fdisk.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
/* All Rights Reserved */
/* Copyright (c) 1987, 1988 Microsoft Corporation */
/* All Rights Reserved */
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* PROGRAM: fdisk(1M)
* This program reads the partition table on the specified device and
* also reads the drive parameters. The user can perform various
* operations from a supplied menu or from the command line. Diagnostic
* options are also available.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <ctype.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systeminfo.h>
#include <sys/efi_partition.h>
#include <sys/byteorder.h>
#include <sys/systeminfo.h>
#include <sys/dktp/fdisk.h>
#include <sys/dkio.h>
#include <sys/vtoc.h>
#define CLR_SCR "[1;1H[0J"
#define CLR_LIN "[0K"
#define HOME "[1;1H[0K[2;1H[0K[3;1H[0K[4;1H[0K[5;1H[0K" \
"[6;1H[0K[7;1H[0K[8;1H[0K[9;1H[0K[10;1H[0K[1;1H"
#define Q_LINE "[22;1H[0K[21;1H[0K[20;1H[0K"
#define W_LINE "[12;1H[0K[11;1H[0K"
#define E_LINE "[24;1H[0K[23;1H[0K"
#define M_LINE "[13;1H[0K[14;1H[0K[15;1H[0K[16;1H[0K[17;1H" \
"[0K[18;1H[0K[19;1H[0K[13;1H"
#define T_LINE "[1;1H[0K"
#define DEFAULT_PATH "/dev/rdsk/"
/* XXX - should be in fdisk.h, used by sd as well */
/*
* the MAX values are the maximum usable values for BIOS chs values
* The MAX_CYL value of 1022 is the maximum usable value
* the value of 1023 is a fence value,
* indicating no CHS geometry exists for the corresponding LBA value.
* HEAD range [ 0 .. MAX_HEAD ], so number of heads is (MAX_HEAD + 1)
* SECT range [ 1 .. MAX_SECT ], so number of sectors is (MAX_SECT)
*/
#define MAX_SECT (63)
#define MAX_CYL (1022)
#define MAX_HEAD (254)
/* for clear_vtoc() */
#define OLD 0
#define NEW 1
/* readvtoc/writevtoc return codes */
#define VTOC_OK 0 /* Good VTOC */
#define VTOC_INVAL 1 /* invalid VTOC */
#define VTOC_NOTSUP 2 /* operation not supported - EFI label */
#define VTOC_RWERR 3 /* couldn't read or write VTOC */
/*
* Support for fdisk(1M) on the SPARC platform
* In order to convert little endian values to big endian for SPARC,
* byte/short and long values must be swapped.
* These swapping macros will be used to access information in the
* mboot and ipart structures.
*/
#ifdef sparc
#define les(val) ((((val)&0xFF)<<8)|(((val)>>8)&0xFF))
#define lel(val) (((unsigned)(les((val)&0x0000FFFF))<<16) | \
(les((unsigned)((val)&0xffff0000)>>16)))
#else
#define les(val) (val)
#define lel(val) (val)
#endif
#if defined(_SUNOS_VTOC_16)
#define VTOC_OFFSET 512
#elif defined(_SUNOS_VTOC_8)
#define VTOC_OFFSET 0
#else
#error No VTOC format defined.
#endif
char Usage[] = "Usage: fdisk\n"
"[ -A id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect ]\n"
"[ -b masterboot ]\n"
"[ -D id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect ]\n"
"[ -F fdisk_file ] [ -h ] [ -o offset ] [ -P fill_patt ] [ -s size ]\n"
"[ -S geom_file ] [ [ -v ] -W { creat_fdisk_file | - } ]\n"
"[ -w | r | d | n | I | B | E | g | G | R | t | T ] rdevice";
char Usage1[] = " Partition options:\n"
" -A id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect\n"
" Create a partition with specific attributes:\n"
" id = system id number (fdisk.h) for the partition type\n"
" act = active partition flag (0 is off and 128 is on)\n"
" bhead = beginning head for start of partition\n"
" bsect = beginning sector for start of partition\n"
" bcyl = beginning cylinder for start of partition\n"
" ehead = ending head for end of partition\n"
" esect = ending sector for end of partition\n"
" ecyl = ending cylinder for end of partition\n"
" rsect = sector number from start of disk for\n"
" start of partition\n"
" numsect = partition size in sectors\n"
" -b master_boot\n"
" Use master_boot as the master boot file.\n"
" -B Create one Solaris partition that uses the entire disk.\n"
" -E Create one EFI partition that uses the entire disk.\n"
" -D id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect\n"
" Delete a partition. See attribute definitions for -A.\n"
" -F fdisk_file\n"
" Use fdisk_file to initialize on-line fdisk table.\n"
" -I Forego device checks. Generate a file image of what would go\n"
" on a disk using the geometry specified with the -S option.\n"
" -n Do not run in interactive mode.\n"
" -R Open the disk device as read-only.\n"
" -t Check and adjust VTOC to be consistent with fdisk table.\n"
" VTOC slices exceeding the partition size will be truncated.\n"
" -T Check and adjust VTOC to be consistent with fdisk table.\n"
" VTOC slices exceeding the partition size will be removed.\n"
" -W fdisk_file\n"
" Write on-disk table to fdisk_file.\n"
" -W - Write on-disk table to standard output.\n"
" -v Display virtual geometry. Must be used with the -W option.\n"
" Diagnostic options:\n"
" -d Activate debug information about progress.\n"
" -g Write label geometry to standard output:\n"
" PCYL number of physical cylinders\n"
" NCYL number of usable cylinders\n"
" ACYL number of alternate cylinders\n"
" BCYL cylinder offset\n"
" NHEADS number of heads\n"
" NSECTORS number of sectors per track\n"
" SECTSIZ size of a sector in bytes\n"
" -G Write physical geometry to standard output (see -g).\n"
" -h Issue this verbose help message.\n"
" -o offset\n"
" Block offset from start of disk (default 0). Ignored if\n"
" -P # specified.\n"
" -P fill_patt\n"
" Fill disk with pattern fill_patt. fill_patt can be decimal or\n"
" hexadecimal and is used as number for constant long word\n"
" pattern. If fill_patt is \"#\" then pattern of block #\n"
" for each block. Pattern is put in each block as long words\n"
" and fills each block (see -o and -s).\n"
" -r Read from a disk to stdout (see -o and -s).\n"
" -s size Number of blocks on which to perform operation (see -o).\n"
" -S geom_file\n"
" Use geom_file to set the label geometry (see -g).\n"
" -w Write to a disk from stdin (see -o and -s).";
char Ostr[] = "Other OS";
char Dstr[] = "DOS12";
char D16str[] = "DOS16";
char DDstr[] = "DOS-DATA";
char EDstr[] = "EXT-DOS";
char DBstr[] = "DOS-BIG";
char PCstr[] = "PCIX";
char Ustr[] = "UNIX System";
char SUstr[] = "Solaris";
char SU2str[] = "Solaris2";
char X86str[] = "x86 Boot";
char DIAGstr[] = "Diagnostic";
char IFSstr[] = "IFS: NTFS";
char AIXstr[] = "AIX Boot";
char AIXDstr[] = "AIX Data";
char OS2str[] = "OS/2 Boot";
char WINstr[] = "Win95 FAT32";
char EWINstr[] = "Ext Win95";
char FAT95str[] = "FAT16 LBA";
char EXTLstr[] = "EXT LBA";
char LINUXstr[] = "Linux";
char CPMstr[] = "CP/M";
char NOVstr[] = "Netware 3.x+";
char QNXstr[] = "QNX 4.x";
char QNX2str[] = "QNX part 2";
char QNX3str[] = "QNX part 3";
char LINNATstr[] = "Linux native";
char NTFSVOL1str[] = "NT volset 1";
char NTFSVOL2str[] = "NT volset 2";
char BSDstr[] = "BSD OS";
char NEXTSTEPstr[] = "NeXTSTEP";
char BSDIFSstr[] = "BSDI FS";
char BSDISWAPstr[] = "BSDI swap";
char Actvstr[] = "Active";
char EFIstr[] = "EFI";
char NAstr[] = " ";
/* All the user options and flags */
char *Dfltdev; /* name of fixed disk drive */
/* Diagnostic options */
int io_wrt = 0; /* write standard input to disk (-w) */
int io_rd = 0; /* read from disk and write to stdout (-r) */
char *io_fatt; /* user supplied pattern (-P pattern) */
int io_patt = 0; /* write a pattern to disk (-P pattern) */
int io_lgeom = 0; /* get label geometry (-g) */
int io_pgeom = 0; /* get drive physical geometry (-G) */
char *io_sgeom = 0; /* set label geometry (-S geom_file) */
int io_readonly = 0; /* do not write to disk (-R) */
/* The -o offset and -s size options specify the area of the disk on */
/* which to perform the particular operation; i.e., -P, -r, or -w. */
int io_offset = 0; /* offset sector (-o offset) */
int io_size = 0; /* size in sectors (-s size) */
/* Partition table flags */
int v_flag = 0; /* virtual geometry-HBA flag (-v) */
int stdo_flag = 0; /* stdout flag (-W -) */
int io_fdisk = 0; /* do fdisk operation */
int io_ifdisk = 0; /* interactive partition */
int io_nifdisk = 0; /* non-interactive partition (-n) */
int io_adjt = 0; /* check and adjust VTOC (truncate (-t)) */
int io_ADJT = 0; /* check and adjust VTOC (delete (-T)) */
char *io_ffdisk = 0; /* name of input fdisk file (-F file) */
char *io_Wfdisk = 0; /* name of output fdisk file (-W file) */
char *io_Afdisk = 0; /* entry to add to partition table (-A) */
char *io_Dfdisk = 0; /* entry to delete from partition table (-D) */
char *io_mboot = 0; /* master boot record (-b boot_file) */
struct mboot BootCod; /* buffer for master boot record */
int io_wholedisk = 0; /* use whole disk for Solaris partition (-B) */
int io_EFIdisk = 0; /* use whole disk for EFI partition (-E) */
int io_debug = 0; /* activate verbose mode (-d) */
int io_image = 0; /* create image using supplied geometry (-I) */
struct mboot *Bootblk; /* pointer to cut and paste sector zero */
char *Bootsect; /* pointer to sector zero buffer */
char *Nullsect;
struct vtoc disk_vtoc; /* verify VTOC table */
int vt_inval = 0;
int no_virtgeom_ioctl = 0; /* ioctl for virtual geometry failed */
int no_physgeom_ioctl = 0; /* ioctl for physical geometry failed */
struct ipart Table[FD_NUMPART];
struct ipart Old_Table[FD_NUMPART];
/* Disk geometry information */
struct dk_geom disk_geom;
int Dev; /* fd for open device */
/* Physical geometry for the drive */
int Numcyl; /* number of cylinders */
int heads; /* number of heads */
int sectors; /* number of sectors per track */
int acyl; /* number of alternate sectors */
/* HBA (virtual) geometry for the drive */
int hba_Numcyl; /* number of cylinders */
int hba_heads; /* number of heads */
int hba_sectors; /* number of sectors per track */
int sectsiz; /* sector size */
int drtype; /* Type of drive; i.e., scsi, floppy, ... */
/* Load functions for fdisk table modification */
#define LOADFILE 0 /* load fdisk from file */
#define LOADDEL 1 /* delete an fdisk entry */
#define LOADADD 2 /* add an fdisk entry */
#define CBUFLEN 80
char s[CBUFLEN];
void sanity_check_provided_device(char *devname, int fd);
static int clear_vtoc(int table, int part);
static char *get_node(char *devname);
static void Set_Table_CHS_Values(int ti);
static void
update_disk_and_exit(boolean_t table_changed)
{
if (table_changed) {
/*
* Copy the new table back to the sector buffer
* and write it to disk
*/
copy_Table_to_Bootblk();
dev_mboot_write(0, Bootsect, sectsiz);
}
/* If the VTOC table is wrong fix it (truncation only) */
if (io_adjt)
fix_slice();
exit(0);
}
/*
* main
* Process command-line options.
*/
void
main(int argc, char *argv[])
{
int c, i, j;
extern int optind;
extern char *optarg;
int errflg = 0;
int diag_cnt = 0;
int openmode;
int check_support_fdisk();
setbuf(stderr, 0); /* so all output gets out on exit */
setbuf(stdout, 0);
/* Process the options. */
while ((c = getopt(argc, argv, "o:s:P:F:b:A:D:W:S:tTIhwvrndgGRBE"))
!= EOF) {
switch (c) {
case 'o':
io_offset = strtoul(optarg, 0, 0);
continue;
case 's':
io_size = strtoul(optarg, 0, 0);
continue;
case 'P':
diag_cnt++;
io_patt++;
io_fatt = optarg;
continue;
case 'w':
diag_cnt++;
io_wrt++;
continue;
case 'r':
diag_cnt++;
io_rd++;
continue;
case 'd':
io_debug++;
continue;
case 'I':
io_image++;
continue;
case 'R':
io_readonly++;
continue;
case 'S':
diag_cnt++;
io_sgeom = optarg;
continue;
case 'T':
io_ADJT++;
case 't':
io_adjt++;
continue;
case 'B':
io_wholedisk++;
io_fdisk++;
continue;
case 'E':
io_EFIdisk++;
io_fdisk++;
continue;
case 'g':
diag_cnt++;
io_lgeom++;
continue;
case 'G':
diag_cnt++;
io_pgeom++;
continue;
case 'n':
io_nifdisk++;
io_fdisk++;
continue;
case 'F':
io_fdisk++;
io_ffdisk = optarg;
continue;
case 'b':
io_mboot = optarg;
continue;
case 'W':
/*
* If '-' is the -W argument, then write
* to standard output, otherwise write
* to the specified file.
*/
if (strncmp(optarg, "-", 1) == 0)
stdo_flag = 1;
else
io_Wfdisk = optarg;
io_fdisk++;
continue;
case 'A':
io_fdisk++;
io_Afdisk = optarg;
continue;
case 'D':
io_fdisk++;
io_Dfdisk = optarg;
continue;
case 'h':
fprintf(stderr, "%s\n", Usage);
fprintf(stderr, "%s\n", Usage1);
exit(0);
case 'v':
v_flag = 1;
continue;
case '?':
errflg++;
break;
}
break;
}
if (io_image && io_sgeom && diag_cnt == 1) {
diag_cnt = 0;
}
/* User option checking */
/* By default, run in interactive mode */
if (!io_fdisk && !diag_cnt && !io_nifdisk) {
io_ifdisk++;
io_fdisk++;
}
if (((io_fdisk || io_adjt) && diag_cnt) || (diag_cnt > 1)) {
errflg++;
}
/* Was any error detected? */
if (errflg || argc == optind) {
fprintf(stderr, "%s\n", Usage);
fprintf(stderr,
"\nDetailed help is available with the -h option.\n");
exit(2);
}
/* Figure out the correct device node to open */
Dfltdev = get_node(argv[optind]);
if (io_readonly)
openmode = O_RDONLY;
else
openmode = O_RDWR|O_CREAT;
if ((Dev = open(Dfltdev, openmode, 0666)) == -1) {
fprintf(stderr, "fdisk: Cannot open device %s.\n", Dfltdev);
exit(1);
}
/* Get the disk geometry */
if (!io_image) {
/* Get disk's HBA (virtual) geometry */
errno = 0;
if (ioctl(Dev, DKIOCG_VIRTGEOM, &disk_geom)) {
/*
* If ioctl isn't implemented on this platform, then
* turn off flag to print out virtual geometry (-v),
* otherwise use the virtual geometry.
*/
if (errno == ENOTTY) {
v_flag = 0;
no_virtgeom_ioctl = 1;
} else if (errno == EINVAL) {
/*
* This means that the ioctl exists, but
* is invalid for this disk, meaning the
* disk doesn't have an HBA geometry
* (like, say, it's larger than 8GB).
*/
v_flag = 0;
hba_Numcyl = hba_heads = hba_sectors = 0;
} else {
(void) fprintf(stderr,
"%s: Cannot get virtual disk geometry.\n",
argv[optind]);
exit(1);
}
} else {
/* save virtual geometry values obtained by ioctl */
hba_Numcyl = disk_geom.dkg_ncyl;
hba_heads = disk_geom.dkg_nhead;
hba_sectors = disk_geom.dkg_nsect;
}
errno = 0;
if (ioctl(Dev, DKIOCG_PHYGEOM, &disk_geom)) {
if (errno == ENOTTY) {
no_physgeom_ioctl = 1;
} else {
(void) fprintf(stderr,
"%s: Cannot get physical disk geometry.\n",
argv[optind]);
exit(1);
}
}
/*
* Call DKIOCGGEOM if the ioctls for physical and virtual
* geometry fail. Get both from this generic call.
*/
if (no_virtgeom_ioctl && no_physgeom_ioctl) {
errno = 0;
if (ioctl(Dev, DKIOCGGEOM, &disk_geom)) {
(void) fprintf(stderr,
"%s: Cannot get disk label geometry.\n",
argv[optind]);
exit(1);
}
}
Numcyl = disk_geom.dkg_ncyl;
heads = disk_geom.dkg_nhead;
sectors = disk_geom.dkg_nsect;
sectsiz = 512;
acyl = disk_geom.dkg_acyl;
/*
* if hba geometry was not set by DKIOC_VIRTGEOM
* or we got an invalid hba geometry
* then set hba geometry based on max values
*/
if (no_virtgeom_ioctl ||
disk_geom.dkg_ncyl <= 0 ||
disk_geom.dkg_nhead <= 0 ||
disk_geom.dkg_nsect <= 0 ||
disk_geom.dkg_ncyl > MAX_CYL ||
disk_geom.dkg_nhead > MAX_HEAD ||
disk_geom.dkg_nsect > MAX_SECT) {
/*
* turn off flag to print out virtual geometry (-v)
*/
v_flag = 0;
hba_sectors = MAX_SECT;
hba_heads = MAX_HEAD + 1;
hba_Numcyl = (Numcyl * heads * sectors) /
(hba_sectors * hba_heads);
}
if (io_debug) {
fprintf(stderr, "Physical Geometry:\n");
fprintf(stderr,
" cylinders[%d] heads[%d] sectors[%d]\n"
" sector size[%d] blocks[%d] mbytes[%d]\n",
Numcyl,
heads,
sectors,
sectsiz,
Numcyl*heads*sectors,
(Numcyl*heads*sectors*sectsiz)/1048576);
fprintf(stderr, "Virtual (HBA) Geometry:\n");
fprintf(stderr,
" cylinders[%d] heads[%d] sectors[%d]\n"
" sector size[%d] blocks[%d] mbytes[%d]\n",
hba_Numcyl,
hba_heads,
hba_sectors,
sectsiz,
hba_Numcyl*hba_heads*hba_sectors,
(hba_Numcyl*hba_heads*hba_sectors*sectsiz)/1048576);
}
}
/* If user has requested a geometry report just do it and exit */
if (io_lgeom) {
if (ioctl(Dev, DKIOCGGEOM, &disk_geom)) {
(void) fprintf(stderr,
"%s: Cannot get disk label geometry.\n",
argv[optind]);
exit(1);
}
Numcyl = disk_geom.dkg_ncyl;
heads = disk_geom.dkg_nhead;
sectors = disk_geom.dkg_nsect;
sectsiz = 512;
acyl = disk_geom.dkg_acyl;
printf("* Label geometry for device %s\n", Dfltdev);
printf("* PCYL NCYL ACYL BCYL NHEAD NSECT"
" SECSIZ\n");
printf(" %-8d %-8d %-8d %-8d %-5d %-5d %-6d\n",
Numcyl,
disk_geom.dkg_ncyl,
disk_geom.dkg_acyl,
disk_geom.dkg_bcyl,
heads,
sectors,
sectsiz);
exit(0);
} else if (io_pgeom) {
if (ioctl(Dev, DKIOCG_PHYGEOM, &disk_geom)) {
(void) fprintf(stderr,
"%s: Cannot get physical disk geometry.\n",
argv[optind]);
exit(1);
}
printf("* Physical geometry for device %s\n", Dfltdev);
printf("* PCYL NCYL ACYL BCYL NHEAD NSECT"
" SECSIZ\n");
printf(" %-8d %-8d %-8d %-8d %-5d %-5d %-6d\n",
disk_geom.dkg_pcyl,
disk_geom.dkg_ncyl,
disk_geom.dkg_acyl,
disk_geom.dkg_bcyl,
disk_geom.dkg_nhead,
disk_geom.dkg_nsect,
sectsiz);
exit(0);
} else if (io_sgeom) {
if (read_geom(io_sgeom)) {
exit(1);
} else if (!io_image) {
exit(0);
}
}
/* Allocate memory to hold three complete sectors */
Bootsect = (char *)malloc(3 * sectsiz);
if (Bootsect == NULL) {
fprintf(stderr,
"fdisk: Unable to obtain enough buffer memory"
" (%d bytes).\n",
3*sectsiz);
exit(1);
}
Nullsect = Bootsect + sectsiz;
/* Zero out the "NULL" sector */
for (i = 0; i < sectsiz; i++) {
Nullsect[i] = 0;
}
/* Find out what the user wants done */
if (io_rd) { /* abs disk read */
abs_read(); /* will not return */
} else if (io_wrt && !io_readonly) {
abs_write(); /* will not return */
} else if (io_patt && !io_readonly) {
fill_patt(); /* will not return */
}
/* This is the fdisk edit, the real reason for the program. */
sanity_check_provided_device(Dfltdev, Dev);
/* Get the new BOOT program in case we write a new fdisk table */
mboot_read();
/* Read from disk master boot */
dev_mboot_read();
/*
* Verify and copy the device's fdisk table. This will be used
* as the prototype mboot if the device's mboot looks invalid.
*/
Bootblk = (struct mboot *)Bootsect;
copy_Bootblk_to_Table();
/* save away a copy of Table in Old_Table for sensing changes */
copy_Table_to_Old_Table();
/* Load fdisk table from specified file (-F fdisk_file) */
if (io_ffdisk) {
/* Load and verify user-specified table parameters */
load(LOADFILE, io_ffdisk);
}
/* Does user want to delete or add an entry? */
if (io_Dfdisk) {
load(LOADDEL, io_Dfdisk);
}
if (io_Afdisk) {
load(LOADADD, io_Afdisk);
}
if (!io_ffdisk && !io_Afdisk && !io_Dfdisk) {
/* Check if there is no fdisk table */
if (Table[0].systid == UNUSED || io_wholedisk || io_EFIdisk) {
if (io_ifdisk && !io_wholedisk && !io_EFIdisk) {
printf("No fdisk table exists. The default"
" partition for the disk is:\n\n");
printf(" a 100%% \"SOLARIS System\" "
"partition\n\n");
printf("Type \"y\" to accept the default "
"partition, otherwise type \"n\" to "
"edit the\n partition table.\n");
}
/* Edit the partition table as directed */
if (io_wholedisk ||(io_ifdisk && yesno())) {
/* Default scenario */
nulltbl();
/* now set up UNIX System partition */
Table[0].bootid = ACTIVE;
Table[0].relsect = lel(heads * sectors);
Table[0].numsect = lel((long)((Numcyl-1) *
heads * sectors));
Table[0].systid = SUNIXOS2; /* Solaris */
/* calculate CHS values for table entry 0 */
Set_Table_CHS_Values(0);
update_disk_and_exit(B_TRUE);
} else if (io_EFIdisk) {
/* create an EFI partition for the whole disk */
nulltbl();
i = insert_tbl(EFI_PMBR, 0, 0, 0, 0, 0, 0, 0, 1,
(Numcyl * heads * sectors) - 1);
if (i != 0) {
fprintf(stderr, "Error creating EFI "
"partition\n");
exit(1);
}
update_disk_and_exit(B_TRUE);
}
}
}
/* Display complete fdisk table entries for debugging purposes */
if (io_debug) {
fprintf(stderr, "Partition Table Entry Values:\n");
print_Table();
if (io_ifdisk) {
fprintf(stderr, "\n");
fprintf(stderr, "Press Enter to continue.\n");
gets(s);
}
}
/* Interactive fdisk mode */
if (io_ifdisk) {
printf(CLR_SCR);
disptbl();
while (1) {
stage0(argv[1]);
copy_Bootblk_to_Table();
disptbl();
}
}
/* If user wants to write the table to a file, do it */
if (io_Wfdisk)
ffile_write(io_Wfdisk);
else if (stdo_flag)
ffile_write((char *)stdout);
update_disk_and_exit(TableChanged() == 1);
}
/*
* read_geom
* Read geometry from specified file (-S).
*/
read_geom(sgeom)
char *sgeom;
{
char line[256];
FILE *fp;
/* open the prototype file */
if ((fp = fopen(sgeom, "r")) == NULL) {
(void) fprintf(stderr, "fdisk: Cannot open file %s.\n",
io_sgeom);
return (1);
}
/* Read a line from the file */
while (fgets(line, sizeof (line) - 1, fp)) {
if (line[0] == '\0' || line[0] == '\n' || line[0] == '*')
continue;
else {
line[strlen(line)] = '\0';
if (sscanf(line, "%d %d %d %d %d %d %d",
&disk_geom.dkg_pcyl,
&disk_geom.dkg_ncyl,
&disk_geom.dkg_acyl,
&disk_geom.dkg_bcyl,
&disk_geom.dkg_nhead,
&disk_geom.dkg_nsect,
&sectsiz) != 7) {
(void) fprintf(stderr,
"Syntax error:\n \"%s\".\n",
line);
return (1);
}
break;
} /* else */
} /* while (fgets(line, sizeof (line) - 1, fp)) */
if (!io_image) {
if (ioctl(Dev, DKIOCSGEOM, &disk_geom)) {
(void) fprintf(stderr,
"fdisk: Cannot set label geometry.\n");
return (1);
}
} else {
Numcyl = hba_Numcyl = disk_geom.dkg_ncyl;
heads = hba_heads = disk_geom.dkg_nhead;
sectors = hba_sectors = disk_geom.dkg_nsect;
acyl = disk_geom.dkg_acyl;
}
fclose(fp);
return (0);
}
/*
* dev_mboot_read
* Read the master boot sector from the device.
*/
dev_mboot_read()
{
if ((ioctl(Dev, DKIOCGMBOOT, Bootsect) < 0) && (errno != ENOTTY)) {
perror("Error in ioctl DKIOCGMBOOT");
}
if (errno == 0)
return;
if (lseek(Dev, 0, SEEK_SET) == -1) {
fprintf(stderr,
"fdisk: Error seeking to partition table on %s.\n",
Dfltdev);
if (!io_image)
exit(1);
}
if (read(Dev, Bootsect, sectsiz) != sectsiz) {
fprintf(stderr,
"fdisk: Error reading partition table from %s.\n",
Dfltdev);
if (!io_image)
exit(1);
}
}
/*
* dev_mboot_write
* Write the master boot sector to the device.
*/
dev_mboot_write(int sect, char *buff, int bootsiz)
{
int new_pt, old_pt, error;
int clr_efi = -1, old_solaris = -1, new_solaris = -1;
if (io_readonly)
return (0);
if (io_debug) {
fprintf(stderr, "About to write fdisk table:\n");
print_Table();
if (io_ifdisk) {
fprintf(stderr, "Press Enter to continue.\n");
gets(s);
}
}
/* see if the old table had EFI or Solaris partitions */
for (old_pt = 0; old_pt < FD_NUMPART; old_pt++) {
if (Old_Table[old_pt].systid == SUNIXOS ||
Old_Table[old_pt].systid == SUNIXOS2) {
old_solaris = old_pt;
} else if (Old_Table[old_pt].systid == EFI_PMBR) {
clr_efi = old_pt;
}
}
/* look to see if Solaris partition changed in relsect/numsect */
for (new_pt = 0; new_pt < FD_NUMPART; new_pt++) {
/*
* if this is not a Solaris partition, ignore it
*/
if (Table[new_pt].systid != SUNIXOS &&
Table[new_pt].systid != SUNIXOS2)
continue;
/*
* if there was no previous Solaris partition
* or if the old partition was in a different place
* or if the old partition was a different size
* then this must be a new Solaris partition
*/
if (old_solaris == -1 ||
Old_Table[old_solaris].relsect != Table[new_pt].relsect ||
Old_Table[old_solaris].numsect != Table[new_pt].numsect) {
new_solaris = new_pt;
break;
}
}
/* look to see if a EFI partition changed in relsect/numsect */
for (new_pt = 0; new_pt < FD_NUMPART; new_pt++) {
if (Table[new_pt].systid != EFI_PMBR)
continue;
for (old_pt = 0; old_pt < FD_NUMPART; old_pt++) {
if ((Old_Table[old_pt].systid == Table[new_pt].systid) &&
(Old_Table[old_pt].relsect == Table[new_pt].relsect) &&
(Old_Table[old_pt].numsect == Table[new_pt].numsect))
break;
}
/*
* if EFI partition changed, set the flag to clear
* the EFI GPT
*/
if (old_pt == FD_NUMPART && Table[new_pt].begcyl != 0) {
clr_efi = 0;
}
break;
}
/* clear labels if necessary */
if (clr_efi >= 0) {
if (io_debug) {
fprintf(stderr, "Clearing EFI labels\n");
}
if ((error = clear_efi()) != 0) {
if (io_debug) {
fprintf(stderr, "\tError %d clearing EFI labels"
" (probably no EFI labels exist)\n",
error);
}
}
}
if (new_solaris >= 0) {
if (io_debug) {
fprintf(stderr, "Clearing VTOC labels from NEW"
" table\n");
}
clear_vtoc(NEW, new_solaris);
}
if ((ioctl(Dev, DKIOCSMBOOT, buff) == -1) && (errno != ENOTTY)) {
fprintf(stderr,
"fdisk: Error in ioctl DKIOCSMBOOT on %s.\n",
Dfltdev);
}
if (errno == 0)
return;
/* write to disk drive */
if (lseek(Dev, sect, SEEK_SET) == -1) {
fprintf(stderr,
"fdisk: Error seeking to master boot record on %s.\n",
Dfltdev);
exit(1);
}
if (write(Dev, buff, bootsiz) != bootsiz) {
fprintf(stderr,
"fdisk: Error writing master boot record to %s.\n",
Dfltdev);
exit(1);
}
}
/*
* mboot_read
* Read the prototype boot records from the files.
*/
mboot_read()
{
int mDev, i;
struct stat statbuf;
struct ipart *part;
#if defined(i386) || defined(sparc)
/*
* If the master boot file hasn't been specified, use the
* implementation architecture name to generate the default one.
*/
if (io_mboot == (char *)0) {
/*
* Bug ID 1249035:
* The mboot file must be delivered on all platforms
* and installed in a non-platform-dependent
* directory; i.e., /usr/lib/fs/ufs.
*/
io_mboot = "/usr/lib/fs/ufs/mboot";
}
/* First read in the master boot record */
/* Open the master boot proto file */
if ((mDev = open(io_mboot, O_RDONLY, 0666)) == -1) {
fprintf(stderr,
"fdisk: Cannot open master boot file %s.\n",
io_mboot);
exit(1);
}
/* Read the master boot program */
if (read(mDev, &BootCod, sizeof (struct mboot)) != sizeof
(struct mboot)) {
fprintf(stderr,
"fdisk: Cannot read master boot file %s.\n",
io_mboot);
exit(1);
}
/* Is this really a master boot record? */
if (les(BootCod.signature) != MBB_MAGIC) {
fprintf(stderr,
"fdisk: Invalid master boot file %s.\n", io_mboot);
fprintf(stderr, "Bad magic number: is %x, but should be %x.\n",
les(BootCod.signature), MBB_MAGIC);
exit(1);
}
close(mDev);
#else
#error fdisk needs to be ported to new architecture
#endif
/* Zero out the partitions part of this record */
part = (struct ipart *)BootCod.parts;
for (i = 0; i < FD_NUMPART; i++, part++) {
memset(part, 0, sizeof (struct ipart));
}
}
/*
* fill_patt
* Fill the disk with user/sector number pattern.
*/
fill_patt()
{
int *buff_ptr, i, c;
int io_fpatt = 0;
int io_ipatt = 0;
if (strncmp(io_fatt, "#", 1) != 0) {
io_fpatt++;
io_ipatt = strtoul(io_fatt, 0, 0);
buff_ptr = (int *)Bootsect;
for (i = 0; i < sectsiz; i += 4, buff_ptr++)
*buff_ptr = io_ipatt;
}
/*
* Fill disk with pattern based on block number.
* Write to the disk at absolute relative block io_offset
* for io_size blocks.
*/
while (io_size--) {
buff_ptr = (int *)Bootsect;
if (!io_fpatt) {
for (i = 0; i < sectsiz; i += 4, buff_ptr++)
*buff_ptr = io_offset;
}
/* Write the data to disk */
if (lseek(Dev, sectsiz * io_offset++, SEEK_SET) == -1) {
fprintf(stderr, "fdisk: Error seeking on %s.\n",
Dfltdev);
exit(1);
}
if (write(Dev, Bootsect, sectsiz) != sectsiz) {
fprintf(stderr, "fdisk: Error writing %s.\n",
Dfltdev);
exit(1);
}
} /* while (--io_size); */
}
/*
* abs_read
* Read from the disk at absolute relative block io_offset for
* io_size blocks. Write the data to standard ouput (-r).
*/
abs_read() {
int c;
while (io_size--) {
if (lseek(Dev, sectsiz * io_offset++, SEEK_SET) == -1) {
fprintf(stderr, "fdisk: Error seeking on %s.\n",
Dfltdev);
exit(1);
}
if (read(Dev, Bootsect, sectsiz) != sectsiz) {
fprintf(stderr, "fdisk: Error reading %s.\n",
Dfltdev);
exit(1);
}
/* Write to standard ouptut */
if ((c = write(1, Bootsect, (unsigned)sectsiz)) != sectsiz)
{
if (c >= 0) {
if (io_debug)
fprintf(stderr,
"fdisk: Output warning: %d of %d"
" characters written.\n",
c, sectsiz);
exit(2);
} else {
perror("write error on output file.");
exit(2);
}
} /* if ((c = write(1, Bootsect, (unsigned)sectsiz)) */
/* != sectsiz) */
} /* while (--io_size); */
exit(0);
}
/*
* abs_write
* Read the data from standard input. Write to the disk at
* absolute relative block io_offset for io_size blocks (-w).
*/
abs_write()
{
int c, i;
while (io_size--) {
int part_exit = 0;
/* Read from standard input */
if ((c = read(0, Bootsect, (unsigned)sectsiz)) != sectsiz) {
if (c >= 0) {
if (io_debug)
fprintf(stderr,
"fdisk: WARNING: Incomplete read (%d of"
" %d characters read) on input file.\n",
c, sectsiz);
/* Fill pattern to mark partial sector in buf */
for (i = c; i < sectsiz; ) {
Bootsect[i++] = 0x41;
Bootsect[i++] = 0x62;
Bootsect[i++] = 0x65;
Bootsect[i++] = 0;
}
part_exit++;
} else {
perror("read error on input file.");
exit(2);
}
}
/* Write to disk drive */
if (lseek(Dev, sectsiz * io_offset++, SEEK_SET) == -1) {
fprintf(stderr, "fdisk: Error seeking on %s.\n",
Dfltdev);
exit(1);
}
if (write(Dev, Bootsect, sectsiz) != sectsiz) {
fprintf(stderr, "fdisk: Error writing %s.\n",
Dfltdev);
exit(1);
}
if (part_exit)
exit(0);
} /* while (--io_size); */
exit(1);
}
/*
* load
* Load will either read the fdisk table from a file or add or
* delete an entry (-A, -D, -F).
*/
load(funct, file)
int funct;
char *file; /* Either file name or delete/add line */
{
int id;
int act;
int bhead;
int bsect;
int bcyl;
int ehead;
int esect;
int ecyl;
int rsect;
int numsect;
char line[256];
int i = 0;
int j;
FILE *fp;
switch (funct) {
case LOADFILE:
/*
* Zero out the table before loading it, which will
* force it to be updated on disk later (-F
* fdisk_file).
*/
nulltbl();
/* Open the prototype file */
if ((fp = fopen(file, "r")) == NULL) {
(void) fprintf(stderr,
"fdisk: Cannot open prototype partition file %s.\n",
file);
exit(1);
}
/* Read a line from the file */
while (fgets(line, sizeof (line) - 1, fp)) {
if (pars_fdisk(line, &id, &act, &bhead, &bsect,
&bcyl, &ehead, &esect, &ecyl, &rsect, &numsect)) {
continue;
}
/*
* Validate the partition. It cannot start at sector
* 0 unless it is UNUSED or already exists
*/
if (validate_part(id, rsect, numsect) < 0) {
(void) fprintf(stderr,
"fdisk: Error on entry \"%s\".\n",
line);
exit(1);
}
/*
* Find an unused entry to use and put the entry
* in table
*/
if (insert_tbl(id, act, bhead, bsect, bcyl, ehead,
esect, ecyl, rsect, numsect) < 0) {
(void) fprintf(stderr,
"fdisk: Error on entry \"%s\".\n",
line);
exit(1);
}
} /* while (fgets(line, sizeof (line) - 1, fp)) */
if (verify_tbl() < 0) {
fprintf(stderr,
"fdisk: Cannot create partition table\n");
exit(1);
}
fclose(fp);
return;
case LOADDEL:
/* Parse the user-supplied deletion line (-D) */
pars_fdisk(file, &id, &act, &bhead, &bsect, &bcyl, &ehead,
&esect, &ecyl, &rsect, &numsect);
/* Find the exact entry in the table */
for (i = 0; i < FD_NUMPART; i++) {
if (Table[i].systid == id &&
Table[i].bootid == act &&
Table[i].beghead == bhead &&
Table[i].begsect == ((bsect & 0x3f) |
(unsigned char)((bcyl>>2) & 0xc0)) &&
Table[i].begcyl == (unsigned char)(bcyl & 0xff) &&
Table[i].endhead == ehead &&
Table[i].endsect == ((esect & 0x3f) |
(unsigned char)((ecyl>>2) & 0xc0)) &&
Table[i].endcyl == (unsigned char)(ecyl & 0xff) &&
Table[i].relsect == lel(rsect) &&
Table[i].numsect == lel(numsect)) {
/*
* Found the entry. Now move rest of
* entries up toward the top of the
* table, leaving available entries at
* the end of the fdisk table.
*/
for (j = i; j < FD_NUMPART-1; j++) {
Table[j].systid = Table[j+1].systid;
Table[j].bootid = Table[j+1].bootid;
Table[j].beghead = Table[j+1].beghead;
Table[j].begsect = Table[j+1].begsect;
Table[j].begcyl = Table[j+1].begcyl;
Table[j].endhead = Table[j+1].endhead;
Table[j].endsect = Table[j+1].endsect;
Table[j].endcyl = Table[j+1].endcyl;
Table[j].relsect = Table[j+1].relsect;
Table[j].numsect = Table[j+1].numsect;
}
/*
* Mark the last entry as unused in case
* all table entries were in use prior
* to the deletion.
*/
Table[FD_NUMPART-1].systid = UNUSED;
Table[FD_NUMPART-1].bootid = 0;
return;
}
}
fprintf(stderr,
"fdisk: Entry does not match any existing partition:\n"
" \"%s\"\n",
file);
exit(1);
case LOADADD:
/* Parse the user-supplied addition line (-A) */
pars_fdisk(file, &id, &act, &bhead, &bsect, &bcyl, &ehead,
&esect, &ecyl, &rsect, &numsect);
/* Validate the partition. It cannot start at sector 0 */
if (rsect == 0) {
(void) fprintf(stderr,
"fdisk: New partition cannot start at sector 0:\n"
" \"%s\".\n",
file);
exit(1);
}
/*
* if the user wishes to add an EFI partition, we need
* more extensive validation. rsect should be 1, and
* numsect should equal the entire disk capacity - 1
*/
if (id == EFI_PMBR) {
if (rsect != 1) {
(void) fprintf(stderr,
"fdisk: EFI partitions must start at sector"
" 1 (input rsect = %d)\n", rsect);
exit(1);
}
if (numsect != ((Numcyl * heads * sectors) -1)) {
(void) fprintf(stderr,
"fdisk: EFI partitions must encompass the "
"entire disk\n (input numsect: %ld - avail:"
" %ld)\n", numsect,
((Numcyl * heads * sectors) -1));
exit(1);
}
}
/* Find unused entry for use and put entry in table */
if (insert_tbl(id, act, bhead, bsect, bcyl, ehead, esect,
ecyl, rsect, numsect) < 0) {
(void) fprintf(stderr,
"fdisk: Invalid entry could not be inserted:\n"
" \"%s\"\n",
file);
exit(1);
}
/* Make sure new entry does not overlap existing entry */
if (verify_tbl() < 0) {
fprintf(stderr,
"fdisk: Cannot create partition \"%s\",\n");
exit(1);
}
} /* switch funct */
}
/*
* Set_Table_CHS_Values
*
* This will calculate the CHS values for beginning and ending CHS
* for a single partition table entry (ti) based on the relsect
* and numsect values contained in the partion table entry.
*
* hba_heads and hba_sectors contain the number of heads and sectors.
*
* If the number of cylinders exceeds the MAX_CYL,
* then maximum values will be placed in the corresponding chs entry.
*/
static void
Set_Table_CHS_Values(int ti)
{
uint32_t lba, cy, hd, sc;
lba = (uint32_t)Table[ti].relsect;
if (lba >= hba_heads * hba_sectors * MAX_CYL) {
/*
* the lba address cannot be expressed in CHS value
* so store the maximum CHS field values in the CHS fields.
*/
cy = MAX_CYL + 1;
hd = MAX_HEAD;
sc = MAX_SECT;
} else {
cy = lba / hba_sectors / hba_heads;
hd = lba / hba_sectors % hba_heads;
sc = lba % hba_sectors + 1;
}
Table[ti].begcyl = cy & 0xff;
Table[ti].beghead = hd;
Table[ti].begsect = ((cy >> 2) & 0xc0) | sc;
/*
* This code is identical to the code above
* except that it works on ending CHS values
*/
lba = (uint32_t)(Table[ti].relsect + Table[ti].numsect - 1);
if (lba >= hba_heads * hba_sectors * MAX_CYL) {
cy = MAX_CYL + 1;
hd = MAX_HEAD;
sc = MAX_SECT;
} else {
cy = lba / hba_sectors / hba_heads;
hd = lba / hba_sectors % hba_heads;
sc = lba % hba_sectors + 1;
}
Table[ti].endcyl = cy & 0xff;
Table[ti].endhead = hd;
Table[ti].endsect = ((cy >> 2) & 0xc0) | sc;
}
/*
* insert_tbl
* Insert entry into fdisk table. Check all user-supplied values
* for the entry, but not the validity relative to other table
* entries!
*/
insert_tbl(id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect)
int id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect;
{
int i;
/* validate partition size */
if (rsect+numsect > (Numcyl * heads * sectors)) {
fprintf(stderr,
"fdisk: Partition table exceeds the size of the disk.\n");
return (-1);
}
/* find UNUSED partition table entry */
for (i = 0; i < FD_NUMPART; i++) {
if (Table[i].systid == UNUSED) {
break;
}
}
if (i >= FD_NUMPART) {
fprintf(stderr, "fdisk: Partition table is full.\n");
return (-1);
}
Table[i].systid = id;
Table[i].bootid = act;
Table[i].numsect = lel(numsect);
Table[i].relsect = lel(rsect);
/*
* If we have been called with a valid geometry, use it
* valid means non-zero values that fit in the BIOS fields
*/
if (0 < bsect && bsect <= MAX_SECT &&
0 <= bhead && bhead <= MAX_HEAD &&
0 < esect && esect <= MAX_SECT &&
0 <= ehead && ehead <= MAX_HEAD) {
if (bcyl > MAX_CYL)
bcyl = MAX_CYL + 1;
if (ecyl > MAX_CYL)
ecyl = MAX_CYL + 1;
Table[i].begcyl = bcyl & 0xff;
Table[i].endcyl = ecyl & 0xff;
Table[i].beghead = bhead;
Table[i].endhead = ehead;
Table[i].begsect = ((bcyl >> 2) & 0xc0) | bsect;
Table[i].endsect = ((ecyl >> 2) & 0xc0) | esect;
} else {
/*
* The specified values are invalid,
* so calculate the values based on hba_heads, hba_sectors
*/
Set_Table_CHS_Values(i);
}
/*
* return partition index
*/
return (i);
}
/*
* verify_tbl
* Verify that no partition entries overlap or exceed the size of
* the disk.
*/
int
verify_tbl()
{
int i, j, rsect, numsect;
int noMoreParts = 0;
int numParts = 0;
/* Make sure new entry does not overlap an existing entry */
for (i = 0; i < FD_NUMPART-1; i++) {
if (Table[i].systid != UNUSED) {
numParts++;
/*
* No valid partitions allowed after an UNUSED or
* EFI_PMBR part
*/
if (noMoreParts) {
return (-1);
}
/*
* EFI_PMBR partitions must be the only partition
* and must be Table entry 0
*/
if (Table[i].systid == EFI_PMBR) {
if (i == 0) {
noMoreParts = 1;
} else {
return (-1);
}
if (Table[i].relsect != 1) {
fprintf(stderr, "ERROR: "
"Invalid starting sector "
"for EFI_PMBR partition:\n"
"relsect %d "
"(should be 1)\n",
Table[i].relsect);
return (-1);
}
if (Table[i].numsect !=
((Numcyl * heads * sectors) - 1)) {
fprintf(stderr, "ERROR: "
"EFI_PMBR partition must "
"encompass the entire "
"disk.\n numsect %ld - "
"actual %ld\n",
Table[i].numsect,
((Numcyl * heads * sectors) - 1));
return (-1);
}
}
/* make sure the partition isn't larger than the disk */
rsect = lel(Table[i].relsect);
numsect = lel(Table[i].numsect);
if ((rsect + numsect) > (Numcyl * heads * sectors)) {
return (-1);
}
for (j = i+1; j < FD_NUMPART; j++) {
if (Table[j].systid != UNUSED) {
int t_relsect = lel(Table[j].relsect);
int t_numsect = lel(Table[j].numsect);
if (noMoreParts) {
fprintf(stderr,
"Cannot add partition to "
"table; no more partitions "
"allowed\n");
if (io_debug) {
fprintf(stderr,
"DEBUG: Current "
"partition:\t"
"%d:%d:%d:%d:%d:"
"%d:%d:%d:%d:%ld\n"
" Next "
"partition:\t\t"
"%d:%d:%d:%d:%d:"
"%d:%d:%d:%d:%ld\n",
Table[i].systid,
Table[i].bootid,
Table[i].begcyl,
Table[i].beghead,
Table[i].begsect,
Table[i].endcyl,
Table[i].endhead,
Table[i].endsect,
Table[i].relsect,
Table[i].numsect,
Table[j].systid,
Table[j].bootid,
Table[j].begcyl,
Table[j].beghead,
Table[j].begsect,
Table[j].endcyl,
Table[j].endhead,
Table[j].endsect,
Table[j].relsect,
Table[j].numsect);
}
return (-1);
}
if ((rsect >=
(t_relsect + t_numsect)) ||
((rsect+numsect) <= t_relsect)) {
continue;
} else {
fprintf(stderr, "ERROR: "
"current partition overlaps"
" following partition\n");
return (-1);
}
}
}
} else {
noMoreParts = 1;
}
}
if (Table[i].systid != UNUSED) {
if (noMoreParts ||
((lel(Table[i].relsect) + lel(Table[i].numsect)) >
(Numcyl * heads * sectors))) {
return (-1);
}
}
return (numParts);
}
/*
* pars_fdisk
* Parse user-supplied data to set up fdisk partitions
* (-A, -D, -F).
*/
pars_fdisk(line, id, act, bhead, bsect, bcyl, ehead, esect, ecyl,
rsect, numsect)
char *line;
char *id, *act, *bhead, *bsect, *bcyl, *ehead, *esect, *ecyl, *rsect;
char *numsect;
{
int i;
if (line[0] == '\0' || line[0] == '\n' || line[0] == '*')
return (1);
line[strlen(line)] = '\0';
for (i = 0; i < strlen(line); i++) {
if (line[i] == '\0') {
break;
} else if (line[i] == ':') {
line[i] = ' ';
}
}
if (sscanf(line, "%d %d %d %d %d %d %d %d %ld %ld",
id, act, bhead, bsect, bcyl, ehead, esect, ecyl,
rsect, numsect) != 10) {
(void) fprintf(stderr, "Syntax error:\n \"%s\".\n", line);
exit(1);
}
return (0);
}
/*
* validate_part
* Validate that a new partition does not start at sector 0. Only UNUSED
* partitions and previously existing partitions are allowed to start at 0.
*/
validate_part(id, rsect, numsect)
int id, rsect, numsect;
{
int i;
if ((id != UNUSED) && (rsect == 0)) {
for (i = 0; i < FD_NUMPART; i++) {
if ((Old_Table[i].systid == id) &&
(Old_Table[i].relsect == lel(rsect)) &&
(Old_Table[i].numsect == lel(numsect))) return (0);
}
fprintf(stderr, "New partition cannot start at sector 0\n");
return (-1);
}
return (0);
}
/*
* stage0
* Print out interactive menu and process user input.
*/
stage0(file)
char *file;
{
dispmenu(file);
while (1) {
printf(Q_LINE);
printf("Enter Selection: ");
gets(s);
rm_blanks(s);
while (!((s[0] > '0') && (s[0] < '7') && (s[1] == 0))) {
printf(E_LINE); /* Clear any previous error */
printf("Enter a one-digit number between 1 and 6.");
printf(Q_LINE);
printf("Enter Selection: ");
gets(s);
rm_blanks(s);
}
printf(E_LINE);
switch (s[0]) {
case '1':
if (pcreate() == -1)
return;
break;
case '2':
if (pchange() == -1)
return;
break;
case '3':
if (pdelete() == -1)
return;
break;
case '4':
if (ppartid() == -1)
return;
break;
case '5':
/* update disk partition table, if changed */
if (TableChanged() == 1) {
copy_Table_to_Bootblk();
dev_mboot_write(0, Bootsect, sectsiz);
}
/*
* If the VTOC table is wrong fix it
* (truncate only)
*/
if (io_adjt) {
fix_slice();
}
close(Dev);
exit(0);
case '6':
/*
* If the VTOC table is wrong fix it
* (truncate only)
*/
if (io_adjt) {
fix_slice();
}
close(Dev);
exit(0);
default:
break;
}
copy_Table_to_Bootblk();
disptbl();
dispmenu(file);
}
}
/*
* pcreate
* Create partition entry in the table (interactive mode).
*/
pcreate()
{
unsigned char tsystid = 'z';
int i, j;
int startcyl, endcyl;
int rsect = 1;
int retCode = 0;
i = 0;
while (1) {
if (i == FD_NUMPART) {
printf(E_LINE);
printf("The partition table is full!\n");
printf("You must delete a partition before creating"
" a new one.\n");
return (-1);
}
if (Table[i].systid == UNUSED) {
break;
}
i++;
}
j = 0;
for (i = 0; i < FD_NUMPART; i++) {
if (Table[i].systid != UNUSED) {
j += lel(Table[i].numsect);
}
if (j >= Numcyl * heads * sectors) {
printf(E_LINE);
printf("There is no more room on the disk for"
" another partition.\n");
printf("You must delete a partition before creating"
" a new one.\n");
return (-1);
}
}
while (tsystid == 'z') {
printf(Q_LINE);
printf("Select the partition type to create:\n");
printf(" 1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other\n");
printf(" 5=DOS12 6=DOS16 7=DOSEXT 8=DOSBIG\n");
printf(" 9=DOS16LBA A=x86 Boot B=Diagnostic C=FAT32\n");
printf(" D=FAT32LBA E=DOSEXTLBA F=EFI 0=Exit? ");
gets(s);
rm_blanks(s);
if (s[1] != 0) {
printf(E_LINE);
printf("Invalid selection, try again.");
continue;
}
switch (s[0]) {
case '0': /* exit */
printf(E_LINE);
return (-1);
case '1': /* Solaris partition */
tsystid = SUNIXOS2;
break;
case '2': /* UNIX partition */
tsystid = UNIXOS;
break;
case '3': /* PCIXOS partition */
tsystid = PCIXOS;
break;
case '4': /* OTHEROS System partition */
tsystid = OTHEROS;
break;
case '5':
tsystid = DOSOS12; /* DOS 12 bit fat */
break;
case '6':
tsystid = DOSOS16; /* DOS 16 bit fat */
break;
case '7':
tsystid = EXTDOS;
break;
case '8':
tsystid = DOSHUGE;
break;
case '9':
tsystid = FDISK_FAT95; /* FAT16, need extended int13 */
break;
case 'a': /* x86 Boot partition */
case 'A':
tsystid = X86BOOT;
break;
case 'b': /* Diagnostic boot partition */
case 'B':
tsystid = DIAGPART;
break;
case 'c': /* FAT32 */
case 'C':
tsystid = FDISK_WINDOWS;
break;
case 'd': /* FAT32 and need extended int13 */
case 'D':
tsystid = FDISK_EXT_WIN;
break;
case 'e': /* Extended partition, need extended int13 */
case 'E':
tsystid = FDISK_EXTLBA;
break;
case 'f':
case 'F':
tsystid = EFI_PMBR;
break;
default:
printf(E_LINE);
printf("Invalid selection, try again.");
continue;
}
}
printf(E_LINE);
if (tsystid != EFI_PMBR) {
/* create the new partition */
i = specify(tsystid);
if (i != -1) {
/* see if it should be the active partition */
printf(E_LINE);
printf(Q_LINE);
printf("Should this become the active partition? If "
"yes, it will be activated\n");
printf("each time the computer is reset or turned "
"on.\n");
printf("Please type \"y\" or \"n\". ");
if (yesno()) {
printf(E_LINE);
for (j = 0; j < FD_NUMPART; j++) {
if (j == i) {
Table[j].bootid = ACTIVE;
printf(E_LINE);
printf("Partition %d is now "
"the active partition.",
j+1);
} else {
Table[j].bootid = 0;
}
}
} else {
Table[i].bootid = 0;
}
/* set up the return code */
i = 1;
}
} else {
/*
* partitions of type EFI_PMBR must be the only partitions in
* the table
*
* First, make sure there were no errors the table is
* empty
*/
retCode = verify_tbl();
if (retCode < 0) {
fprintf(stderr,
"fdisk: Cannot create EFI partition table; \n"
"current partition table is invalid.\n");
return (-1);
} else if (retCode > 0) {
printf("An EFI partition must be the only partition on "
"disk. You may manually delete existing\n"
"partitions, or fdisk can do it.\n");
printf("Do you want fdisk to destroy existing "
"partitions?\n");
printf("Please type \"y\" or \"n\". ");
if (yesno()) {
nulltbl();
} else {
return (-1);
}
}
/* create the table entry - i should be 0 */
i = insert_tbl(tsystid, 0, 0, 0, 0, 0, 0, 0, rsect,
(Numcyl * heads * sectors) - rsect);
if (i != 0) {
printf("Error creating EFI partition!!!\n");
i = -1;
} else {
/* EFI partitions are currently never active */
Table[i].bootid = 0;
/* set up the return code */
i = 1;
}
}
return (i);
}
/*
* specify
* Query the user to specify the size of the new partition in
* terms of percentage of the disk or by specifying the starting
* cylinder and length in cylinders.
*/
specify(tsystid)
unsigned char tsystid;
{
int i, j,
percent = -1;
int cyl, cylen, first_free, size_free;
struct ipart *partition[FD_NUMPART];
printf(Q_LINE);
printf("Specify the percentage of disk to use for this partition\n");
printf("(or type \"c\" to specify the size in cylinders). ");
gets(s);
rm_blanks(s);
if (s[0] != 'c') { /* Specify size in percentage of disk */
i = 0;
while (s[i] != '\0') {
if (s[i] < '0' || s[i] > '9') {
printf(E_LINE);
printf("Invalid percentage value specified; retry"
" the operation.");
return (-1);
}
i++;
if (i > 3) {
printf(E_LINE);
printf("Invalid percentage value specified; retry"
" the operation.");
return (-1);
}
}
if ((percent = atoi(s)) > 100) {
printf(E_LINE);
printf("Percentage value is too large. The value must be"
" between 1 and 100;\nretry the operation.\n");
return (-1);
}
if (percent < 1) {
printf(E_LINE);
printf("Percentage value is too small. The value must be"
" between 1 and 100;\nretry the operation.\n");
return (-1);
}
cylen = (Numcyl * percent) / 100;
if ((percent < 100) && (((Numcyl * percent) % 10) > 5))
cylen++;
/* Verify that the DOS12 partition does not exceed the maximum */
/* size of 32MB. */
if ((tsystid == DOSOS12) && ((long)((long)cylen*heads*sectors) >
MAXDOS)) {
int n;
n = (int)(MAXDOS*100/(int)(heads*sectors)/Numcyl);
printf(E_LINE);
printf("Maximum size for a DOS partition is %d%%;"
" retry the operation.",
n <= 100 ? n : 100);
return (-1);
}
/* Before searching the partitions, sort them into sector order */
/* in the partition array, note that we only need to sort */
/* NUMPART-1 entries as at least the last one must be empty */
for (i = 0; i < FD_NUMPART; i++) partition[i] = &Table[i];
for (i = 0; i < FD_NUMPART-2; i++) {
if (partition[i]->systid == UNUSED) break;
for (j = i+1; j < FD_NUMPART-1; j++) {
if (partition[j]->systid == UNUSED) break;
if (lel(partition[j]->relsect) <
lel(partition[i]->relsect)) {
struct ipart *temp = partition[i];
partition[i] = partition[j];
partition[j] = temp;
}
}
}
for (i = 0; i < FD_NUMPART; i++) {
int last_ent = 0;
/* Find start of current check area */
if (i) { /* Not an empty table */
first_free = lel(partition[i-1]->relsect) +
lel(partition[i-1]->numsect);
} else {
first_free = heads * sectors;
}
/* Determine size of current check area */
if (partition[i]->systid == UNUSED) {
/* Special case hack for whole unused disk */
if (percent == 100 && i == 0)
cylen--;
size_free = (Numcyl*heads*sectors) - first_free;
last_ent++;
} else {
if (i && ((lel(partition[i-1]->relsect) +
lel(partition[i-1]->numsect)) !=
lel(partition[i]->relsect))) {
/* There is a hole in table */
size_free = lel(partition[i]->relsect) -
(lel(partition[i-1]->relsect) +
lel(partition[i-1]->numsect));
} else if (i == 0) {
size_free = lel(partition[i]->relsect) -
heads*sectors;
} else {
size_free = 0;
}
}
if ((cylen*heads*sectors) <= size_free) {
/* We found a place to use */
break;
} else if (last_ent) {
size_free = 0;
break;
}
}
if (i < FD_NUMPART && size_free) {
printf(E_LINE);
if ((i = insert_tbl(tsystid, 0, 0, 0, 0, 0, 0, 0,
first_free, cylen*heads*sectors)) < 0) {
fprintf(stderr,
"fdisk: Partition entry too big.\n");
return (-1);
}
} else {
printf(E_LINE);
fprintf(stderr, "fdisk: Partition entry too big.\n");
i = -1;
}
return (i);
} else { /* Specifying size in cylinders */
printf(E_LINE);
printf(Q_LINE);
printf("Enter starting cylinder number: ");
if ((cyl = getcyl()) == -1) {
printf(E_LINE);
printf("Invalid number; retry the operation.");
return (-1);
}
if (cyl == 0) {
printf(E_LINE);
printf("New partition cannot start at cylinder 0.\n");
return (-1);
}
if (cyl >= (unsigned int)Numcyl) {
printf(E_LINE);
printf("Cylinder %d is out of bounds, the maximum is %d.\n",
cyl, Numcyl - 1);
return (-1);
}
printf(Q_LINE);
printf("Enter partition size in cylinders: ");
if ((cylen = getcyl()) == -1) {
printf(E_LINE);
printf("Invalid number, retry the operation.");
return (-1);
}
/* Verify that the DOS12 partition does not exceed the maximum */
/* size of 32MB. */
if ((tsystid == DOSOS12) &&
((long)((long)cylen*heads*sectors) > MAXDOS)) {
printf(E_LINE);
printf("Maximum size for a %s partition is %ld cylinders;"
"\nretry the operation.",
Dstr, MAXDOS/(int)(heads*sectors));
return (-1);
}
i = insert_tbl(tsystid, 0, 0, 0, 0, 0, 0, 0, cyl*heads*sectors,
cylen*heads*sectors);
if (verify_tbl() < 0) {
printf(E_LINE);
printf("fdisk: Cannot create partition table\n");
return (-1);
}
return (i);
}
}
/*
* dispmenu
* Display command menu (interactive mode).
*/
dispmenu(file)
char *file;
{
printf(M_LINE);
printf("SELECT ONE OF THE FOLLOWING:\n");
printf(" 1. Create a partition\n");
printf(" 2. Specify the active partition\n");
printf(" 3. Delete a partition\n");
printf(" 4. Change between Solaris and Solaris2 Partition IDs\n");
printf(" 5. Exit (update disk configuration and exit)\n");
printf(" 6. Cancel (exit without updating disk configuration)\n");
}
/*
* pchange
* Change the ACTIVE designation of a partition.
*/
pchange()
{
char s[80];
int i, j;
while (1) {
printf(Q_LINE);
{
printf("Specify the partition number to boot from"
" (or specify 0 for none): ");
}
gets(s);
rm_blanks(s);
if ((s[1] != 0) || (s[0] < '0') || (s[0] > '4')) {
printf(E_LINE);
printf("Invalid response, please specify a number"
" between 0 and 4.\n");
} else {
break;
}
}
if (s[0] == '0') { /* No active partitions */
for (i = 0; i < FD_NUMPART; i++) {
if (Table[i].systid != UNUSED &&
Table[i].bootid == ACTIVE)
Table[i].bootid = 0;
}
printf(E_LINE);
printf("No partition is currently marked as active.");
return (0);
} else { /* User has selected a partition to be active */
i = s[0] - '1';
if (Table[i].systid == UNUSED) {
printf(E_LINE);
printf("Partition does not exist.");
return (-1);
}
/* a DOS-DATA or EXT-DOS partition cannot be active */
else if ((Table[i].systid == DOSDATA) ||
(Table[i].systid == EXTDOS) ||
(Table[i].systid == FDISK_EXTLBA)) {
printf(E_LINE);
printf("DOS-DATA, EXT_DOS and EXT_DOS_LBA partitions "
"cannot be made active.\n");
printf("Select another partition.");
return (-1);
}
Table[i].bootid = ACTIVE;
for (j = 0; j < FD_NUMPART; j++) {
if (j != i)
Table[j].bootid = 0;
}
}
printf(E_LINE);
{
printf("Partition %d is now active. The system will start up"
" from this\n", i+1);
printf("partition after the next reboot.");
}
return (1);
}
/*
* Change between SOLARIS and SOLARIS2 partition id
*/
ppartid()
{
char *p, s[80];
int i;
for (;;) {
printf(Q_LINE);
printf("Specify the partition number to change"
" (or enter 0 to exit): ");
fgets(s, sizeof (s), stdin);
i = strtol(s, &p, 10);
if (*p != '\n' || i < 0 || i > FD_NUMPART) {
printf(E_LINE);
printf("Invalid response, retry the operation.\n");
continue;
}
if (i == 0) {
/* exit delete command */
printf(E_LINE); /* clear error message */
return (1);
}
i -= 1;
if (Table[i].systid == SUNIXOS) {
Table[i].systid = SUNIXOS2;
} else if (Table[i].systid == SUNIXOS2) {
Table[i].systid = SUNIXOS;
} else {
printf(E_LINE);
printf("Partition %d is not a Solaris partition.",
i + 1);
continue;
}
printf(E_LINE);
printf("Partition %d has been changed.", i + 1);
return (1);
}
}
/*
* pdelete
* Remove partition entry from the table (interactive mode).
*/
pdelete()
{
char s[80];
int i, j;
char pactive;
DEL1: printf(Q_LINE);
printf("Specify the partition number to delete"
" (or enter 0 to exit): ");
gets(s);
rm_blanks(s);
if ((s[0] == '0')) { /* exit delete command */
printf(E_LINE); /* clear error message */
return (1);
}
/* Accept only a single digit between 1 and 4 */
if (s[1] != 0 || (i = atoi(s)) < 1 || i > FD_NUMPART) {
printf(E_LINE);
printf("Invalid response, retry the operation.\n");
goto DEL1;
} else { /* Found a digit between 1 and 4 */
--i; /* Structure begins with element 0 */
}
if (Table[i].systid == UNUSED) {
printf(E_LINE);
printf("Partition %d does not exist.", i+1);
return (-1);
}
printf(Q_LINE);
printf("Are you sure you want to delete partition %d?"
" This will make all files and \n", i+1);
printf("programs in this partition inaccessible (type"
" \"y\" or \"n\"). ");
printf(E_LINE);
if (! yesno()) {
return (1);
}
if (Table[i].bootid == ACTIVE) {
pactive = 1;
} else {
pactive = 0;
}
for (j = i; j < FD_NUMPART - 1; j++) {
Table[j] = Table[j+1];
}
Table[j].systid = UNUSED;
Table[j].numsect = 0;
Table[j].relsect = 0;
Table[j].bootid = 0;
printf(E_LINE);
printf("Partition %d has been deleted.", i+1);
if (pactive) {
printf(" This was the active partition.");
}
return (1);
}
/*
* rm_blanks
* Remove blanks from strings of user responses.
*/
rm_blanks(s)
char *s;
{
register int i, j;
for (i = 0; i < CBUFLEN; i++) {
if ((s[i] == ' ') || (s[i] == '\t'))
continue;
else
/* Found first non-blank character of the string */
break;
}
for (j = 0; i < CBUFLEN; j++, i++) {
if ((s[j] = s[i]) == '\0') {
/* Reached end of string */
return;
}
}
}
/*
* getcyl
* Take the user-specified cylinder number and convert it from a
* string to a decimal value.
*/
getcyl()
{
int slen, i, j;
unsigned int cyl;
gets(s);
rm_blanks(s);
slen = strlen(s);
j = 1;
cyl = 0;
for (i = slen-1; i >= 0; i--) {
if (s[i] < '0' || s[i] > '9') {
return (-1);
}
cyl += (j*(s[i]-'0'));
j *= 10;
}
return (cyl);
}
/*
* disptbl
* Display the current fdisk table; determine percentage
* of the disk used for each partition.
*/
disptbl()
{
int i;
unsigned int startcyl, endcyl, length, percent, remainder;
char *stat, *type;
unsigned char *t;
if ((heads == 0) || (sectors == 0)) {
printf("WARNING: critical disk geometry information"
" missing!\n");
printf("\theads = %d, sectors = %d\n", heads, sectors);
exit(1);
}
printf(HOME);
printf(T_LINE);
printf(" Total disk size is %d cylinders\n", Numcyl);
printf(" Cylinder size is %d (512 byte) blocks\n\n",
heads*sectors);
printf(" Cylinders\n");
printf(" Partition Status Type Start End Length"
" %%\n");
printf(" ========= ====== ============ ===== === ======"
" ===");
for (i = 0; i < FD_NUMPART; i++) {
if (Table[i].systid == UNUSED) {
printf("\n");
printf(CLR_LIN);
continue;
}
if (Table[i].bootid == ACTIVE)
stat = Actvstr;
else
stat = NAstr;
switch (Table[i].systid) {
case UNIXOS:
type = Ustr;
break;
case SUNIXOS:
type = SUstr;
break;
case SUNIXOS2:
type = SU2str;
break;
case X86BOOT:
type = X86str;
break;
case DOSOS12:
type = Dstr;
break;
case DOSOS16:
type = D16str;
break;
case EXTDOS:
type = EDstr;
break;
case DOSDATA:
type = DDstr;
break;
case DOSHUGE:
type = DBstr;
break;
case PCIXOS:
type = PCstr;
break;
case DIAGPART:
type = DIAGstr;
break;
case FDISK_IFS:
type = IFSstr;
break;
case FDISK_AIXBOOT:
type = AIXstr;
break;
case FDISK_AIXDATA:
type = AIXDstr;
break;
case FDISK_OS2BOOT:
type = OS2str;
break;
case FDISK_WINDOWS:
type = WINstr;
break;
case FDISK_EXT_WIN:
type = EWINstr;
break;
case FDISK_FAT95:
type = FAT95str;
break;
case FDISK_EXTLBA:
type = EXTLstr;
break;
case FDISK_LINUX:
type = LINUXstr;
break;
case FDISK_CPM:
type = CPMstr;
break;
case FDISK_NOVELL3:
type = NOVstr;
break;
case FDISK_QNX4:
type = QNXstr;
break;
case FDISK_QNX42:
type = QNX2str;
break;
case FDISK_QNX43:
type = QNX3str;
break;
case FDISK_LINUXNAT:
type = LINNATstr;
break;
case FDISK_NTFSVOL1:
type = NTFSVOL1str;
break;
case FDISK_NTFSVOL2:
type = NTFSVOL2str;
break;
case FDISK_BSD:
type = BSDstr;
break;
case FDISK_NEXTSTEP:
type = NEXTSTEPstr;
break;
case FDISK_BSDIFS:
type = BSDIFSstr;
break;
case FDISK_BSDISWAP:
type = BSDISWAPstr;
break;
case EFI_PMBR:
type = EFIstr;
break;
default:
type = Ostr;
break;
}
t = &Table[i].bootid;
startcyl = lel(Table[i].relsect)/(heads*sectors);
length = lel(Table[i].numsect) / (long)(heads * sectors);
if (lel(Table[i].numsect) % (long)(heads * sectors))
length++;
endcyl = startcyl + length - 1;
percent = length * 100 / Numcyl;
if ((remainder = (length*100 % Numcyl)) != 0) {
if ((remainder * 100 / Numcyl) > 50) {
/* round up */
percent++;
}
/* Else leave the percent as is since it's already */
/* rounded down */
}
if (percent > 100)
percent = 100;
printf("\n %d %s %-12.12s %4d %4d %4d"
" %3d", i+1, stat, type, startcyl, endcyl, length,
percent);
}
/* Print warning message if table is empty */
if (Table[0].systid == UNUSED) {
printf(W_LINE);
printf("WARNING: no partitions are defined!");
} else {
/* Clear the warning line */
printf(W_LINE);
}
}
/*
* print_Table
* Write the detailed fdisk table to standard error for
* the selected disk device.
*/
print_Table() {
int i;
fprintf(stderr,
" SYSID ACT BHEAD BSECT BEGCYL EHEAD ESECT ENDCYL RELSECT"
" NUMSECT\n");
for (i = 0; i < FD_NUMPART; i++) {
fprintf(stderr, " %-5d ", Table[i].systid);
fprintf(stderr, "%-3d ", Table[i].bootid);
fprintf(stderr, "%-5d ", Table[i].beghead);
fprintf(stderr, "%-5d ", Table[i].begsect & 0x3f);
fprintf(stderr, "%-8d ", (((uint_t)Table[i].begsect &
0xc0) << 2) + Table[i].begcyl);
fprintf(stderr, "%-5d ", Table[i].endhead);
fprintf(stderr, "%-5d ", Table[i].endsect & 0x3f);
fprintf(stderr, "%-8d ", (((uint_t)Table[i].endsect &
0xc0) << 2) + Table[i].endcyl);
fprintf(stderr, "%-9d ", lel(Table[i].relsect));
fprintf(stderr, "%-9d\n", lel(Table[i].numsect));
}
}
/*
* copy_Table_to_Old_Table
* Copy Table into Old_Table. The function only copies the systid,
* numsect, relsect, and bootid values because they are the only
* ones compared when determining if Table has changed.
*/
copy_Table_to_Old_Table()
{
int i;
for (i = 0; i < FD_NUMPART; i++) {
memcpy(&Old_Table[i], &Table[i], sizeof (Table[0]));
}
}
/*
* nulltbl
* Zero out the systid, numsect, relsect, and bootid values in the
* fdisk table.
*/
nulltbl()
{
int i;
for (i = 0; i < FD_NUMPART; i++) {
Table[i].systid = UNUSED;
Table[i].numsect = lel(UNUSED);
Table[i].relsect = lel(UNUSED);
Table[i].bootid = 0;
}
}
/*
* copy_Bootblk_to_Table
* Copy the bytes from the boot record to an internal "Table".
* All unused are padded with zeros starting at offset 446.
*/
copy_Bootblk_to_Table()
{
int i, j;
char *bootptr;
unsigned char *tbl_ptr;
int tblpos;
void fill_ipart(char *, struct ipart *);
struct ipart iparts[FD_NUMPART];
/* Get an aligned copy of the partition tables */
memcpy(iparts, Bootblk->parts, sizeof (iparts));
tbl_ptr = &Table[0].bootid;
bootptr = (char *)iparts; /* Points to start of partition table */
if (les(Bootblk->signature) != MBB_MAGIC) {
/* Signature is missing */
nulltbl();
memcpy(Bootblk->bootinst, &BootCod, BOOTSZ);
return;
}
/*
* When the DOS fdisk command deletes a partition, it is not
* recognized by the old algorithm. The algorithm that
* follows looks at each entry in the Bootrec and copies all
* those that are valid.
*/
j = 0;
for (i = 0; i < FD_NUMPART; i++) {
if (iparts[i].systid == 0) {
/* Null entry */
bootptr += sizeof (struct ipart);
} else {
(void) fill_ipart(bootptr, &Table[j]);
j++;
bootptr += sizeof (struct ipart);
}
}
for (i = j; i < FD_NUMPART; i++) {
Table[i].systid = UNUSED;
Table[i].numsect = lel(UNUSED);
Table[i].relsect = lel(UNUSED);
Table[i].bootid = 0;
}
/* For now, always replace the bootcode with ours */
memcpy(Bootblk->bootinst, &BootCod, BOOTSZ);
copy_Table_to_Bootblk();
}
/*
* fill_ipart
* Initialize ipart structure values.
*/
void
fill_ipart(char *bootptr, struct ipart *partp)
{
#ifdef sparc
/* Packing struct ipart for Sparc */
partp->bootid = getbyte(&bootptr);
partp->beghead = getbyte(&bootptr);
partp->begsect = getbyte(&bootptr);
partp->begcyl = getbyte(&bootptr);
partp->systid = getbyte(&bootptr);
partp->endhead = getbyte(&bootptr);
partp->endsect = getbyte(&bootptr);
partp->endcyl = getbyte(&bootptr);
partp->relsect = getlong(&bootptr);
partp->numsect = getlong(&bootptr);
#else
*partp = *(struct ipart *)bootptr;
#endif
}
/*
* getbyte, getshort, getlong
* Get a byte, a short, or a long (SPARC only).
*/
#ifdef sparc
getbyte(uchar_t **bp)
{
int b;
b = **bp;
*bp = *bp + 1;
return (b);
}
getshort(uchar_t **bp)
{
int b;
b = ((**bp) << 8) | *(*bp + 1);
*bp += 2;
return (b);
}
getlong(uchar_t **bp)
{
int b, bh, bl;
bh = ((**bp) << 8) | *(*bp + 1);
*bp += 2;
bl = ((**bp) << 8) | *(*bp + 1);
*bp += 2;
b = (bh << 16) | bl;
return (b);
}
#endif
/*
* copy_Table_to_Bootblk
* Copy the table into the 512 boot record. Note that the unused
* entries will always be the last ones in the table and they are
* marked with 100 in sysind. The the unused portion of the table
* is padded with zeros in the bytes after the used entries.
*/
copy_Table_to_Bootblk()
{
struct ipart *boot_ptr, *tbl_ptr;
boot_ptr = (struct ipart *)Bootblk->parts;
tbl_ptr = (struct ipart *)&Table[0].bootid;
for (; tbl_ptr < (struct ipart *)&Table[FD_NUMPART].bootid;
tbl_ptr++, boot_ptr++) {
if (tbl_ptr->systid == UNUSED)
memset(boot_ptr, 0, sizeof (struct ipart));
else
memcpy(boot_ptr, tbl_ptr, sizeof (struct ipart));
}
Bootblk->signature = les(MBB_MAGIC);
}
/*
* TableChanged
* Check for any changes in the partition table.
*/
TableChanged()
{
int i, changed;
changed = 0;
for (i = 0; i < FD_NUMPART; i++) {
if (memcmp(&Old_Table[i], &Table[i], sizeof (Table[0])) != 0) {
/* Partition table changed, write back to disk */
changed = 1;
}
}
return (changed);
}
/*
* ffile_write
* Display contents of partition table to standard output or
* another file name without writing it to the disk (-W file).
*/
ffile_write(file)
char *file;
{
register int i;
register int c;
FILE *fp;
/*
* If file isn't standard output, then it's a file name.
* Open file and write it.
*/
if (file != (char *)stdout) {
if ((fp = fopen(file, "w")) == NULL) {
(void) fprintf(stderr, "fdisk: Cannot open output file %s.\n",
file);
exit(1);
}
}
else
fp = stdout;
/*
* Write the fdisk table information
*/
fprintf(fp, "\n* %s default fdisk table\n", Dfltdev);
fprintf(fp, "* Dimensions:\n");
fprintf(fp, "* %4d bytes/sector\n", sectsiz);
fprintf(fp, "* %4d sectors/track\n", sectors);
fprintf(fp, "* %4d tracks/cylinder\n", heads);
fprintf(fp, "* %4d cylinders\n", Numcyl);
fprintf(fp, "*\n");
/* Write virtual (HBA) geometry, if required */
if (v_flag) {
fprintf(fp, "* HBA Dimensions:\n");
fprintf(fp, "* %4d bytes/sector\n", sectsiz);
fprintf(fp, "* %4d sectors/track\n", hba_sectors);
fprintf(fp, "* %4d tracks/cylinder\n", hba_heads);
fprintf(fp, "* %4d cylinders\n", hba_Numcyl);
fprintf(fp, "*\n");
}
fprintf(fp, "* systid:\n");
fprintf(fp, "* 1: DOSOS12\n");
fprintf(fp, "* 2: PCIXOS\n");
fprintf(fp, "* 4: DOSOS16\n");
fprintf(fp, "* 5: EXTDOS\n");
fprintf(fp, "* 6: DOSBIG\n");
fprintf(fp, "* 7: FDISK_IFS\n");
fprintf(fp, "* 8: FDISK_AIXBOOT\n");
fprintf(fp, "* 9: FDISK_AIXDATA\n");
fprintf(fp, "* 10: FDISK_0S2BOOT\n");
fprintf(fp, "* 11: FDISK_WINDOWS\n");
fprintf(fp, "* 12: FDISK_EXT_WIN\n");
fprintf(fp, "* 14: FDISK_FAT95\n");
fprintf(fp, "* 15: FDISK_EXTLBA\n");
fprintf(fp, "* 18: DIAGPART\n");
fprintf(fp, "* 65: FDISK_LINUX\n");
fprintf(fp, "* 82: FDISK_CPM\n");
fprintf(fp, "* 86: DOSDATA\n");
fprintf(fp, "* 98: OTHEROS\n");
fprintf(fp, "* 99: UNIXOS\n");
fprintf(fp, "* 101: FDISK_NOVELL3\n");
fprintf(fp, "* 119: FDISK_QNX4\n");
fprintf(fp, "* 120: FDISK_QNX42\n");
fprintf(fp, "* 121: FDISK_QNX43\n");
fprintf(fp, "* 130: SUNIXOS\n");
fprintf(fp, "* 131: FDISK_LINUXNAT\n");
fprintf(fp, "* 134: FDISK_NTFSVOL1\n");
fprintf(fp, "* 135: FDISK_NTFSVOL2\n");
fprintf(fp, "* 165: FDISK_BSD\n");
fprintf(fp, "* 167: FDISK_NEXTSTEP\n");
fprintf(fp, "* 183: FDISK_BSDIFS\n");
fprintf(fp, "* 184: FDISK_BSDISWAP\n");
fprintf(fp, "* 190: X86BOOT\n");
fprintf(fp, "* 191: SUNIXOS2\n");
fprintf(fp, "* 238: EFI_PMBR\n");
fprintf(fp, "* 239: EFI_FS\n");
fprintf(fp, "*\n");
fprintf(fp,
"\n* Id Act Bhead Bsect Bcyl Ehead Esect Ecyl"
" Rsect Numsect\n");
for (i = 0; i < FD_NUMPART; i++) {
if (Table[i].systid != UNUSED)
fprintf(fp,
" %-5d %-4d %-6d %-6d %-7d %-6d %-6d %-7d %-8d"
" %-8d\n",
Table[i].systid,
Table[i].bootid,
Table[i].beghead,
Table[i].begsect & 0x3f,
((Table[i].begcyl & 0xff) | ((Table[i].begsect &
0xc0) << 2)),
Table[i].endhead,
Table[i].endsect & 0x3f,
((Table[i].endcyl & 0xff) | ((Table[i].endsect &
0xc0) << 2)),
lel(Table[i].relsect),
lel(Table[i].numsect));
}
if (fp != stdout)
fclose(fp);
}
/*
* fix_slice
* Read the VTOC table on the Solaris partition and check that no
* slices exist that extend past the end of the Solaris partition.
* If no Solaris partition exists, nothing is done.
*/
fix_slice()
{
int i;
int ret;
int numsect;
if (io_image) {
return (0);
}
for (i = 0; i < FD_NUMPART; i++) {
if (Table[i].systid == SUNIXOS || Table[i].systid == SUNIXOS2) {
/*
* Only the size matters (not starting point), since
* VTOC entries are relative to the start of
* the partition.
*/
numsect = lel(Table[i].numsect);
break;
}
}
if (i >= FD_NUMPART) {
if (!io_nifdisk) {
(void) fprintf(stderr,
"fdisk: No Solaris partition found - VTOC not"
" checked.\n");
}
return (1);
}
if ((ret = readvtoc()) != VTOC_OK) {
exit(1); /* Failed to read the VTOC */
} else {
for (i = 0; i < V_NUMPAR; i++) {
/* Special case for slice two (entire disk) */
if (i == 2) {
if (disk_vtoc.v_part[i].p_start != 0) {
(void) fprintf(stderr,
"slice %d starts at %d, is not at"
" start of partition",
i, disk_vtoc.v_part[i].p_start);
if (!io_nifdisk) {
printf(" adjust ?:");
if (yesno())
disk_vtoc.v_part[i].p_start = 0;
} else {
disk_vtoc.v_part[i].p_start = 0;
(void) fprintf(stderr,
" adjusted!\n");
}
}
if (disk_vtoc.v_part[i].p_size != numsect) {
(void) fprintf(stderr,
"slice %d size %d does not cover"
" complete partition",
i, disk_vtoc.v_part[i].p_size);
if (!io_nifdisk) {
printf(" adjust ?:");
if (yesno())
disk_vtoc.v_part[i].p_size =
numsect;
} else {
disk_vtoc.v_part[i].p_size =
numsect;
(void) fprintf(stderr,
" adjusted!\n");
}
}
if (disk_vtoc.v_part[i].p_tag != V_BACKUP) {
(void) fprintf(stderr,
"slice %d tag was %d should be %d",
i, disk_vtoc.v_part[i].p_tag,
V_BACKUP);
if (!io_nifdisk) {
printf(" fix ?:");
if (yesno())
disk_vtoc.v_part[i].p_tag =
V_BACKUP;
} else {
disk_vtoc.v_part[i].p_tag = V_BACKUP;
(void) fprintf(stderr, " fixed!\n");
}
}
} else {
if (io_ADJT) {
if (disk_vtoc.v_part[i].p_start > numsect ||
disk_vtoc.v_part[i].p_start +
disk_vtoc.v_part[i].p_size > numsect) {
(void) fprintf(stderr,
"slice %d (start %d, end %d) is"
" larger than the partition",
i, disk_vtoc.v_part[i].p_start,
disk_vtoc.v_part[i].p_start +
disk_vtoc.v_part[i].p_size);
if (!io_nifdisk) {
printf(" remove ?:");
if (yesno()) {
disk_vtoc.v_part[i].p_size =
0;
disk_vtoc.v_part[i].p_start
= 0;
disk_vtoc.v_part[i].p_tag =
0;
disk_vtoc.v_part[i].p_flag =
0;
}
} else {
disk_vtoc.v_part[i].p_size = 0;
disk_vtoc.v_part[i].p_start = 0;
disk_vtoc.v_part[i].p_tag = 0;
disk_vtoc.v_part[i].p_flag = 0;
(void) fprintf(stderr,
" removed!\n");
}
}
} else {
if (disk_vtoc.v_part[i].p_start >
numsect) {
(void) fprintf(stderr,
"slice %d (start %d) is larger"
" than the partition",
i, disk_vtoc.v_part[i].p_start);
if (!io_nifdisk) {
printf(" remove ?:");
if (yesno()) {
disk_vtoc.v_part[i].p_size = 0;
disk_vtoc.v_part[i].p_start =
0;
disk_vtoc.v_part[i].p_tag = 0;
disk_vtoc.v_part[i].p_flag = 0;
}
} else {
disk_vtoc.v_part[i].p_size = 0;
disk_vtoc.v_part[i].p_start = 0;
disk_vtoc.v_part[i].p_tag = 0;
disk_vtoc.v_part[i].p_flag = 0;
(void) fprintf(stderr,
" removed!\n");
}
} else if (disk_vtoc.v_part[i].p_start
+ disk_vtoc.v_part[i].p_size >
numsect) {
(void) fprintf(stderr,
"slice %d (end %d) is larger"
" than the partition",
i,
disk_vtoc.v_part[i].p_start +
disk_vtoc.v_part[i].p_size);
if (!io_nifdisk) {
printf(" adjust ?:");
if (yesno()) {
disk_vtoc.v_part[i].p_size
= numsect;
}
} else {
disk_vtoc.v_part[i].p_size =
numsect;
(void) fprintf(stderr,
" adjusted!\n");
}
}
}
}
}
}
#if 1 /* bh for now */
/* Make the VTOC look sane - ha ha */
disk_vtoc.v_version = V_VERSION;
disk_vtoc.v_sanity = VTOC_SANE;
disk_vtoc.v_nparts = V_NUMPAR;
if (disk_vtoc.v_sectorsz == 0)
disk_vtoc.v_sectorsz = NBPSCTR;
#endif
/* Write the VTOC back to the disk */
if (!io_readonly)
writevtoc();
}
/*
* yesno
* Get yes or no answer. Return 1 for yes and 0 for no.
*/
yesno()
{
char s[80];
for (;;) {
gets(s);
rm_blanks(s);
if ((s[1] != 0) || ((s[0] != 'y') && (s[0] != 'n'))) {
printf(E_LINE);
printf("Please answer with \"y\" or \"n\": ");
continue;
}
if (s[0] == 'y')
return (1);
else
return (0);
}
}
/*
* readvtoc
* Read the VTOC from the Solaris partition of the device.
*/
readvtoc()
{
int i;
int retval = VTOC_OK;
if ((i = read_vtoc(Dev, &disk_vtoc)) < VTOC_OK) {
if (i == VT_EINVAL) {
(void) fprintf(stderr, "fdisk: Invalid VTOC.\n");
vt_inval++;
retval = VTOC_INVAL;
} else if (i == VT_ENOTSUP) {
(void) fprintf(stderr, "fdisk: partition may have EFI "
"GPT\n");
retval = VTOC_NOTSUP;
} else {
(void) fprintf(stderr, "fdisk: Cannot read VTOC.\n");
retval = VTOC_RWERR;
}
}
return (retval);
}
/*
* writevtoc
* Write the VTOC to the Solaris partition on the device.
*/
writevtoc()
{
int i;
int retval = 0;
if ((i = write_vtoc(Dev, &disk_vtoc)) != 0) {
if (i == VT_EINVAL) {
(void) fprintf(stderr,
"fdisk: Invalid entry exists in VTOC.\n");
retval = VTOC_INVAL;
} else if (i == VT_ENOTSUP) {
(void) fprintf(stderr, "fdisk: partition may have EFI "
"GPT\n");
retval = VTOC_NOTSUP;
} else {
(void) fprintf(stderr, "fdisk: Cannot write VTOC.\n");
retval = VTOC_RWERR;
}
}
return (retval);
}
/*
* efi_ioctl
* issues DKIOCSETEFI IOCTL
* (duplicate of private efi_ioctl() in rdwr_efi.c
*/
static int
efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
{
void *data = dk_ioc->dki_data;
int error;
dk_ioc->dki_data_64 = (uintptr_t)data;
error = ioctl(fd, cmd, (void *)dk_ioc);
return (error);
}
/*
* clear_efi
* Clear EFI labels from the EFI_PMBR partition on the device
* This function is modeled on the libefi(3LIB) call efi_write()
*/
int
clear_efi()
{
struct dk_gpt *efi_vtoc;
dk_efi_t dk_ioc;
/*
* see if we can read the EFI label
*/
if (efi_alloc_and_read(Dev, &efi_vtoc) < 0) {
return (VT_ERROR);
}
/*
* set up the dk_ioc structure for writing
*/
dk_ioc.dki_lba = 1;
dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + efi_vtoc->efi_lbasize;
if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) {
return (VT_ERROR);
}
/*
* clear the primary label
*/
if (io_debug) {
fprintf(stderr, "\tClearing primary EFI label at block "
"%d\n", dk_ioc.dki_lba);
}
if (efi_ioctl(Dev, DKIOCSETEFI, &dk_ioc) == -1) {
free(dk_ioc.dki_data);
switch (errno) {
case EIO:
return (VT_EIO);
case EINVAL:
return (VT_EINVAL);
default:
return (VT_ERROR);
}
}
/*
* clear the backup partition table
*/
dk_ioc.dki_lba = efi_vtoc->efi_last_u_lba + 1;
dk_ioc.dki_length -= efi_vtoc->efi_lbasize;
dk_ioc.dki_data++;
if (io_debug) {
fprintf(stderr, "\tClearing backup partition table at block "
"%d\n", dk_ioc.dki_lba);
}
if (efi_ioctl(Dev, DKIOCSETEFI, &dk_ioc) == -1) {
(void) fprintf(stderr, "\tUnable to clear backup EFI label at "
"block %llu; errno %d\n", efi_vtoc->efi_last_u_lba + 1,
errno);
}
/*
* clear the backup label
*/
dk_ioc.dki_lba = efi_vtoc->efi_last_lba;
dk_ioc.dki_length = efi_vtoc->efi_lbasize;
dk_ioc.dki_data--;
if (io_debug) {
fprintf(stderr, "\tClearing backup label at block "
"%d\n", dk_ioc.dki_lba);
}
if (efi_ioctl(Dev, DKIOCSETEFI, &dk_ioc) == -1) {
(void) fprintf(stderr, "\tUnable to clear backup EFI label at "
"block %llu; errno %d\n", efi_vtoc->efi_last_lba,
errno);
}
free(dk_ioc.dki_data);
efi_free(efi_vtoc);
return (0);
}
/*
* clear_vtoc
* Clear the VTOC from the current or previous Solaris partition on the
* device.
*/
int
clear_vtoc(int table, int part)
{
struct ipart *clr_table;
struct dk_label disk_label;
int pcyl, ncyl, backup_block, solaris_offset, count, bytes, seek_byte;
#ifdef DEBUG
struct dk_label read_label;
#endif /* DEBUG */
if (table == OLD) {
clr_table = &Old_Table[part];
} else {
clr_table = &Table[part];
}
if (memset(&disk_label, 0, sizeof (struct dk_label)) == NULL) {
fprintf(stderr, "\tError zeroing dk_label structure\n");
}
seek_byte = (lel(clr_table->relsect) * sectsiz) + VTOC_OFFSET;
if (io_debug) {
fprintf(stderr, "\tClearing primary VTOC at byte %d\n",
seek_byte);
}
if (lseek(Dev, seek_byte, SEEK_SET) == -1) {
fprintf(stderr, "\tError seeking to primary label at byte %d\n",
seek_byte);
return (0);
}
bytes = write(Dev, &disk_label, sizeof (struct dk_label));
if (bytes != sizeof (struct dk_label)) {
fprintf(stderr, "\tWarning: only %d bytes written to clear"
" primary VTOC!\n", bytes);
}
#ifdef DEBUG
if (lseek(Dev, seek_byte, SEEK_SET) == -1) {
fprintf(stderr, "DEBUG: Error seeking to primary label at byte "
"%d\n", seek_byte);
return (0);
} else {
fprintf(stderr, "DEBUG: Successful lseek() to byte %d\n",
seek_byte);
}
bytes = read(Dev, &read_label, sizeof (struct dk_label));
if (bytes != sizeof (struct dk_label)) {
fprintf(stderr, "DEBUG: Warning: only %d bytes read of label\n",
bytes);
}
if (memcmp(&disk_label, &read_label, sizeof (struct dk_label)) != 0) {
fprintf(stderr, "DEBUG: Warning: disk_label and read_label "
"differ!!!\n");
} else {
fprintf(stderr, "DEBUG Good compare of disk_label and "
"read_label\n");
}
#endif /* DEBUG */
/* Clear backup label */
pcyl = lel(clr_table->numsect) / (heads * sectors);
solaris_offset = lel(clr_table->relsect);
ncyl = pcyl - acyl;
backup_block = ((ncyl + acyl - 1) *
(heads * sectors)) + ((heads - 1) * sectors) + 1;
for (count = 1; count < 6; count++) {
seek_byte = (solaris_offset + backup_block) * 512;
if (lseek(Dev, seek_byte, SEEK_SET) == -1) {
fprintf(stderr,
"\tError seeking to backup label at byte %d on "
"%s.\n", seek_byte, Dfltdev);
return (0);
}
if (io_debug) {
fprintf(stderr, "\tClearing backup VTOC at"
" byte %d (block %d)\n",
(solaris_offset + backup_block) * 512,
(solaris_offset + backup_block));
}
bytes = write(Dev, &disk_label, sizeof (struct dk_label));
if (bytes != sizeof (struct dk_label)) {
fprintf(stderr, "\t\tWarning: only %d bytes written to "
"clear backup VTOC at block %d!\n", bytes,
(solaris_offset + backup_block));
}
#ifdef DEBUG
if (lseek(Dev, seek_byte, SEEK_SET) == -1) {
fprintf(stderr, "DEBUG: Error seeking to backup label at byte "
"%d\n", seek_byte);
return (0);
} else {
fprintf(stderr, "DEBUG: Successful lseek() to byte %d\n",
seek_byte);
}
bytes = read(Dev, &read_label, sizeof (struct dk_label));
if (bytes != sizeof (struct dk_label)) {
fprintf(stderr, "DEBUG: Warning: only %d bytes read of backup "
"label\n", bytes);
}
if (memcmp(&disk_label, &read_label, sizeof (struct dk_label)) != 0) {
fprintf(stderr, "DEBUG: Warning: disk_label and read_label "
"differ!!!\n");
} else {
fprintf(stderr, "DEBUG: Good compare of disk_label and backup "
"read_label\n");
}
#endif /* DEBUG */
backup_block += 2;
}
return (0);
}
#define FDISK_STANDARD_LECTURE \
"Fdisk is normally used with the device that " \
"represents the entire fixed disk.\n" \
"(For example, /dev/rdsk/c0d0p0 on x86 or " \
"/dev/rdsk/c0t5d0s2 on sparc).\n"
#define FDISK_LECTURE_NOT_SECTOR_ZERO \
"The device does not appear to include absolute\n" \
"sector 0 of the PHYSICAL disk " \
"(the normal location for an fdisk table).\n"
#define FDISK_LECTURE_NOT_FULL \
"The device does not appear to encompass the entire PHYSICAL disk.\n"
#define FDISK_LECTURE_NO_VTOC \
"Unable to find a volume table of contents.\n" \
"Cannot verify the device encompasses the full PHYSICAL disk.\n"
#define FDISK_LECTURE_NO_GEOM \
"Unable to get geometry from device.\n" \
"Cannot verify the device encompasses the full PHYSICAL disk.\n"
#define FDISK_SHALL_I_CONTINUE \
"Are you sure you want to continue? (y/n) "
/*
* lecture_and_query
* Called when a sanity check fails. This routine gives a warning
* specific to the check that fails, followed by a generic lecture
* about the "right" device to supply as input. Then, if appropriate,
* it will prompt the user on whether or not they want to continue.
* Inappropriate times for prompting are when the user has selected
* non-interactive mode or read-only mode.
*/
int
lecture_and_query(char *warning, char *devname)
{
if (io_nifdisk)
return (0);
fprintf(stderr, "WARNING: Device %s: \n", devname);
fprintf(stderr, "%s", warning);
fprintf(stderr, FDISK_STANDARD_LECTURE);
fprintf(stderr, FDISK_SHALL_I_CONTINUE);
return (yesno());
}
void
sanity_check_provided_device(char *devname, int fd)
{
struct vtoc v;
struct dk_geom d;
struct part_info pi;
long totsize;
int idx = -1;
/*
* First try the PARTINFO ioctl. If it works, we will be able
* to tell if they've specified the full disk partition by checking
* to see if they've specified a partition that starts at sector 0.
*/
if (ioctl(fd, DKIOCPARTINFO, &pi) != -1) {
if (pi.p_start != 0) {
if (!lecture_and_query(FDISK_LECTURE_NOT_SECTOR_ZERO,
devname)) {
(void) close(fd);
exit(1);
}
}
} else {
if ((idx = read_vtoc(fd, &v)) < 0) {
if (!lecture_and_query(FDISK_LECTURE_NO_VTOC,
devname)) {
(void) close(fd);
exit(1);
}
return;
}
if (ioctl(fd, DKIOCGGEOM, &d) == -1) {
perror(devname);
if (!lecture_and_query(FDISK_LECTURE_NO_GEOM,
devname)) {
(void) close(fd);
exit(1);
}
return;
}
totsize = d.dkg_ncyl * d.dkg_nhead * d.dkg_nsect;
if (v.v_part[idx].p_size != totsize) {
if (!lecture_and_query(FDISK_LECTURE_NOT_FULL,
devname)) {
(void) close(fd);
exit(1);
}
}
}
}
/*
* get_node
* Called from main to construct the name of the device node to open.
* Initially tries to stat the node exactly as provided, if that fails
* we prepend the default path (/dev/rdsk/).
*/
static char *
get_node(char *devname)
{
char *node;
struct stat statbuf;
size_t space;
/* Don't do anything if we are skipping device checks */
if (io_image)
return (devname);
node = devname;
/* Try the node as provided first */
if (stat(node, (struct stat *)&statbuf) == -1) {
/*
* Copy the passed in string to a new buffer, prepend the
* default path and try again.
*/
space = strlen(DEFAULT_PATH) + strlen(devname) + 1;
if ((node = malloc(space)) == NULL) {
fprintf(stderr, "fdisk: Unable to obtain memory "
"for device node.\n");
exit(1);
}
/* Copy over the default path and the provided node */
(void) strncpy(node, DEFAULT_PATH, strlen(DEFAULT_PATH));
space -= strlen(DEFAULT_PATH);
(void) strlcpy(node + strlen(DEFAULT_PATH), devname, space);
/* Try to stat it again */
if (stat(node, (struct stat *)&statbuf) == -1) {
/* Failed all options, give up */
fprintf(stderr, "fdisk: Cannot stat device %s.\n",
devname);
exit(1);
}
}
/* Make sure the device specified is the raw device */
if ((statbuf.st_mode & S_IFMT) != S_IFCHR) {
fprintf(stderr, "fdisk: %s must be a raw device.\n", node);
exit(1);
}
return (node);
}