T_ADD:
case T_SUB:
case T_MUL:
case T_DIV:
case T_MOD:
make_explicit(np->u.expr.left, eventonly);
make_explicit(np->u.expr.right, eventonly);
break;
case T_EVENT:
make_explicit(np->u.event.epname, 0);
make_explicit(np->u.event.eexprlist, 1);
break;
case T_FUNC:
make_explicit(np->u.func.arglist, eventonly);
break;
case T_NAME:
if (eventonly)
return;
for (pnp = np; pnp != NULL; pnp = pnp->u.name.next)
if (pnp->u.name.child == NULL) {
/*
* found implicit iterator. convert
* it to an explicit iterator by
* using the name of the component
* appended with '#' and the number
* of times we've seen this same
* component name in this path so far.
*/
count = 0;
for (pnp2 = np; pnp2 != NULL;
pnp2 = pnp2->u.name.next)
if (pnp2 == pnp)
break;
else if (pnp2->u.name.s ==
pnp->u.name.s)
count++;
if (namesz < strlen(pnp->u.name.s) +
100) {
namesz = strlen(pnp->u.name.s) +
100;
FREE(Newname);
Newname = MALLOC(namesz);
}
/*
* made up interator name is:
* name#ordinal
* or
* name##ordinal
* the first one is used for vertical
* expansion, the second for horizontal.
* either way, the '#' embedded in
* the name makes it impossible to
* collide with an actual iterator
* given to us in the eversholt file.
*/
(void) snprintf(Newname, namesz,
"%s#%s%d", pnp->u.name.s,
(pnp->u.name.it == IT_HORIZONTAL) ?
"#" : "", count);
pnp->u.name.child = tree_name(Newname,
IT_NONE, pnp->file, pnp->line);
pnp->u.name.childgen = 1;
}
break;
}
}
struct node *
tree_pname(struct node *np)
{
make_explicit(np, 0);
return (np);
}
struct node *
tree_arrow(struct node *lhs, struct node *nnp, struct node *knp,
struct node *rhs)
{
struct node *ret;
ASSERT(lhs != NULL || rhs != NULL);
ret = newnode(T_ARROW,
(lhs) ? lhs->file : rhs->file,
(lhs) ? lhs->line : rhs->line);
ret->u.arrow.lhs = lhs;
ret->u.arrow.nnp = nnp;
ret->u.arrow.knp = knp;
ret->u.arrow.rhs = rhs;
make_explicit(lhs, 0);
make_explicit(rhs, 0);
check_arrow(ret);
return (ret);
}
static struct lut *
nvpair2lut(struct node *np, struct lut *lutp, enum nodetype t)
{
if (np) {
if (np->t == T_NVPAIR) {
ASSERTeq(np->u.expr.left->t, T_NAME,
ptree_nodetype2str);
check_stmt_allowed_properties(t, np, lutp);
lutp = tree_s2np_lut_add(lutp,
np->u.expr.left->u.name.s, np->u.expr.right);
} else if (np->t == T_LIST) {
lutp = nvpair2lut(np->u.expr.left, lutp, t);
lutp = nvpair2lut(np->u.expr.right, lutp, t);
} else
outfl(O_DIE, np->file, np->line,
"internal error: nvpair2lut type %s",
ptree_nodetype2str(np->t));
}
return (lutp);
}
struct lut *
tree_s2np_lut_add(struct lut *root, const char *s, struct node *np)
{
return (lut_add(root, (void *)s, (void *)np, NULL));
}
struct node *
tree_s2np_lut_lookup(struct lut *root, const char *s)
{
return (struct node *)lut_lookup(root, (void *)s, NULL);
}
struct lut *
tree_name2np_lut_add(struct lut *root, struct node *namep, struct node *np)
{
return (lut_add(root, (void *)namep, (void *)np,
(lut_cmp)tree_namecmp));
}
struct node *
tree_name2np_lut_lookup(struct lut *root, struct node *namep)
{
return (struct node *)
lut_lookup(root, (void *)namep, (lut_cmp)tree_namecmp);
}
struct node *
tree_name2np_lut_lookup_name(struct lut *root, struct node *namep)
{
return (struct node *)
lut_lookup_lhs(root, (void *)namep, (lut_cmp)tree_namecmp);
}
struct lut *
tree_event2np_lut_add(struct lut *root, struct node *enp, struct node *np)
{
return (lut_add(root, (void *)enp, (void *)np, (lut_cmp)tree_eventcmp));
}
struct node *
tree_event2np_lut_lookup(struct lut *root, struct node *enp)
{
return ((struct node *)
lut_lookup(root, (void *)enp, (lut_cmp)tree_eventcmp));
}
struct node *
tree_event2np_lut_lookup_event(struct lut *root, struct node *enp)
{
return ((struct node *)
lut_lookup_lhs(root, (void *)enp, (lut_cmp)tree_eventcmp));
}
static struct node *
dodecl(enum nodetype t, const char *file, int line,
struct node *np, struct node *nvpairs, struct lut **lutpp,
struct stats *countp, int justpath)
{
struct node *ret;
struct node *decl;
/* allocate parse tree node */
ret = newnode(t, file, line);
ret->u.stmt.np = np;
ret->u.stmt.nvpairs = nvpairs;
/*
* the global lut pointed to by lutpp (Faults, Defects, Upsets,
* Errors, Ereports, Serds, FRUs, or ASRUs) keeps the first decl.
* if this isn't the first declr, we merge the
* nvpairs into the first decl so we have a
* merged table to look up properties from.
* if this is the first time we've seen this fault,
* we add it to the global lut and start lutp
* off with any nvpairs from this declaration statement.
*/
if (justpath && (decl = tree_name2np_lut_lookup(*lutpp, np)) == NULL) {
/* this is the first time name is declared */
stats_counter_bump(countp);
*lutpp = tree_name2np_lut_add(*lutpp, np, ret);
ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
} else if (!justpath &&
(decl = tree_event2np_lut_lookup(*lutpp, np)) == NULL) {
/* this is the first time event is declared */
stats_counter_bump(countp);
*lutpp = tree_event2np_lut_add(*lutpp, np, ret);
ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
} else {
/* was declared before, just add new nvpairs to its lutp */
decl->u.stmt.lutp = nvpair2lut(nvpairs, decl->u.stmt.lutp, t);
}
return (ret);
}
/*ARGSUSED*/
static void
update_serd_refstmt(void *lhs, void *rhs, void *arg)
{
struct node *serd;
ASSERT(rhs != NULL);
serd = tree_s2np_lut_lookup(((struct node *)rhs)->u.stmt.lutp,
L_engine);
if (serd == NULL)
return;
ASSERT(serd->t == T_EVENT);
if (arg != NULL && tree_eventcmp(serd, (struct node *)arg) != 0)
return;
serd = tree_event2np_lut_lookup(SERDs, serd);
if (serd != NULL)
serd->u.stmt.flags |= STMT_REF;
}
struct node *
tree_decl(enum nodetype t, struct node *np, struct node *nvpairs,
const char *file, int line)
{
struct node *decl;
struct node *ret;
ASSERT(np != NULL);
check_type_iterator(np);
switch (t) {
case T_EVENT:
/* determine the type of event being declared */
ASSERT(np->u.event.ename->t == T_NAME);
switch (np->u.event.ename->u.name.t) {
case N_FAULT:
ret = dodecl(T_FAULT, file, line, np, nvpairs,
&Faults, Faultcount, 0);
break;
case N_UPSET:
ret = dodecl(T_UPSET, file, line, np, nvpairs,
&Upsets, Upsetcount, 0);
/* increment serd statement reference */
decl = tree_event2np_lut_lookup(Upsets, np);
update_serd_refstmt(NULL, decl, NULL);
break;
case N_DEFECT:
ret = dodecl(T_DEFECT, file, line, np, nvpairs,
&Defects, Defectcount, 0);
break;
case N_ERROR:
ret = dodecl(T_ERROR, file, line, np, nvpairs,
&Errors, Errorcount, 0);
break;
case N_EREPORT:
ret = dodecl(T_EREPORT, file, line, np, nvpairs,
&Ereports, Ereportcount, 0);
/*
* keep a lut of just the enames, so that the DE
* can subscribe to a uniqified list of event
* classes.
*/
Ereportenames =
tree_name2np_lut_add(Ereportenames,
np->u.event.ename, np);
break;
default:
outfl(O_ERR, file, line,
"tree_decl: internal error, event name type %s",
ptree_nametype2str(np->u.event.ename->u.name.t));
}
break;
case T_ENGINE:
/* determine the type of engine being declared */
ASSERT(np->u.event.ename->t == T_NAME);
switch (np->u.event.ename->u.name.t) {
case N_SERD:
ret = dodecl(T_SERD, file, line, np, nvpairs,
&SERDs, SERDcount, 0);
lut_walk(Upsets, update_serd_refstmt, np);
break;
case N_STAT:
ret = dodecl(T_STAT, file, line, np, nvpairs,
&STATs, STATcount, 0);
break;
default:
outfl(O_ERR, file, line,
"tree_decl: internal error, engine name type %s",
ptree_nametype2str(np->u.event.ename->u.name.t));
}
break;
case T_ASRU:
ret = dodecl(T_ASRU, file, line, np, nvpairs,
&ASRUs, ASRUcount, 1);
break;
case T_FRU:
ret = dodecl(T_FRU, file, line, np, nvpairs,
&FRUs, FRUcount, 1);
break;
case T_CONFIG:
/*
* config statements are different from above: they
* are not merged at all (until the configuration cache
* code does its own style of merging. and the properties
* are a free-for-all -- we don't check for allowed or
* required config properties.
*/
ret = newnode(T_CONFIG, file, line);
ret->u.stmt.np = np;
ret->u.stmt.nvpairs = nvpairs;
ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, T_CONFIG);
if (lut_lookup(Configs, np, (lut_cmp)tree_namecmp) == NULL)
stats_counter_bump(Configcount);
Configs = lut_add(Configs, (void *)np, (void *)ret, NULL);
break;
default:
out(O_DIE, "tree_decl: internal error, type %s",
ptree_nodetype2str(t));
}
return (ret);
}
/* keep backpointers in arrows to the prop they belong to (used for scoping) */
static void
set_arrow_prop(struct node *prop, struct node *np)
{
if (np == NULL)
return;
if (np->t == T_ARROW) {
np->u.arrow.prop = prop;
set_arrow_prop(prop, np->u.arrow.lhs);
/*
* no need to recurse right or handle T_LIST since
* T_ARROWs always cascade left and are at the top
* of the parse tree. (you can see this in the rule
* for "propbody" in escparse.y.)
*/
}
}
struct node *
tree_stmt(enum nodetype t, struct node *np, const char *file, int line)
{
struct node *ret = newnode(t, file, line);
struct node *pp;
int inlist = 0;
ret->u.stmt.np = np;
switch (t) {
case T_PROP:
check_proplists(t, np);
check_propnames(t, np, 0, 0);
check_propscope(np);
set_arrow_prop(ret, np);
for (pp = Props; pp; pp = pp->u.stmt.next) {
if (tree_treecmp(pp, ret, T_NAME,
(lut_cmp)tree_namecmp) == 0) {
inlist = 1;
break;
}
}
if (inlist == 0)
stats_counter_bump(Propcount);
/* "Props" is a linked list of all prop statements */
if (Lastprops)
Lastprops->u.stmt.next = ret;
else
Props = ret;
Lastprops = ret;
break;
case T_MASK:
check_proplists(t, np);
check_propnames(t, np, 0, 0);
check_propscope(np);
set_arrow_prop(ret, np);
for (pp = Masks; pp; pp = pp->u.stmt.next) {
if (tree_treecmp(pp, ret, T_NAME,
(lut_cmp)tree_namecmp) == 0) {
inlist = 1;
break;
}
}
if (inlist == 0)
stats_counter_bump(Maskcount);
/* "Masks" is a linked list of all mask statements */
if (Lastmasks)
Lastmasks->u.stmt.next = ret;
else
Masks = ret;
Lastmasks = ret;
stats_counter_bump(Maskcount);
break;
default:
outfl(O_DIE, np->file, np->line,
"tree_stmt: internal error (t %d)", t);
}
return (ret);
}
void
tree_report()
{
/*
* The only declarations with required properties
* currently are faults and serds. Make sure the
* the declarations have the required properties.
*/
lut_walk(Faults, (lut_cb)check_required_props, (void *)T_FAULT);
lut_walk(Upsets, (lut_cb)check_required_props, (void *)T_UPSET);
lut_walk(Errors, (lut_cb)check_required_props, (void *)T_ERROR);
lut_walk(Ereports, (lut_cb)check_required_props, (void *)T_EREPORT);
lut_walk(SERDs, (lut_cb)check_required_props, (void *)T_SERD);
lut_walk(STATs, (lut_cb)check_required_props, (void *)T_STAT);
/*
* we do this now rather than while building the parse
* tree because it is inconvenient for the user if we
* require SERD engines to be declared before used in
* an upset "engine" property.
*/
lut_walk(Faults, (lut_cb)check_refcount, (void *)T_FAULT);
lut_walk(Upsets, (lut_cb)check_upset_engine, (void *)T_UPSET);
lut_walk(Upsets, (lut_cb)check_refcount, (void *)T_UPSET);
lut_walk(Errors, (lut_cb)check_refcount, (void *)T_ERROR);
lut_walk(Ereports, (lut_cb)check_refcount, (void *)T_EREPORT);
lut_walk(SERDs, (lut_cb)check_refcount, (void *)T_SERD);
/* check for cycles */
lut_walk(Errors, (lut_cb)check_cycle, (void *)0);
}
/* compare two T_NAMES by only looking at components, not iterators */
int
tree_namecmp(struct node *np1, struct node *np2)
{
ASSERT(np1 != NULL);
ASSERT(np2 != NULL);
ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
ASSERTinfo(np2->t == T_NAME, ptree_nodetype2str(np1->t));
while (np1 && np2 && np1->u.name.s == np2->u.name.s) {
np1 = np1->u.name.next;
np2 = np2->u.name.next;
}
if (np1 == NULL)
if (np2 == NULL)
return (0);
else
return (-1);
else if (np2 == NULL)
return (1);
else
return (np2->u.name.s - np1->u.name.s);
}
int
tree_eventcmp(struct node *np1, struct node *np2)
{
int ret;
ASSERT(np1 != NULL);
ASSERT(np2 != NULL);
ASSERTinfo(np1->t == T_EVENT, ptree_nodetype2str(np1->t));
ASSERTinfo(np2->t == T_EVENT, ptree_nodetype2str(np2->t));
if ((ret = tree_namecmp(np1->u.event.ename,
np2->u.event.ename)) == 0) {
if (np1->u.event.epname == NULL &&
np2->u.event.epname == NULL)
return (0);
else if (np1->u.event.epname == NULL)
return (-1);
else if (np2->u.event.epname == NULL)
return (1);
else
return tree_namecmp(np1->u.event.epname,
np2->u.event.epname);
} else
return (ret);
}