route.c revision 7a23074e5a0337b4d20bc593de1aa7ad34701913
/*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/* Copyright (c) 1990 Mentat Inc. */
/*
*
* Copyright (c) 1983, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)route.c 8.6 (Berkeley) 4/28/95
* @(#)linkaddr.c 8.1 (Berkeley) 6/4/93
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/param.h>
#include <sys/file.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/stream.h>
#include <sys/tihdr.h>
#include <sys/sysmacros.h>
#include <net/if.h>
#include <net/route.h>
#include <net/if_dl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <inet/mib2.h>
#include <inet/ip.h>
#include <locale.h>
#include <errno.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stropts.h>
#include <fcntl.h>
#include <assert.h>
static struct keytab {
char *kt_cp;
int kt_i;
} keywords[] = {
#define K_ADD 1
{"add", K_ADD},
#define K_BLACKHOLE 2
{"blackhole", K_BLACKHOLE},
#define K_CHANGE 3
{"change", K_CHANGE},
#define K_CLONING 4
{"cloning", K_CLONING},
#define K_DELETE 5
{"delete", K_DELETE},
#define K_DST 6
{"dst", K_DST},
#define K_EXPIRE 7
{"expire", K_EXPIRE},
#define K_FLUSH 8
{"flush", K_FLUSH},
#define K_GATEWAY 9
{"gateway", K_GATEWAY},
#define K_GET 11
{"get", K_GET},
#define K_HOPCOUNT 12
{"hopcount", K_HOPCOUNT},
#define K_HOST 13
{"host", K_HOST},
#define K_IFA 14
{"ifa", K_IFA},
#define K_IFACE 15
{"iface", K_IFACE},
#define K_IFP 16
{"ifp", K_IFP},
#define K_INET 17
{"inet", K_INET},
#define K_INET6 18
{"inet6", K_INET6},
#define K_INTERFACE 19
{"interface", K_INTERFACE},
#define K_LINK 20
{"link", K_LINK},
#define K_LOCK 21
{"lock", K_LOCK},
#define K_LOCKREST 22
{"lockrest", K_LOCKREST},
#define K_MASK 23
{"mask", K_MASK},
#define K_MONITOR 24
{"monitor", K_MONITOR},
#define K_MTU 25
{"mtu", K_MTU},
#define K_NET 26
{"net", K_NET},
#define K_NETMASK 27
{"netmask", K_NETMASK},
#define K_NOSTATIC 28
{"nostatic", K_NOSTATIC},
#define K_PRIVATE 29
{"private", K_PRIVATE},
#define K_PROTO1 30
{"proto1", K_PROTO1},
#define K_PROTO2 31
{"proto2", K_PROTO2},
#define K_RECVPIPE 32
{"recvpipe", K_RECVPIPE},
#define K_REJECT 33
{"reject", K_REJECT},
#define K_RTT 34
{"rtt", K_RTT},
#define K_RTTVAR 35
{"rttvar", K_RTTVAR},
#define K_SA 36
{"sa", K_SA},
#define K_SENDPIPE 37
{"sendpipe", K_SENDPIPE},
#define K_SSTHRESH 38
{"ssthresh", K_SSTHRESH},
#define K_STATIC 39
{"static", K_STATIC},
#define K_XRESOLVE 40
{"xresolve", K_XRESOLVE},
#define K_MULTIRT 41
{"multirt", K_MULTIRT},
#define K_SETSRC 42
{"setsrc", K_SETSRC},
{0, 0}
};
static union sockunion {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_dl sdl;
struct sockaddr_in6 sin6;
} so_dst, so_gate, so_mask, so_ifa, so_ifp, so_src;
typedef struct mib_item_s {
struct mib_item_s *next_item;
long group;
long mib_id;
long length;
intmax_t *valp;
} mib_item_t;
typedef union sockunion *sup;
static void bprintf(FILE *fp, int b, char *s);
static void delRouteEntry(mib2_ipRouteEntry_t *rp,
mib2_ipv6RouteEntry_t *rp6, int seqno);
static void flushroutes(int argc, char *argv[]);
static boolean_t getaddr(int which, char *s, struct hostent **hpp);
static boolean_t in6_getaddr(char *s, struct sockaddr_in6 *sin6,
int *plenp, struct hostent **hpp);
static boolean_t in_getaddr(char *s, struct sockaddr_in *sin,
int *plenp, int which, struct hostent **hpp);
static int in_getprefixlen(char *addr, int max_plen);
static boolean_t in_prefixlentomask(int prefixlen, int maxlen,
uchar_t *mask);
static void inet_makenetandmask(in_addr_t net,
struct sockaddr_in *sin);
static in_addr_t inet_makesubnetmask(in_addr_t addr, in_addr_t mask);
static int keyword(char *cp);
static void link_addr(const char *addr, struct sockaddr_dl *sdl);
static char *link_ntoa(const struct sockaddr_dl *sdl);
static mib_item_t *mibget(int sd);
static char *netname(struct sockaddr *sa);
static int newroute(int argc, char **argv);
static void pmsg_addrs(char *cp, int addrs);
static void pmsg_common(struct rt_msghdr *rtm);
static void print_getmsg(struct rt_msghdr *rtm, int msglen);
static void print_rtmsg(struct rt_msghdr *rtm, int msglen);
static void quit(char *s, int err);
static char *routename(struct sockaddr *sa);
static void rtmonitor(int argc, char *argv[]);
static int rtmsg(int cmd, int flags);
static int salen(struct sockaddr *sa);
static void set_metric(char *value, int key);
static void sockaddr(char *addr, struct sockaddr *sa);
static void sodump(sup su, char *which);
static void usage(char *cp);
static int pid, rtm_addrs;
static int s;
static boolean_t forcehost, forcenet, nflag;
static int af = AF_INET;
static boolean_t qflag, tflag;
static boolean_t iflag, verbose;
static boolean_t locking, lockrest, debugonly;
static boolean_t fflag;
static struct rt_metrics rt_metrics;
static ulong_t rtm_inits;
static int masklen;
static struct {
struct rt_msghdr m_rtm;
char m_space[512];
} m_rtmsg;
/*
* Sizes of data structures extracted from the base mib.
* This allows the size of the tables entries to grow while preserving
* binary compatibility.
*/
static int ipRouteEntrySize;
static int ipv6RouteEntrySize;
#define ROUNDUP_LONG(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof (long) - 1))) : sizeof (long))
#define ADVANCE(x, n) ((x) += ROUNDUP_LONG(salen(n)))
#define C(x) ((x) & 0xff)
/*
* return values from in_getprefixlen()
*/
#define BAD_ADDR -1 /* prefix is invalid */
#define NO_PREFIX -2 /* no prefix was found */
void
usage(char *cp)
{
if (cp != NULL)
(void) fprintf(stderr, gettext("route: botched keyword: %s\n"),
cp);
(void) fprintf(stderr,
gettext("usage: route [ -fnqv ] cmd [[ -<qualifers> ] args ]\n"));
exit(1);
/* NOTREACHED */
}
void
quit(char *s, int sverrno)
{
(void) fprintf(stderr, "route: ");
if (s != NULL)
(void) fprintf(stderr, "%s: ", s);
(void) fprintf(stderr, "%s\n", strerror(sverrno));
exit(sverrno);
/* NOTREACHED */
}
int
main(int argc, char **argv)
{
extern int optind;
int ch;
int key;
(void) setlocale(LC_ALL, "");
#if !defined(TEXT_DOMAIN)
#define TEXT_DOMAIN "SYS_TEST"
#endif
(void) textdomain(TEXT_DOMAIN);
if (argc < 2)
usage((char *)NULL);
while ((ch = getopt(argc, argv, "nqdtvf")) != EOF) {
switch (ch) {
case 'n':
nflag = B_TRUE;
break;
case 'q':
qflag = B_TRUE;
break;
case 'v':
verbose = B_TRUE;
break;
case 't':
tflag = B_TRUE;
break;
case 'd':
debugonly = B_TRUE;
break;
case 'f':
fflag = B_TRUE;
break;
case '?':
default:
usage((char *)NULL);
/* NOTREACHED */
}
}
argc -= optind;
argv += optind;
pid = getpid();
if (tflag)
s = open("/dev/null", O_WRONLY);
else
s = socket(PF_ROUTE, SOCK_RAW, 0);
if (s < 0)
quit("socket", errno);
if (fflag) {
/*
* Accept an address family keyword after the -f. Since the
* default address family is AF_INET, reassign af only for the
* other valid address families.
*/
if (*argv != NULL) {
switch (key = keyword(*argv)) {
case K_INET:
case K_INET6:
if (key == K_INET6)
af = AF_INET6;
/* Skip over the address family parameter. */
argc--;
argv++;
break;
}
}
flushroutes(0, NULL);
}
if (*argv != NULL) {
switch (keyword(*argv)) {
case K_GET:
case K_CHANGE:
case K_ADD:
case K_DELETE:
return (newroute(argc, argv));
case K_MONITOR:
rtmonitor(argc, argv);
/* NOTREACHED */
case K_FLUSH:
flushroutes(argc, argv);
exit(0);
/* NOTREACHED */
}
}
if (!fflag)
usage(*argv);
return (0);
}
/*
* Purge all entries in the routing tables not
* associated with network interfaces.
*/
void
flushroutes(int argc, char *argv[])
{
int seqno;
int sd; /* mib stream */
mib_item_t *item;
mib2_ipRouteEntry_t *rp;
mib2_ipv6RouteEntry_t *rp6;
int oerrno;
int off = 0;
int on = 1;
if (setsockopt(s, SOL_SOCKET, SO_USELOOPBACK, (char *)&off,
sizeof (off)) < 0)
quit("setsockopt", errno);
if (argc > 1) {
argv++;
if (argc == 2 && **argv == '-') {
/*
* The address family (preceded by a dash) may be used
* to flush the routes of that particular family.
*/
switch (keyword(*argv + 1)) {
case K_INET:
af = AF_INET;
break;
case K_LINK:
af = AF_LINK;
break;
case K_INET6:
af = AF_INET6;
break;
default:
usage(*argv);
/* NOTREACHED */
}
} else {
usage(*argv);
}
}
sd = open("/dev/ip", O_RDWR);
oerrno = errno;
if (sd < 0) {
switch (errno) {
case EACCES:
(void) fprintf(stderr,
gettext("route: flush: insufficient privileges\n"));
exit(oerrno);
/* NOTREACHED */
default:
quit(gettext("can't open mib stream"), oerrno);
/* NOTREACHED */
}
}
if ((item = mibget(sd)) == NULL)
quit("mibget", errno);
if (verbose) {
(void) printf("Examining routing table from "
"T_SVR4_OPTMGMT_REQ\n");
}
seqno = 0; /* ??? */
switch (af) {
case AF_INET:
/* Extract ipRouteEntrySize */
for (; item != NULL; item = item->next_item) {
if (item->mib_id != 0)
continue;
if (item->group == MIB2_IP) {
ipRouteEntrySize =
((mib2_ip_t *)item->valp)->ipRouteEntrySize;
assert(IS_P2ALIGNED(ipRouteEntrySize,
sizeof (mib2_ipRouteEntry_t *)));
break;
}
}
if (ipRouteEntrySize == 0) {
(void) fprintf(stderr,
gettext("ipRouteEntrySize can't be determined.\n"));
exit(1);
}
for (; item != NULL; item = item->next_item) {
/*
* skip all the other trash that comes up the mib stream
*/
if (item->group != MIB2_IP ||
item->mib_id != MIB2_IP_ROUTE)
continue;
for (rp = (mib2_ipRouteEntry_t *)item->valp;
(char *)rp < (char *)item->valp + item->length;
/* LINTED */
rp = (mib2_ipRouteEntry_t *)
((char *)rp + ipRouteEntrySize)) {
delRouteEntry(rp, NULL, seqno);
seqno++;
}
break;
}
break;
case AF_INET6:
/* Extract ipv6RouteEntrySize */
for (; item != NULL; item = item->next_item) {
if (item->mib_id != 0)
continue;
if (item->group == MIB2_IP6) {
ipv6RouteEntrySize =
((mib2_ipv6IfStatsEntry_t *)item->valp)->
ipv6RouteEntrySize;
assert(IS_P2ALIGNED(ipv6RouteEntrySize,
sizeof (mib2_ipv6RouteEntry_t *)));
break;
}
}
if (ipv6RouteEntrySize == 0) {
(void) fprintf(stderr, gettext(
"ipv6RouteEntrySize cannot be determined.\n"));
exit(1);
}
for (; item != NULL; item = item->next_item) {
/*
* skip all the other trash that comes up the mib stream
*/
if (item->group != MIB2_IP6 ||
item->mib_id != MIB2_IP6_ROUTE)
continue;
for (rp6 = (mib2_ipv6RouteEntry_t *)item->valp;
(char *)rp6 < (char *)item->valp + item->length;
/* LINTED */
rp6 = (mib2_ipv6RouteEntry_t *)
((char *)rp6 + ipv6RouteEntrySize)) {
delRouteEntry(NULL, rp6, seqno);
seqno++;
}
break;
}
break;
}
if (setsockopt(s, SOL_SOCKET, SO_USELOOPBACK, (char *)&on,
sizeof (on)) < 0)
quit("setsockopt", errno);
}
/*
* Given the contents of a mib_item_t of id type MIB2_IP_ROUTE or
* MIB2_IP6_ROUTE, construct and send an RTM_DELETE routing socket message in
* order to facilitate the flushing of RTF_GATEWAY routes.
*/
static void
delRouteEntry(mib2_ipRouteEntry_t *rp, mib2_ipv6RouteEntry_t *rp6, int seqno)
{
char *cp;
int ire_type;
int rlen;
struct rt_msghdr *rtm;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
int slen;
if (rp != NULL)
ire_type = rp->ipRouteInfo.re_ire_type;
else
ire_type = rp6->ipv6RouteInfo.re_ire_type;
if (ire_type != IRE_DEFAULT &&
ire_type != IRE_PREFIX &&
ire_type != IRE_HOST &&
ire_type != IRE_HOST_REDIRECT)
return;
rtm = &m_rtmsg.m_rtm;
(void) memset(rtm, 0, sizeof (m_rtmsg));
rtm->rtm_type = RTM_DELETE;
rtm->rtm_seq = seqno;
rtm->rtm_flags |= RTF_GATEWAY;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK;
cp = m_rtmsg.m_space;
if (rp != NULL) {
slen = sizeof (struct sockaddr_in);
if (rp->ipRouteMask == IP_HOST_MASK)
rtm->rtm_flags |= RTF_HOST;
(void) memset(&sin, 0, slen);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = rp->ipRouteDest;
(void) memmove(cp, &sin, slen);
cp += slen;
sin.sin_addr.s_addr = rp->ipRouteNextHop;
(void) memmove(cp, &sin, slen);
cp += slen;
sin.sin_addr.s_addr = rp->ipRouteMask;
(void) memmove(cp, &sin, slen);
cp += slen;
} else {
slen = sizeof (struct sockaddr_in6);
if (rp6->ipv6RoutePfxLength == IPV6_ABITS)
rtm->rtm_flags |= RTF_HOST;
(void) memset(&sin6, 0, slen);
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = rp6->ipv6RouteDest;
(void) memmove(cp, &sin6, slen);
cp += slen;
sin6.sin6_addr = rp6->ipv6RouteNextHop;
(void) memmove(cp, &sin6, slen);
cp += slen;
(void) memset(&sin6.sin6_addr, 0, sizeof (sin6.sin6_addr));
(void) in_prefixlentomask(rp6->ipv6RoutePfxLength, IPV6_ABITS,
(uchar_t *)&sin6.sin6_addr.s6_addr);
(void) memmove(cp, &sin6, slen);
cp += slen;
}
rtm->rtm_msglen = cp - (char *)&m_rtmsg;
if (debugonly) {
/*
* In debugonly mode, the routing socket message to delete the
* current entry is not actually sent. However if verbose is
* also set, the routing socket message that would have been
* is printed.
*/
if (verbose)
print_rtmsg(rtm, rtm->rtm_msglen);
return;
}
rlen = write(s, (char *)&m_rtmsg, rtm->rtm_msglen);
if (rlen < (int)rtm->rtm_msglen) {
if (rlen < 0) {
(void) fprintf(stderr,
gettext("route: write to routing socket: %s\n"),
strerror(errno));
} else {
(void) fprintf(stderr, gettext("route: write to "
"routing socket got only %d for rlen\n"), rlen);
}
return;
}
if (qflag) {
/*
* In quiet mode, nothing is printed at all (unless the write()
* itself failed.
*/
return;
}
if (verbose) {
print_rtmsg(rtm, rlen);
} else {
struct sockaddr *sa = (struct sockaddr *)(rtm + 1);
(void) printf("%-20.20s ",
rtm->rtm_flags & RTF_HOST ? routename(sa) :
netname(sa));
/* LINTED */
sa = (struct sockaddr *)(salen(sa) + (char *)sa);
(void) printf("%-20.20s ", routename(sa));
(void) printf("done\n");
}
}
/*
* Return the name of the host whose address is given.
*/
char *
routename(struct sockaddr *sa)
{
char *cp;
static char line[MAXHOSTNAMELEN + 1];
struct hostent *hp = NULL;
static char domain[MAXHOSTNAMELEN + 1];
static boolean_t first = B_TRUE;
struct in_addr in;
struct in6_addr in6;
int error_num;
ushort_t *s;
ushort_t *slim;
if (first) {
first = B_FALSE;
if (gethostname(domain, MAXHOSTNAMELEN) == 0 &&
(cp = strchr(domain, '.')))
(void) strcpy(domain, cp + 1);
else
domain[0] = 0;
}
if (salen(sa) == 0) {
(void) strcpy(line, "default");
return (line);
}
switch (sa->sa_family) {
case AF_INET:
/* LINTED */
in = ((struct sockaddr_in *)sa)->sin_addr;
cp = NULL;
if (in.s_addr == INADDR_ANY)
cp = "default";
if (cp == NULL && !nflag) {
hp = gethostbyaddr((char *)&in, sizeof (struct in_addr),
AF_INET);
if (hp != NULL) {
if (((cp = strchr(hp->h_name, '.')) != NULL) &&
(strcmp(cp + 1, domain) == 0))
*cp = 0;
cp = hp->h_name;
}
}
if (cp != NULL) {
(void) strncpy(line, cp, MAXHOSTNAMELEN);
line[MAXHOSTNAMELEN] = '\0';
} else {
in.s_addr = ntohl(in.s_addr);
(void) sprintf(line, "%u.%u.%u.%u", C(in.s_addr >> 24),
C(in.s_addr >> 16), C(in.s_addr >> 8),
C(in.s_addr));
}
break;
case AF_LINK:
return (link_ntoa((struct sockaddr_dl *)sa));
case AF_INET6:
/* LINTED */
in6 = ((struct sockaddr_in6 *)sa)->sin6_addr;
cp = NULL;
if (IN6_IS_ADDR_UNSPECIFIED(&in6))
cp = "default";
if (cp == NULL && !nflag) {
hp = getipnodebyaddr((char *)&in6,
sizeof (struct in6_addr), AF_INET6, &error_num);
if (hp != NULL) {
if (((cp = strchr(hp->h_name, '.')) != NULL) &&
(strcmp(cp + 1, domain) == 0))
*cp = 0;
cp = hp->h_name;
}
}
if (cp != NULL) {
(void) strncpy(line, cp, MAXHOSTNAMELEN);
line[MAXHOSTNAMELEN] = '\0';
} else {
(void) inet_ntop(AF_INET6, (void *)&in6, line,
INET6_ADDRSTRLEN);
}
if (hp != NULL)
freehostent(hp);
break;
default:
s = (ushort_t *)sa;
slim = s + ((salen(sa) + 1) >> 1);
cp = line + sprintf(line, "(%d)", sa->sa_family);
while (++s < slim) /* start with sa->sa_data */
cp += sprintf(cp, " %x", *s);
break;
}
return (line);
}
/*
* Return the name of the network whose address is given.
* The address is assumed to be that of a net or subnet, not a host.
*/
static char *
netname(struct sockaddr *sa)
{
char *cp = NULL;
static char line[MAXHOSTNAMELEN + 1];
struct netent *np;
in_addr_t net, mask;
int subnetshift;
struct in_addr in;
ushort_t *s;
ushort_t *slim;
switch (sa->sa_family) {
case AF_INET:
/* LINTED */
in = ((struct sockaddr_in *)sa)->sin_addr;
in.s_addr = ntohl(in.s_addr);
if (in.s_addr == INADDR_ANY) {
cp = "default";
} else if (!nflag) {
if (IN_CLASSA(in.s_addr)) {
mask = IN_CLASSA_NET;
subnetshift = 8;
} else if (IN_CLASSB(in.s_addr)) {
mask = IN_CLASSB_NET;
subnetshift = 8;
} else {
mask = IN_CLASSC_NET;
subnetshift = 4;
}
/*
* If there are more bits than the standard mask
* would suggest, subnets must be in use.
* Guess at the subnet mask, assuming reasonable
* width subnet fields.
*/
while (in.s_addr &~ mask)
mask = (long)mask >> subnetshift;
net = in.s_addr & mask;
while ((mask & 1) == 0)
mask >>= 1, net >>= 1;
np = getnetbyaddr(net, AF_INET);
if (np != NULL)
cp = np->n_name;
}
if (cp != NULL) {
(void) strncpy(line, cp, MAXHOSTNAMELEN);
line[MAXHOSTNAMELEN] = '\0';
} else if ((in.s_addr & 0xffffff) == 0) {
(void) sprintf(line, "%u", C(in.s_addr >> 24));
} else if ((in.s_addr & 0xffff) == 0) {
(void) sprintf(line, "%u.%u", C(in.s_addr >> 24),
C(in.s_addr >> 16));
} else if ((in.s_addr & 0xff) == 0) {
(void) sprintf(line, "%u.%u.%u", C(in.s_addr >> 24),
C(in.s_addr >> 16), C(in.s_addr >> 8));
} else {
(void) sprintf(line, "%u.%u.%u.%u", C(in.s_addr >> 24),
C(in.s_addr >> 16), C(in.s_addr >> 8),
C(in.s_addr));
}
break;
case AF_LINK:
return (link_ntoa((struct sockaddr_dl *)sa));
case AF_INET6:
return (routename(sa));
default:
/* LINTED */
s = (ushort_t *)sa->sa_data;
slim = s + ((salen(sa) + 1) >> 1);
cp = line + sprintf(line, "af %d:", sa->sa_family);
while (s < slim)
cp += sprintf(cp, " %x", *s++);
break;
}
return (line);
}
void
set_metric(char *value, int key)
{
int flag = 0;
uint_t noval, *valp = &noval;
switch (key) {
#define caseof(x, y, z) case (x): valp = &rt_metrics.z; flag = (y); break
caseof(K_MTU, RTV_MTU, rmx_mtu);
caseof(K_HOPCOUNT, RTV_HOPCOUNT, rmx_hopcount);
caseof(K_EXPIRE, RTV_EXPIRE, rmx_expire);
caseof(K_RECVPIPE, RTV_RPIPE, rmx_recvpipe);
caseof(K_SENDPIPE, RTV_SPIPE, rmx_sendpipe);
caseof(K_SSTHRESH, RTV_SSTHRESH, rmx_ssthresh);
caseof(K_RTT, RTV_RTT, rmx_rtt);
caseof(K_RTTVAR, RTV_RTTVAR, rmx_rttvar);
#undef caseof
}
rtm_inits |= flag;
if (lockrest || locking)
rt_metrics.rmx_locks |= flag;
if (locking)
locking = B_FALSE;
*valp = atoi(value);
}
int
newroute(int argc, char **argv)
{
char *cmd, *dest = "", *gateway = "", *err;
boolean_t ishost = B_FALSE;
int ret, attempts, oerrno, flags = RTF_STATIC;
int key;
struct hostent *hp = NULL;
static char obuf[INET6_ADDRSTRLEN];
cmd = argv[0];
if (*cmd != 'g' && !tflag) {
/* Don't want to read back our messages */
(void) shutdown(s, 0);
}
while (--argc > 0) {
key = keyword(*(++argv));
if (key == K_HOST) {
forcehost = B_TRUE;
} else if (key == K_NET) {
forcenet = B_TRUE;
} else if (**(argv) == '-') {
switch (key = keyword(1 + *argv)) {
case K_LINK:
af = AF_LINK;
break;
case K_INET:
af = AF_INET;
break;
case K_SA:
af = PF_ROUTE;
break;
case K_INET6:
af = AF_INET6;
break;
case K_IFACE:
case K_INTERFACE:
iflag = B_TRUE;
/* FALLTHROUGH */
case K_NOSTATIC:
flags &= ~RTF_STATIC;
break;
case K_LOCK:
locking = B_TRUE;
break;
case K_LOCKREST:
lockrest = B_TRUE;
break;
case K_HOST:
forcehost = B_TRUE;
break;
case K_REJECT:
flags |= RTF_REJECT;
break;
case K_BLACKHOLE:
flags |= RTF_BLACKHOLE;
break;
case K_PROTO1:
flags |= RTF_PROTO1;
break;
case K_PROTO2:
flags |= RTF_PROTO2;
break;
case K_CLONING:
flags |= RTF_CLONING;
break;
case K_XRESOLVE:
flags |= RTF_XRESOLVE;
break;
case K_STATIC:
flags |= RTF_STATIC;
break;
case K_IFA:
argc--;
(void) getaddr(RTA_IFA, *++argv, NULL);
break;
case K_IFP:
argc--;
(void) getaddr(RTA_IFP, *++argv, NULL);
break;
case K_GATEWAY:
/*
* For the gateway parameter, retrieve the
* pointer to the struct hostent so that all
* possible addresses can be tried until one
* is successful.
*/
argc--;
gateway = *++argv;
(void) getaddr(RTA_GATEWAY, *argv, &hp);
break;
case K_DST:
argc--;
ishost = getaddr(RTA_DST, *++argv, NULL);
dest = *argv;
break;
case K_NETMASK:
argc--;
(void) getaddr(RTA_NETMASK, *++argv, NULL);
/* FALLTHROUGH */
case K_NET:
forcenet = B_TRUE;
break;
case K_MTU:
case K_HOPCOUNT:
case K_EXPIRE:
case K_RECVPIPE:
case K_SENDPIPE:
case K_SSTHRESH:
case K_RTT:
case K_RTTVAR:
argc--;
set_metric(*++argv, key);
break;
case K_PRIVATE:
flags |= RTF_PRIVATE;
break;
case K_MULTIRT:
flags |= RTF_MULTIRT;
break;
case K_SETSRC:
argc--;
(void) getaddr(RTA_SRC, *++argv, NULL);
flags |= RTF_SETSRC;
break;
default:
usage(*argv + 1);
/* NOTREACHED */
}
} else {
if ((rtm_addrs & RTA_DST) == 0) {
dest = *argv;
ishost = getaddr(RTA_DST, *argv, NULL);
} else if ((rtm_addrs & RTA_GATEWAY) == 0) {
/*
* For the gateway parameter, retrieve the
* pointer to the struct hostent so that all
* possible addresses can be tried until one
* is successful.
*/
gateway = *argv;
(void) getaddr(RTA_GATEWAY, *argv, &hp);
} else {
ulong_t metric = strtoul(*argv, &err, 10);
/*
* Assume that a regular number is a metric.
* Needed for compatibility with old route
* command syntax.
*/
if (*argv != err && *err == '\0' &&
metric < 0x80000000ul) {
iflag = (metric == 0);
if (verbose) {
(void) printf("old usage of "
"trailing number, assuming "
"route %s\n", iflag ?
"to if" : "via gateway");
}
continue;
}
(void) getaddr(RTA_NETMASK, *argv, NULL);
}
}
}
if ((rtm_addrs & RTA_DST) == 0) {
(void) fprintf(stderr,
gettext("route: destination required following command\n"));
usage((char *)NULL);
} else if ((*cmd == 'a' || *cmd == 'd') &&
(rtm_addrs & RTA_GATEWAY) == 0) {
(void) fprintf(stderr,
gettext("route: gateway required for add or delete "
"command\n"));
usage((char *)NULL);
}
/*
* If the netmask has been specified use it to determine RTF_HOST.
* Otherwise rely on the "-net" and "-host" specifiers.
* Final fallback is whether ot not any bits were set in the address
* past the classful network component.
*/
if (rtm_addrs & RTA_NETMASK) {
if ((af == AF_INET &&
so_mask.sin.sin_addr.s_addr == IP_HOST_MASK) ||
(af == AF_INET6 && masklen == IPV6_ABITS))
forcehost = B_TRUE;
else
forcenet = B_TRUE;
}
if (forcehost)
ishost = B_TRUE;
if (forcenet)
ishost = B_FALSE;
flags |= RTF_UP;
if (ishost)
flags |= RTF_HOST;
if (!iflag)
flags |= RTF_GATEWAY;
for (attempts = 1; ; attempts++) {
errno = 0;
if ((ret = rtmsg(*cmd, flags)) == 0)
break;
if (errno != ENETUNREACH && errno != ESRCH)
break;
if (*gateway != '\0' && hp != NULL &&
hp->h_addr_list[attempts] != NULL) {
switch (af) {
case AF_INET:
(void) memmove(&so_gate.sin.sin_addr,
hp->h_addr_list[attempts], hp->h_length);
continue;
case AF_INET6:
(void) memmove(&so_gate.sin6.sin6_addr,
hp->h_addr_list[attempts], hp->h_length);
continue;
}
}
break;
}
oerrno = errno;
if (*cmd != 'g') {
(void) printf("%s %s %s", cmd, ishost ? "host" : "net", dest);
if (*gateway != '\0') {
switch (af) {
case AF_INET:
if (nflag) {
(void) printf(": gateway %s",
inet_ntoa(so_gate.sin.sin_addr));
} else if (attempts > 1 && ret == 0) {
(void) printf(": gateway %s (%s)",
gateway,
inet_ntoa(so_gate.sin.sin_addr));
} else {
(void) printf(": gateway %s", gateway);
}
break;
case AF_INET6:
if (inet_ntop(AF_INET6,
(void *)&so_gate.sin6.sin6_addr, obuf,
INET6_ADDRSTRLEN) != NULL) {
if (nflag) {
(void) printf(": gateway %s",
obuf);
} else if (attempts > 1 && ret == 0) {
(void) printf(": gateway %s "
"(%s)",
gateway, obuf);
}
break;
}
/* FALLTHROUGH */
default:
(void) printf(": gateway %s", gateway);
break;
}
}
if (ret == 0)
(void) printf("\n");
}
if (ret != 0) {
if (*cmd == 'g') {
if (nflag) {
switch (af) {
case AF_INET:
(void) printf(" %s",
inet_ntoa(so_dst.sin.sin_addr));
break;
case AF_INET6:
if (inet_ntop(AF_INET6,
(void *)&so_dst.sin6.sin6_addr,
obuf, INET6_ADDRSTRLEN) != NULL) {
(void) printf(" %s", obuf);
break;
}
/* FALLTHROUGH */
default:
(void) printf("%s", dest);
break;
}
} else {
(void) printf("%s", dest);
}
}
switch (oerrno) {
case ESRCH:
err = "not in table";
break;
case EBUSY:
err = "entry in use";
break;
case ENOBUFS:
err = "routing table overflow";
break;
case EEXIST:
err = "entry exists";
break;
case EPERM:
err = "insufficient privileges";
break;
default:
err = strerror(oerrno);
break;
}
(void) printf(": %s\n", err);
}
/*
* In the case of AF_INET6, one of the getipnodebyX() functions was used
* so free the allocated hostent.
*/
if (af == AF_INET6 && hp != NULL)
freehostent(hp);
return (oerrno);
}
/*
* Convert a network number to the corresponding IP address.
* If the RTA_NETMASK hasn't been specified yet set it based
* on the class of address.
*/
static void
inet_makenetandmask(in_addr_t net, struct sockaddr_in *sin)
{
in_addr_t addr, mask;
char *cp;
if (net == 0) {
mask = addr = 0;
} else if (net < 128) {
addr = net << IN_CLASSA_NSHIFT;
mask = IN_CLASSA_NET;
} else if (net < 65536) {
addr = net << IN_CLASSB_NSHIFT;
mask = IN_CLASSB_NET;
} else if (net < 16777216L) {
addr = net << IN_CLASSC_NSHIFT;
mask = IN_CLASSC_NET;
} else {
addr = net;
if ((addr & IN_CLASSA_HOST) == 0)
mask = IN_CLASSA_NET;
else if ((addr & IN_CLASSB_HOST) == 0)
mask = IN_CLASSB_NET;
else if ((addr & IN_CLASSC_HOST) == 0)
mask = IN_CLASSC_NET;
else {
if (IN_CLASSA(addr))
mask = IN_CLASSA_NET;
else if (IN_CLASSB(addr))
mask = IN_CLASSB_NET;
else if (IN_CLASSC(addr))
mask = IN_CLASSC_NET;
else
mask = IP_HOST_MASK;
mask = inet_makesubnetmask(addr, mask);
}
}
sin->sin_addr.s_addr = htonl(addr);
if (!(rtm_addrs & RTA_NETMASK)) {
rtm_addrs |= RTA_NETMASK;
sin = &so_mask.sin;
sin->sin_addr.s_addr = htonl(mask);
sin->sin_family = AF_INET;
cp = (char *)(&sin->sin_addr + 1);
while (*--cp == 0 && cp > (char *)sin)
;
}
}
static in_addr_t
inet_makesubnetmask(in_addr_t addr, in_addr_t mask)
{
int n;
struct ifconf ifc;
struct ifreq ifreq;
struct ifreq *ifr;
struct sockaddr_in *sin;
char *buf;
int numifs;
size_t bufsize;
int iosoc;
in_addr_t if_addr, if_mask;
in_addr_t if_subnetmask = 0;
short if_flags;
if (mask == 0)
return (0);
if ((iosoc = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
quit("socket", errno);
if (ioctl(iosoc, SIOCGIFNUM, (char *)&numifs) < 0)
quit("ioctl", errno);
bufsize = numifs * sizeof (struct ifreq);
buf = malloc(bufsize);
if (buf == NULL)
quit("malloc", errno);
(void) memset(&ifc, 0, sizeof (ifc));
ifc.ifc_len = bufsize;
ifc.ifc_buf = buf;
if (ioctl(iosoc, SIOCGIFCONF, (char *)&ifc) < 0)
quit("ioctl (get interface configuration)", errno);
/* Let's check to see if this is maybe a local subnet route. */
ifr = ifc.ifc_req;
for (n = ifc.ifc_len / sizeof (struct ifreq); n > 0; n--, ifr++) {
ifreq = *ifr;
/* LINTED */
sin = (struct sockaddr_in *)&ifr->ifr_addr;
if_addr = ntohl(sin->sin_addr.s_addr);
if (ioctl(iosoc, SIOCGIFFLAGS, (char *)&ifreq) < 0)
quit("ioctl (get interface flags)", errno);
if ((ifreq.ifr_flags & IFF_UP) == 0)
continue;
if_flags = ifreq.ifr_flags;
if (ioctl(iosoc, SIOCGIFNETMASK, (char *)&ifreq) < 0)
quit("ioctl (get netmask)", errno);
/* LINTED */
sin = (struct sockaddr_in *)&ifreq.ifr_addr;
if_mask = ntohl(sin->sin_addr.s_addr);
if ((if_addr & mask) == (addr & mask)) {
/*
* Don't trust pt-pt interfaces if there are
* other interfaces.
*/
if (if_flags & IFF_POINTOPOINT) {
if_subnetmask = if_mask;
continue;
}
/*
* Fine. Just assume the same net mask as the
* directly attached subnet interface is using.
*/
return (if_mask);
}
}
if (if_subnetmask != 0)
return (if_subnetmask);
return (mask);
}
/*
* Interpret an argument as a network address of some kind,
* returning B_TRUE if a host address, B_FALSE if a network address.
*
* If the address family is one looked up in getaddr() using one of the
* getipnodebyX() functions (currently only AF_INET6), then callers should
* freehostent() the returned "struct hostent" pointer if one was passed in.
*/
static boolean_t
getaddr(int which, char *s, struct hostent **hpp)
{
sup su;
struct hostent *hp;
boolean_t ret;
if (s == NULL) {
(void) fprintf(stderr,
gettext("route: argument required following keyword\n"));
usage((char *)NULL);
}
if (hpp == NULL)
hpp = &hp;
*hpp = NULL;
rtm_addrs |= which;
switch (which) {
case RTA_DST:
su = &so_dst;
su->sa.sa_family = af;
break;
case RTA_GATEWAY:
su = &so_gate;
su->sa.sa_family = af;
break;
case RTA_NETMASK:
su = &so_mask;
su->sa.sa_family = af;
break;
case RTA_IFP:
so_ifp.sdl.sdl_index = if_nametoindex(s);
if (so_ifp.sdl.sdl_index == 0) {
if (errno == ENXIO) {
(void) fprintf(stderr,
gettext("route: %s: no such interface\n"),
s);
exit(1);
} else {
quit("if_nametoindex", errno);
}
}
so_ifp.sdl.sdl_family = AF_LINK;
return (B_FALSE);
/*
* RTA_SRC has overloaded meaning. It can represent the
* src address of incoming or outgoing packets.
*/
case RTA_IFA:
su = &so_ifa;
su->sa.sa_family = af;
break;
case RTA_SRC:
su = &so_src;
su->sa.sa_family = af;
break;
default:
/* NOTREACHED */
quit(gettext("Internal Error"), EINVAL);
/* NOTREACHED */
}
if (strcmp(s, "default") == 0) {
if (which == RTA_DST) {
forcenet = B_TRUE;
(void) getaddr(RTA_NETMASK, s, NULL);
}
if (which == RTA_SRC) {
return (B_TRUE);
}
return (B_FALSE);
}
switch (af) {
case AF_LINK:
link_addr(s, &su->sdl);
return (B_TRUE);
case PF_ROUTE:
sockaddr(s, &su->sa);
return (B_TRUE);
case AF_INET6:
switch (which) {
case RTA_DST:
if (s[0] == '/') {
(void) fprintf(stderr,
gettext("route: %s: unexpected '/'\n"), s);
exit(1);
}
ret = in6_getaddr(s, &su->sin6, &masklen, hpp);
switch (masklen) {
case NO_PREFIX:
/* Nothing there - ok */
return (ret);
case BAD_ADDR:
(void) fprintf(stderr,
gettext("route: bad prefix length in %s\n"),
s);
exit(1);
/* NOTREACHED */
default:
(void) memset(&so_mask.sin6.sin6_addr, 0,
sizeof (so_mask.sin6.sin6_addr));
if (!in_prefixlentomask(masklen, IPV6_ABITS,
(uchar_t *)&so_mask.sin6.sin6_addr)) {
(void) fprintf(stderr,
gettext("route: bad prefix length: "
"%d\n"), masklen);
exit(1);
}
break;
}
so_mask.sin6.sin6_family = af;
rtm_addrs |= RTA_NETMASK;
return (ret);
case RTA_GATEWAY:
case RTA_IFA:
case RTA_SRC:
ret = in6_getaddr(s, &su->sin6, NULL, hpp);
return (ret);
case RTA_NETMASK:
(void) fprintf(stderr,
gettext("route: -netmask not supported for IPv6: "
"use <prefix>/<prefix-length> instead"));
exit(1);
/* NOTREACHED */
default:
quit(gettext("Internal Error"), EINVAL);
/* NOTREACHED */
}
case AF_INET:
switch (which) {
case RTA_DST:
if (s[0] == '/') {
(void) fprintf(stderr,
gettext("route: %s: unexpected '/'\n"), s);
exit(1);
}
ret = in_getaddr(s, &su->sin, &masklen, which, hpp);
switch (masklen) {
case NO_PREFIX:
/* Nothing there - ok */
return (ret);
case BAD_ADDR:
(void) fprintf(stderr,
gettext("route: bad prefix length in %s\n"),
s);
exit(1);
/* NOTREACHED */
default:
(void) memset(&so_mask.sin.sin_addr, 0,
sizeof (so_mask.sin.sin_addr));
if (!in_prefixlentomask(masklen, IP_ABITS,
(uchar_t *)&so_mask.sin.sin_addr)) {
(void) fprintf(stderr,
gettext("route: bad prefix length: "
"%d\n"), masklen);
exit(1);
}
break;
}
so_mask.sin.sin_family = af;
rtm_addrs |= RTA_NETMASK;
return (ret);
case RTA_GATEWAY:
case RTA_IFA:
case RTA_NETMASK:
case RTA_SRC:
ret = in_getaddr(s, &su->sin, NULL, which, hpp);
return (ret);
default:
quit(gettext("Internal Error"), EINVAL);
/* NOTREACHED */
}
default:
quit(gettext("Internal Error"), EINVAL);
/* NOTREACHED */
}
}
/*
* Interpret an argument as an IPv4 network address of some kind,
* returning B_TRUE if a host address, B_FALSE if a network address.
* Note that this *always* tries host interpretation before network
* interpretation.
*
* If the plenp argument is non-NULL, allow <addr>/<n> syntax and
* pass out <n> in *plenp.
* If <n> doesn't parse return BAD_ADDR as *plenp.
* If no /<n> is present return NO_PREFIX as *plenp.
*/
static boolean_t
in_getaddr(char *s, struct sockaddr_in *sin, int *plenp, int which,
struct hostent **hpp)
{
struct hostent *hp;
struct netent *np;
in_addr_t val;
char str[BUFSIZ];
(void) strncpy(str, s, sizeof (str));
/*
* Look for '/'<n> is plenp
*/
if (plenp != NULL) {
char *cp;
*plenp = in_getprefixlen(str, IP_ABITS);
if (*plenp == BAD_ADDR)
return (B_FALSE);
cp = strchr(str, '/');
if (cp != NULL)
*cp = '\0';
} else if (strchr(str, '/') != NULL) {
(void) fprintf(stderr, gettext("route: %s: unexpected '/'\n"),
str);
exit(1);
}
(void) memset(sin, 0, sizeof (*sin));
sin->sin_family = AF_INET;
/*
* Note: only the route destination can be a network, so we treat
* all other addresses as though "-net" was not specified.
*/
if ((((val = inet_addr(str)) != (in_addr_t)-1) ||
strcmp(str, "255.255.255.255") == 0) &&
(which != RTA_DST || !forcenet)) {
sin->sin_addr.s_addr = val;
if (inet_lnaof(sin->sin_addr) != INADDR_ANY ||
forcehost)
return (B_TRUE);
val = ntohl(val);
if (which == RTA_DST)
inet_makenetandmask(val, sin);
return (B_FALSE);
}
if (!forcehost && (val = inet_network(str)) != (in_addr_t)-1) {
if (which == RTA_DST)
inet_makenetandmask(val, sin);
return (B_FALSE);
}
if ((which != RTA_DST || !forcenet) &&
(hp = gethostbyname(str)) != NULL) {
*hpp = hp;
(void) memmove(&sin->sin_addr, hp->h_addr,
hp->h_length);
return (B_TRUE);
}
if (!forcehost && (np = getnetbyname(str)) != NULL &&
(val = np->n_net) != 0) {
if (which == RTA_DST)
inet_makenetandmask(val, sin);
return (B_FALSE);
}
(void) fprintf(stderr, gettext("%s: bad value\n"), s);
exit(1);
/* NOTREACHED */
}
/*
* Interpret an argument as an IPv6 network address of some kind,
* returning B_TRUE if a host address, B_FALSE if a network address.
*
* If the last argument is non-NULL allow a <addr>/<n> syntax and
* pass out <n> in *plenp.
* If <n> doesn't parse return BAD_ADDR as *plenp.
* If no /<n> is present return NO_PREFIX as *plenp.
*/
static boolean_t
in6_getaddr(char *s, struct sockaddr_in6 *sin6, int *plenp,
struct hostent **hpp)
{
struct hostent *hp;
char str[BUFSIZ];
int error_num;
(void) strncpy(str, s, sizeof (str));
/*
* Look for '/'<n> is plenp
*/
if (plenp != NULL) {
char *cp;
*plenp = in_getprefixlen(str, IPV6_ABITS);
if (*plenp == BAD_ADDR)
return (B_FALSE);
cp = strchr(str, '/');
if (cp != NULL)
*cp = '\0';
} else if (strchr(str, '/') != NULL) {
(void) fprintf(stderr, gettext("route: %s: unexpected '/'\n"),
str);
exit(1);
}
(void) memset(sin6, 0, sizeof (struct sockaddr_in6));
sin6->sin6_family = AF_INET6;
hp = getipnodebyname(str, AF_INET6, 0, &error_num);
if (hp != NULL) {
*hpp = hp;
(void) memmove(&sin6->sin6_addr, hp->h_addr, hp->h_length);
return (B_TRUE);
}
if (error_num == TRY_AGAIN) {
(void) fprintf(stderr, gettext("route: %s: bad address (try "
"again later)\n"), s);
} else {
(void) fprintf(stderr, gettext("route: %s: bad address\n"), s);
}
exit(1);
/* NOTREACHED */
}
/*
* If "slash" is zero this parses the whole string as
* an integer. With "slash" non zero it parses the tail part as an integer.
*
* If it is not a valid integer this returns BAD_ADDR.
* If there is /<n> present this returns NO_PREFIX.
*/
int
in_getprefixlen(char *addr, int max_plen)
{
int prefixlen;
char *str, *end;
str = strchr(addr, '/');
if (str == NULL)
return (NO_PREFIX);
str++;
prefixlen = strtol(str, &end, 10);
if (prefixlen < 0)
return (BAD_ADDR);
if (str == end)
return (BAD_ADDR);
if (max_plen != 0 && max_plen < prefixlen)
return (BAD_ADDR);
else
return (prefixlen);
}
/*
* Convert a prefix length to a mask.
* Returns B_TRUE if ok. B_FALSE otherwise.
* Assumes the mask array is zeroed by the caller.
*/
boolean_t
in_prefixlentomask(int prefixlen, int maxlen, uchar_t *mask)
{
if (prefixlen < 0 || prefixlen > maxlen)
return (B_FALSE);
while (prefixlen > 0) {
if (prefixlen >= 8) {
*mask++ = 0xFF;
prefixlen -= 8;
continue;
}
*mask |= 1 << (8 - prefixlen);
prefixlen--;
}
return (B_TRUE);
}
void
rtmonitor(int argc, char *argv[])
{
int n;
intmax_t msg[2048 / sizeof (intmax_t)];
if (tflag)
exit(0);
verbose = B_TRUE;
if (argc > 1) {
argv++;
if (argc == 2 && **argv == '-') {
switch (keyword(*argv + 1)) {
case K_INET:
af = AF_INET;
break;
case K_LINK:
af = AF_LINK;
break;
case K_INET6:
af = AF_INET6;
break;
default:
usage(*argv);
/* NOTREACHED */
}
} else {
usage(*argv);
}
(void) close(s);
s = socket(PF_ROUTE, SOCK_RAW, af);
if (s < 0)
quit("socket", errno);
}
for (;;) {
n = read(s, msg, sizeof (msg));
if (n <= 0)
quit("read", errno);
(void) printf("got message of size %d\n", n);
print_rtmsg((struct rt_msghdr *)msg, n);
}
}
int
rtmsg(int cmd, int flags)
{
static int seq;
int rlen;
char *cp = m_rtmsg.m_space;
int l;
errno = 0;
(void) memset(&m_rtmsg, 0, sizeof (m_rtmsg));
if (cmd == 'a') {
cmd = RTM_ADD;
} else if (cmd == 'c') {
cmd = RTM_CHANGE;
} else if (cmd == 'g') {
cmd = RTM_GET;
if (so_ifp.sa.sa_family == 0) {
so_ifp.sa.sa_family = AF_LINK;
rtm_addrs |= RTA_IFP;
}
} else {
cmd = RTM_DELETE;
}
#define rtm m_rtmsg.m_rtm
rtm.rtm_type = cmd;
rtm.rtm_flags = flags;
rtm.rtm_version = RTM_VERSION;
rtm.rtm_seq = ++seq;
rtm.rtm_addrs = rtm_addrs;
rtm.rtm_rmx = rt_metrics;
rtm.rtm_inits = rtm_inits;
#define NEXTADDR(w, u) \
if (rtm_addrs & (w)) { \
l = ROUNDUP_LONG(salen(&u.sa)); \
(void) memmove(cp, &(u), l); \
cp += l; \
if (verbose) \
sodump(&(u), #u); \
}
NEXTADDR(RTA_DST, so_dst);
NEXTADDR(RTA_GATEWAY, so_gate);
NEXTADDR(RTA_NETMASK, so_mask);
NEXTADDR(RTA_IFP, so_ifp);
NEXTADDR(RTA_IFA, so_ifa);
/*
* RTA_SRC has overloaded meaning. It can represent the
* src address of incoming or outgoing packets.
*/
NEXTADDR(RTA_SRC, so_src);
#undef NEXTADDR
rtm.rtm_msglen = l = cp - (char *)&m_rtmsg;
if (verbose)
print_rtmsg(&rtm, l);
if (debugonly)
return (0);
if ((rlen = write(s, (char *)&m_rtmsg, l)) < 0) {
switch (errno) {
case ESRCH:
case EBUSY:
case ENOBUFS:
case EEXIST:
case ENETUNREACH:
case EHOSTUNREACH:
case EPERM:
break;
default:
perror(gettext("writing to routing socket"));
break;
}
return (-1);
} else if (rlen < (int)rtm.rtm_msglen) {
(void) fprintf(stderr,
gettext("route: write to routing socket got only %d for "
"len\n"), rlen);
return (-1);
}
if (cmd == RTM_GET) {
do {
l = read(s, (char *)&m_rtmsg, sizeof (m_rtmsg));
} while (l > 0 && (rtm.rtm_seq != seq || rtm.rtm_pid != pid));
if (l < 0) {
(void) fprintf(stderr,
gettext("route: read from routing socket: %s\n"),
strerror(errno));
} else {
print_getmsg(&rtm, l);
}
}
#undef rtm
return (0);
}
static char *msgtypes[] = {
"",
"RTM_ADD: Add Route",
"RTM_DELETE: Delete Route",
"RTM_CHANGE: Change Metrics or flags",
"RTM_GET: Report Metrics",
"RTM_LOSING: Kernel Suspects Partitioning",
"RTM_REDIRECT: Told to use different route",
"RTM_MISS: Lookup failed on this address",
"RTM_LOCK: fix specified metrics",
"RTM_OLDADD: caused by SIOCADDRT",
"RTM_OLDDEL: caused by SIOCDELRT",
"RTM_RESOLVE: Route created by cloning",
"RTM_NEWADDR: address being added to iface",
"RTM_DELADDR: address being removed from iface",
"RTM_IFINFO: iface status change",
0,
};
#define NMSGTYPES (sizeof (msgtypes) / sizeof (msgtypes[0]))
static char metricnames[] =
"\011pksent\010rttvar\7rtt\6ssthresh\5sendpipe\4recvpipe\3expire\2hopcount"
"\1mtu";
static char routeflags[] =
"\1UP\2GATEWAY\3HOST\4REJECT\5DYNAMIC\6MODIFIED\7DONE\010MASK_PRESENT"
"\011CLONING\012XRESOLVE\013LLINFO\014STATIC\015BLACKHOLE"
"\016PRIVATE\017PROTO2\020PROTO1\021MULTIRT\022SETSRC";
static char ifnetflags[] =
"\1UP\2BROADCAST\3DEBUG\4LOOPBACK\5PTP\6NOTRAILERS\7RUNNING\010NOARP"
"\011PPROMISC\012ALLMULTI\013INTELLIGENT\014MULTICAST"
"\015MULTI_BCAST\016UNNUMBERED\017DHCP\020PRIVATE"
"\021NOXMIT\022NOLOCAL\023DEPRECATED\024ADDRCONF"
"\025ROUTER\026NONUD\027ANYCAST\030NORTEXCH\031IPv4\032IPv6"
"\033MIP\034NOFAILOVER\035FAILED\036STANDBY\037INACTIVE\040OFFLINE"
"\041XRESOLV\042COS\043PREFERRED\044TEMPORARY";
static char addrnames[] =
"\1DST\2GATEWAY\3NETMASK\4GENMASK\5IFP\6IFA\7AUTHOR\010BRD\011SRC";
void
print_rtmsg(struct rt_msghdr *rtm, int msglen)
{
struct if_msghdr *ifm;
struct ifa_msghdr *ifam;
if (!verbose)
return;
if (rtm->rtm_version != RTM_VERSION) {
(void) printf("routing message version %d not understood\n",
rtm->rtm_version);
return;
}
if (rtm->rtm_msglen > (ushort_t)msglen) {
(void) printf("message length mismatch, in packet %d, "
"returned %d\n",
rtm->rtm_msglen, msglen);
}
/*
* Since rtm->rtm_type is unsigned, we'll just check the case of zero
* and the upper-bound of (NMSGTYPES - 1).
*/
if (rtm->rtm_type == 0 || rtm->rtm_type >= (NMSGTYPES - 1)) {
(void) printf("routing message type %d not understood\n",
rtm->rtm_type);
return;
}
(void) printf("%s: len %d, ", msgtypes[rtm->rtm_type], rtm->rtm_msglen);
switch (rtm->rtm_type) {
case RTM_IFINFO:
ifm = (struct if_msghdr *)rtm;
(void) printf("if# %d, flags:", ifm->ifm_index);
bprintf(stdout, ifm->ifm_flags, ifnetflags);
pmsg_addrs((char *)(ifm + 1), ifm->ifm_addrs);
break;
case RTM_NEWADDR:
case RTM_DELADDR:
ifam = (struct ifa_msghdr *)rtm;
(void) printf("metric %d, flags:", ifam->ifam_metric);
bprintf(stdout, ifam->ifam_flags, routeflags);
pmsg_addrs((char *)(ifam + 1), ifam->ifam_addrs);
break;
default:
(void) printf("pid: %ld, seq %d, errno %d, flags:",
rtm->rtm_pid, rtm->rtm_seq, rtm->rtm_errno);
bprintf(stdout, rtm->rtm_flags, routeflags);
pmsg_common(rtm);
}
}
void
print_getmsg(struct rt_msghdr *rtm, int msglen)
{
struct sockaddr *dst = NULL, *gate = NULL, *mask = NULL, *src = NULL;
struct sockaddr_dl *ifp = NULL;
struct sockaddr *sa;
char *cp;
int i;
(void) printf(" route to: %s\n", routename(&so_dst.sa));
if (rtm->rtm_version != RTM_VERSION) {
(void) fprintf(stderr,
gettext("routing message version %d not understood\n"),
rtm->rtm_version);
return;
}
if (rtm->rtm_msglen > (ushort_t)msglen) {
(void) fprintf(stderr,
gettext("message length mismatch, in packet %d, "
"returned %d\n"), rtm->rtm_msglen, msglen);
}
if (rtm->rtm_errno) {
(void) fprintf(stderr, "RTM_GET: %s (errno %d)\n",
strerror(rtm->rtm_errno), rtm->rtm_errno);
return;
}
cp = ((char *)(rtm + 1));
if (rtm->rtm_addrs != 0) {
for (i = 1; i != 0; i <<= 1) {
if (i & rtm->rtm_addrs) {
/* LINTED */
sa = (struct sockaddr *)cp;
switch (i) {
case RTA_DST:
dst = sa;
break;
case RTA_GATEWAY:
gate = sa;
break;
case RTA_NETMASK:
mask = sa;
break;
case RTA_IFP:
if (sa->sa_family == AF_LINK &&
((struct sockaddr_dl *)sa)->
sdl_nlen != 0)
ifp = (struct sockaddr_dl *)sa;
break;
case RTA_SRC:
src = sa;
break;
}
ADVANCE(cp, sa);
}
}
}
if (dst != NULL && mask != NULL)
mask->sa_family = dst->sa_family; /* XXX */
if (dst != NULL)
(void) printf("destination: %s\n", routename(dst));
if (mask != NULL) {
boolean_t savenflag = nflag;
nflag = B_TRUE;
(void) printf(" mask: %s\n", routename(mask));
nflag = savenflag;
}
if (gate != NULL && rtm->rtm_flags & RTF_GATEWAY)
(void) printf(" gateway: %s\n", routename(gate));
if (src != NULL && rtm->rtm_flags & RTF_SETSRC)
(void) printf(" setsrc: %s\n", routename(src));
if (ifp != NULL) {
if (verbose) {
int i;
(void) printf(" interface: %.*s index %d address ",
ifp->sdl_nlen, ifp->sdl_data, ifp->sdl_index);
for (i = ifp->sdl_nlen;
i < ifp->sdl_nlen + ifp->sdl_alen;
i++) {
(void) printf("%02x ",
ifp->sdl_data[i] & 0xFF);
}
(void) printf("\n");
} else {
(void) printf(" interface: %.*s\n",
ifp->sdl_nlen, ifp->sdl_data);
}
}
(void) printf(" flags: ");
bprintf(stdout, rtm->rtm_flags, routeflags);
#define lock(f) ((rtm->rtm_rmx.rmx_locks & RTV_ ## f) ? 'L' : ' ')
#define msec(u) (((u) + 500) / 1000) /* usec to msec */
(void) printf("\n%s\n", " recvpipe sendpipe ssthresh rtt,ms "
"rttvar,ms hopcount mtu expire");
(void) printf("%8d%c ", rtm->rtm_rmx.rmx_recvpipe, lock(RPIPE));
(void) printf("%8d%c ", rtm->rtm_rmx.rmx_sendpipe, lock(SPIPE));
(void) printf("%8d%c ", rtm->rtm_rmx.rmx_ssthresh, lock(SSTHRESH));
(void) printf("%8d%c ", msec(rtm->rtm_rmx.rmx_rtt), lock(RTT));
(void) printf("%8d%c ", msec(rtm->rtm_rmx.rmx_rttvar), lock(RTTVAR));
(void) printf("%8d%c ", rtm->rtm_rmx.rmx_hopcount, lock(HOPCOUNT));
(void) printf("%8d%c ", rtm->rtm_rmx.rmx_mtu, lock(MTU));
if (rtm->rtm_rmx.rmx_expire)
rtm->rtm_rmx.rmx_expire -= time(0);
(void) printf("%8d%c\n", rtm->rtm_rmx.rmx_expire, lock(EXPIRE));
#undef lock
#undef msec
#define RTA_IGN \
(RTA_DST|RTA_GATEWAY|RTA_NETMASK|RTA_IFP|RTA_IFA|RTA_BRD|RTA_SRC)
if (verbose) {
pmsg_common(rtm);
} else if (rtm->rtm_addrs &~ RTA_IGN) {
(void) printf("sockaddrs: ");
bprintf(stdout, rtm->rtm_addrs, addrnames);
(void) putchar('\n');
}
#undef RTA_IGN
}
void
pmsg_common(struct rt_msghdr *rtm)
{
(void) printf("\nlocks: ");
bprintf(stdout, (int)rtm->rtm_rmx.rmx_locks, metricnames);
(void) printf(" inits: ");
bprintf(stdout, (int)rtm->rtm_inits, metricnames);
pmsg_addrs(((char *)(rtm + 1)), rtm->rtm_addrs);
}
void
pmsg_addrs(char *cp, int addrs)
{
struct sockaddr *sa;
int i;
if (addrs == 0)
return;
(void) printf("\nsockaddrs: ");
bprintf(stdout, addrs, addrnames);
(void) putchar('\n');
for (i = 1; i != 0; i <<= 1) {
if (i & addrs) {
/* LINTED */
sa = (struct sockaddr *)cp;
(void) printf(" %s", routename(sa));
ADVANCE(cp, sa);
}
}
(void) putchar('\n');
(void) fflush(stdout);
}
void
bprintf(FILE *fp, int b, char *s)
{
int i;
boolean_t gotsome = B_FALSE;
if (b == 0)
return;
while ((i = *s++) != 0) {
if (b & (1 << (i - 1))) {
if (!gotsome)
i = '<';
else
i = ',';
(void) putc(i, fp);
gotsome = B_TRUE;
for (; (i = *s) > ' '; s++)
(void) putc(i, fp);
} else {
while (*s > ' ')
s++;
}
}
if (gotsome)
(void) putc('>', fp);
}
int
keyword(char *cp)
{
struct keytab *kt = keywords;
while (kt->kt_cp && strcmp(kt->kt_cp, cp))
kt++;
return (kt->kt_i);
}
void
sodump(sup su, char *which)
{
static char obuf[INET6_ADDRSTRLEN];
switch (su->sa.sa_family) {
case AF_LINK:
(void) printf("%s: link %s; ",
which, link_ntoa(&su->sdl));
break;
case AF_INET:
(void) printf("%s: inet %s; ",
which, inet_ntoa(su->sin.sin_addr));
break;
case AF_INET6:
if (inet_ntop(AF_INET6, (void *)&su->sin6.sin6_addr, obuf,
INET6_ADDRSTRLEN) != NULL) {
(void) printf("%s: inet6 %s; ", which, obuf);
break;
}
/* FALLTHROUGH */
default:
quit(gettext("Internal Error"), EINVAL);
/* NOTREACHED */
}
(void) fflush(stdout);
}
/* States */
#define VIRGIN 0
#define GOTONE 1
#define GOTTWO 2
#define RESET 3
/* Inputs */
#define DIGIT (4*0)
#define END (4*1)
#define DELIM (4*2)
#define LETTER (4*3)
void
sockaddr(char *addr, struct sockaddr *sa)
{
char *cp = (char *)sa;
int size = salen(sa);
char *cplim = cp + size;
int byte = 0, state = VIRGIN, new;
(void) memset(cp, 0, size);
cp++;
do {
if ((*addr >= '0') && (*addr <= '9')) {
new = *addr - '0';
} else if ((*addr >= 'a') && (*addr <= 'f')) {
new = *addr - 'a' + 10;
} else if ((*addr >= 'A') && (*addr <= 'F')) {
new = *addr - 'A' + 10;
} else if (*addr == 0) {
state |= END;
} else {
state |= DELIM;
}
addr++;
switch (state /* | INPUT */) {
case GOTTWO | DIGIT:
*cp++ = byte;
/* FALLTHROUGH */
case VIRGIN | DIGIT:
state = GOTONE; byte = new; continue;
case GOTONE | DIGIT:
state = GOTTWO; byte = new + (byte << 4); continue;
default: /* | DELIM */
state = VIRGIN; *cp++ = byte; byte = 0; continue;
case GOTONE | END:
case GOTTWO | END:
*cp++ = byte;
/* FALLTHROUGH */
case VIRGIN | END:
break;
}
break;
} while (cp < cplim);
}
int
salen(struct sockaddr *sa)
{
switch (sa->sa_family) {
case AF_INET:
return (sizeof (struct sockaddr_in));
case AF_LINK:
return (sizeof (struct sockaddr_dl));
case AF_INET6:
return (sizeof (struct sockaddr_in6));
default:
return (sizeof (struct sockaddr));
}
}
void
link_addr(const char *addr, struct sockaddr_dl *sdl)
{
char *cp = sdl->sdl_data;
char *cplim = sizeof (struct sockaddr_dl) + (char *)sdl;
int byte = 0, state = VIRGIN, new;
(void) memset(sdl, 0, sizeof (struct sockaddr_dl));
sdl->sdl_family = AF_LINK;
do {
state &= ~LETTER;
if ((*addr >= '0') && (*addr <= '9')) {
new = *addr - '0';
} else if ((*addr >= 'a') && (*addr <= 'f')) {
new = *addr - 'a' + 10;
} else if ((*addr >= 'A') && (*addr <= 'F')) {
new = *addr - 'A' + 10;
} else if (*addr == 0) {
state |= END;
} else if (state == VIRGIN &&
(((*addr >= 'A') && (*addr <= 'Z')) ||
((*addr >= 'a') && (*addr <= 'z')))) {
state |= LETTER;
} else {
state |= DELIM;
}
addr++;
switch (state /* | INPUT */) {
case VIRGIN | DIGIT:
case VIRGIN | LETTER:
*cp++ = addr[-1];
continue;
case VIRGIN | DELIM:
state = RESET;
sdl->sdl_nlen = cp - sdl->sdl_data;
continue;
case GOTTWO | DIGIT:
*cp++ = byte;
/* FALLTHROUGH */
case RESET | DIGIT:
state = GOTONE;
byte = new;
continue;
case GOTONE | DIGIT:
state = GOTTWO;
byte = new + (byte << 4);
continue;
default: /* | DELIM */
state = RESET;
*cp++ = byte;
byte = 0;
continue;
case GOTONE | END:
case GOTTWO | END:
*cp++ = byte;
/* FALLTHROUGH */
case RESET | END:
break;
}
break;
} while (cp < cplim);
sdl->sdl_alen = cp - LLADDR(sdl);
}
static char hexlist[] = "0123456789abcdef";
char *
link_ntoa(const struct sockaddr_dl *sdl)
{
static char obuf[64];
char *out = obuf;
int i;
uchar_t *in = (uchar_t *)LLADDR(sdl);
uchar_t *inlim = in + sdl->sdl_alen;
boolean_t firsttime = B_TRUE;
if (sdl->sdl_nlen) {
(void) memcpy(obuf, sdl->sdl_data, sdl->sdl_nlen);
out += sdl->sdl_nlen;
if (sdl->sdl_alen)
*out++ = ':';
}
while (in < inlim) {
if (firsttime)
firsttime = B_FALSE;
else
*out++ = '.';
i = *in++;
if (i > 0xf) {
out[1] = hexlist[i & 0xf];
i >>= 4;
out[0] = hexlist[i];
out += 2;
} else {
*out++ = hexlist[i];
}
}
*out = 0;
return (obuf);
}
static mib_item_t *
mibget(int sd)
{
intmax_t buf[512 / sizeof (intmax_t)];
int flags;
int i, j, getcode;
struct strbuf ctlbuf, databuf;
struct T_optmgmt_req *tor = (struct T_optmgmt_req *)buf;
struct T_optmgmt_ack *toa = (struct T_optmgmt_ack *)buf;
struct T_error_ack *tea = (struct T_error_ack *)buf;
struct opthdr *req;
mib_item_t *first_item = NULL;
mib_item_t *last_item = NULL;
mib_item_t *temp;
tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
tor->OPT_offset = sizeof (struct T_optmgmt_req);
tor->OPT_length = sizeof (struct opthdr);
tor->MGMT_flags = T_CURRENT;
req = (struct opthdr *)&tor[1];
req->level = MIB2_IP; /* any MIB2_xxx value ok here */
req->name = 0;
req->len = 0;
ctlbuf.buf = (char *)buf;
ctlbuf.len = tor->OPT_length + tor->OPT_offset;
flags = 0;
if (putmsg(sd, &ctlbuf, NULL, flags) < 0) {
perror("mibget: putmsg (ctl)");
return (NULL);
}
/*
* each reply consists of a ctl part for one fixed structure
* or table, as defined in mib2.h. The format is a T_OPTMGMT_ACK,
* containing an opthdr structure. level/name identify the entry,
* len is the size of the data part of the message.
*/
req = (struct opthdr *)&toa[1];
ctlbuf.maxlen = sizeof (buf);
for (j = 1; ; j++) {
flags = 0;
getcode = getmsg(sd, &ctlbuf, NULL, &flags);
if (getcode < 0) {
perror("mibget: getmsg (ctl)");
if (verbose) {
(void) fprintf(stderr,
"# level name len\n");
i = 0;
for (last_item = first_item; last_item != NULL;
last_item = last_item->next_item) {
(void) printf("%d %4ld %5ld %ld\n",
++i, last_item->group,
last_item->mib_id,
last_item->length);
}
}
break;
}
if (getcode == 0 &&
ctlbuf.len >= sizeof (struct T_optmgmt_ack) &&
toa->PRIM_type == T_OPTMGMT_ACK &&
toa->MGMT_flags == T_SUCCESS &&
req->len == 0) {
if (verbose) {
(void) printf("mibget getmsg() %d returned EOD "
"(level %lu, name %lu)\n", j, req->level,
req->name);
}
return (first_item); /* this is EOD msg */
}
if (ctlbuf.len >= sizeof (struct T_error_ack) &&
tea->PRIM_type == T_ERROR_ACK) {
(void) fprintf(stderr, gettext("mibget %d gives "
"T_ERROR_ACK: TLI_error = 0x%lx, UNIX_error = "
"0x%lx\n"), j, tea->TLI_error, tea->UNIX_error);
errno = (tea->TLI_error == TSYSERR)
? tea->UNIX_error : EPROTO;
break;
}
if (getcode != MOREDATA ||
ctlbuf.len < sizeof (struct T_optmgmt_ack) ||
toa->PRIM_type != T_OPTMGMT_ACK ||
toa->MGMT_flags != T_SUCCESS) {
(void) printf("mibget getmsg(ctl) %d returned %d, "
"ctlbuf.len = %d, PRIM_type = %ld\n",
j, getcode, ctlbuf.len, toa->PRIM_type);
if (toa->PRIM_type == T_OPTMGMT_ACK) {
(void) printf("T_OPTMGMT_ACK: "
"MGMT_flags = 0x%lx, req->len = %ld\n",
toa->MGMT_flags, req->len);
}
errno = ENOMSG;
break;
}
temp = malloc(sizeof (mib_item_t));
if (temp == NULL) {
perror("mibget: malloc");
break;
}
if (last_item != NULL)
last_item->next_item = temp;
else
first_item = temp;
last_item = temp;
last_item->next_item = NULL;
last_item->group = req->level;
last_item->mib_id = req->name;
last_item->length = req->len;
last_item->valp = malloc(req->len);
if (verbose) {
(void) printf("msg %d: group = %4ld mib_id = %5ld "
"length = %ld\n",
j, last_item->group, last_item->mib_id,
last_item->length);
}
databuf.maxlen = last_item->length;
databuf.buf = (char *)last_item->valp;
databuf.len = 0;
flags = 0;
getcode = getmsg(sd, NULL, &databuf, &flags);
if (getcode < 0) {
perror("mibget: getmsg (data)");
break;
} else if (getcode != 0) {
(void) printf("mibget getmsg(data) returned %d, "
"databuf.maxlen = %d, databuf.len = %d\n",
getcode, databuf.maxlen, databuf.len);
break;
}
}
/*
* On error, free all the allocated mib_item_t objects.
*/
while (first_item != NULL) {
last_item = first_item;
first_item = first_item->next_item;
free(last_item);
}
return (NULL);
}