radix.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* Copyright 2001-2003 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgment:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.4 (Berkeley) 11/2/94
*
* $FreeBSD: src/sbin/routed/radix.c,v 1.6 2000/08/11 08:24:38 sheldonh Exp $
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#include "defs.h"
static const size_t max_keylen = sizeof (struct sockaddr_in);
static struct radix_mask *rn_mkfreelist;
static struct radix_node_head *mask_rnhead;
static uint8_t *rn_zeros, *rn_ones, *addmask_key;
#define rn_masktop (mask_rnhead->rnh_treetop)
static boolean_t rn_satisfies_leaf(uint8_t *, struct radix_node *, int);
static boolean_t rn_refines(void *, void *);
static struct radix_node
*rn_addmask(void *, uint_t, uint_t),
*rn_addroute(void *, void *, struct radix_node_head *,
struct radix_node [2]),
*rn_delete(void *, void *, struct radix_node_head *),
*rn_insert(void *, struct radix_node_head *, boolean_t *,
struct radix_node [2]),
*rn_match(void *, struct radix_node_head *),
*rn_newpair(void *, uint_t, struct radix_node[2]),
*rn_search(void *, struct radix_node *),
*rn_search_m(void *, struct radix_node *, void *);
static struct radix_node *rn_lookup(void *, void *, struct radix_node_head *);
#ifdef DEBUG
#define DBGMSG(x) msglog x
#else
#define DBGMSG(x) (void) 0
#endif
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_b at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explict mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/
static struct radix_node *
rn_search(void *v_arg, struct radix_node *head)
{
struct radix_node *x;
uint8_t *v;
for (x = head, v = v_arg; x->rn_b >= 0; ) {
if (x->rn_bmask & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
}
static struct radix_node *
rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
{
struct radix_node *x;
uint8_t *v = v_arg, *m = m_arg;
for (x = head; x->rn_b >= 0; ) {
if (x->rn_bmask & m[x->rn_off] & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
}
/*
* Returns true if there are no bits set in n_arg that are zero in
* m_arg and the masks aren't equal. In other words, it returns true
* when m_arg is a finer-granularity netmask -- it represents a subset
* of the destinations implied by n_arg.
*/
static boolean_t
rn_refines(void* m_arg, void *n_arg)
{
uint8_t *m = m_arg, *n = n_arg;
uint8_t *lim;
boolean_t masks_are_equal = _B_TRUE;
lim = n + sizeof (struct sockaddr);
while (n < lim) {
if (*n & ~(*m))
return (_B_FALSE);
if (*n++ != *m++)
masks_are_equal = _B_FALSE;
}
return (!masks_are_equal);
}
static struct radix_node *
rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
{
struct radix_node *x;
uint8_t *netmask = NULL;
if (m_arg) {
if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) ==
NULL) {
DBGMSG(("rn_lookup: failed to add mask"));
return (NULL);
}
netmask = x->rn_key;
}
x = rn_match(v_arg, head);
if (x && netmask) {
while (x && x->rn_mask != netmask)
x = x->rn_dupedkey;
}
return (x);
}
/*
* Returns true if address 'trial' has no bits differing from the
* leaf's key when compared under the leaf's mask. In other words,
* returns true when 'trial' matches leaf.
*/
static boolean_t
rn_satisfies_leaf(uint8_t *trial,
struct radix_node *leaf,
int skip)
{
uint8_t *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
uint8_t *cplim;
size_t length;
length = sizeof (struct sockaddr);
if (cp3 == NULL)
cp3 = rn_ones;
cplim = cp + length;
cp3 += skip;
cp2 += skip;
for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
if ((*cp ^ *cp2) & *cp3)
return (_B_FALSE);
return (_B_TRUE);
}
static struct radix_node *
rn_match(void *v_arg, struct radix_node_head *head)
{
uint8_t *v = v_arg;
struct radix_node *t = head->rnh_treetop, *x;
uint8_t *cp = v, *cp2;
uint8_t *cplim;
struct radix_node *saved_t, *top = t;
uint_t off = t->rn_off, vlen, matched_off;
int test, b, rn_b;
vlen = sizeof (struct sockaddr);
/*
* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
for (; t->rn_b >= 0; ) {
if (t->rn_bmask & cp[t->rn_off])
t = t->rn_r;
else
t = t->rn_l;
}
cp += off;
cp2 = t->rn_key + off;
cplim = v + vlen;
for (; cp < cplim; cp++, cp2++)
if (*cp != *cp2)
goto found_difference_with_key;
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
* Or 255.255.255.255
*
* In this case, we have a complete match of the key. Unless
* the node is one of the roots, we are finished.
* If it is the zeros root, then take what we have, prefering
* any real data.
* If it is the ones root, then pretend the target key was followed
* by a byte of zeros.
*/
if (!(t->rn_flags & RNF_ROOT))
return (t); /* not a root */
if (t->rn_dupedkey) {
t = t->rn_dupedkey;
return (t); /* have some real data */
}
if (*(cp-1) == 0)
return (t); /* not the ones root */
b = 0; /* fake a zero after 255.255.255.255 */
goto calculated_differing_bit;
found_difference_with_key:
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
for (b = 7; (test >>= 1) > 0; )
b--;
calculated_differing_bit:
matched_off = cp - v;
b += matched_off << 3;
rn_b = -1 - b;
/*
* If there is a host route in a duped-key chain, it will be first.
*/
if ((saved_t = t)->rn_mask == NULL)
t = t->rn_dupedkey;
for (; t; t = t->rn_dupedkey) {
/*
* Even if we don't match exactly as a host,
* we may match if the leaf we wound up at is
* a route to a net.
*/
if (t->rn_flags & RNF_NORMAL) {
if (rn_b <= t->rn_b)
return (t);
} else if (rn_satisfies_leaf(v, t, matched_off)) {
return (t);
}
}
t = saved_t;
/* start searching up the tree */
do {
struct radix_mask *m;
t = t->rn_p;
if ((m = t->rn_mklist) != NULL) {
/*
* If non-contiguous masks ever become important
* we can restore the masking and open coding of
* the search and satisfaction test and put the
* calculation of "off" back before the "do".
*/
do {
if (m->rm_flags & RNF_NORMAL) {
if (rn_b <= m->rm_b)
return (m->rm_leaf);
} else {
off = MIN(t->rn_off, matched_off);
x = rn_search_m(v, t, m->rm_mask);
while (x != NULL &&
x->rn_mask != m->rm_mask)
x = x->rn_dupedkey;
if (x != NULL &&
rn_satisfies_leaf(v, x, off))
return (x);
}
} while ((m = m->rm_mklist) != NULL);
}
} while (t != top);
return (NULL);
}
#ifdef RN_DEBUG
int rn_nodenum;
struct radix_node *rn_clist;
int rn_saveinfo;
boolean_t rn_debug = 1;
#endif
static struct radix_node *
rn_newpair(void *v, uint_t b, struct radix_node nodes[2])
{
struct radix_node *tt = nodes, *t = tt + 1;
t->rn_b = b;
t->rn_bmask = 0x80 >> (b & 7);
t->rn_l = tt;
t->rn_off = b >> 3;
tt->rn_b = -1;
tt->rn_key = v;
tt->rn_p = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
#ifdef RN_DEBUG
tt->rn_info = rn_nodenum++;
t->rn_info = rn_nodenum++;
tt->rn_twin = t;
tt->rn_ybro = rn_clist;
rn_clist = tt;
#endif
return (t);
}
static struct radix_node *
rn_insert(void* v_arg, struct radix_node_head *head, boolean_t *dupentry,
struct radix_node nodes[2])
{
uint8_t *v = v_arg;
struct radix_node *top = head->rnh_treetop;
uint_t head_off = top->rn_off, vlen;
struct radix_node *t = rn_search(v_arg, top);
uint8_t *cp = v + head_off, b;
struct radix_node *tt;
vlen = sizeof (struct sockaddr);
/*
* Find first bit at which v and t->rn_key differ
*/
{
uint8_t *cp2 = t->rn_key + head_off;
uint8_t cmp_res;
uint8_t *cplim = v + vlen;
while (cp < cplim)
if (*cp2++ != *cp++)
goto found_differing_byte;
/* handle adding 255.255.255.255 */
if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
*dupentry = _B_TRUE;
return (t);
}
found_differing_byte:
*dupentry = _B_FALSE;
cmp_res = cp[-1] ^ cp2[-1];
for (b = (cp - v) << 3; cmp_res != 0; b--)
cmp_res >>= 1;
}
{
struct radix_node *p, *x = top;
cp = v;
do {
p = x;
if (cp[x->rn_off] & x->rn_bmask)
x = x->rn_r;
else
x = x->rn_l;
} while (b > (unsigned)x->rn_b);
#ifdef RN_DEBUG
if (rn_debug) {
msglog("rn_insert: Going In:");
traverse(p);
}
#endif
t = rn_newpair(v_arg, b, nodes);
tt = t->rn_l;
if (!(cp[p->rn_off] & p->rn_bmask))
p->rn_l = t;
else
p->rn_r = t;
x->rn_p = t; /* frees x, p as temp vars below */
t->rn_p = p;
if (!(cp[t->rn_off] & t->rn_bmask)) {
t->rn_r = x;
} else {
t->rn_r = tt;
t->rn_l = x;
}
#ifdef RN_DEBUG
if (rn_debug) {
msglog("rn_insert: Coming Out:");
traverse(p);
}
#endif
}
return (tt);
}
static struct radix_node *
rn_addmask(void *n_arg, uint_t search, uint_t skip)
{
uint8_t *netmask = n_arg;
struct radix_node *x;
uint8_t *cp, *cplim;
int b = 0, mlen, j, m0;
boolean_t maskduplicated;
struct radix_node *saved_x;
static int last_zeroed = 0;
mlen = sizeof (struct sockaddr);
if (skip == 0)
skip = 1;
if (mlen <= skip)
return (mask_rnhead->rnh_nodes);
if (skip > 1)
(void) memmove(addmask_key + 1, rn_ones + 1, skip - 1);
if ((m0 = mlen) > skip)
(void) memmove(addmask_key + skip, netmask + skip, mlen - skip);
/*
* Trim trailing zeroes.
*/
for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; )
cp--;
mlen = cp - addmask_key;
if (mlen <= skip) {
if (m0 >= last_zeroed)
last_zeroed = mlen;
return (mask_rnhead->rnh_nodes);
}
if (m0 < last_zeroed)
(void) memset(addmask_key + m0, 0, last_zeroed - m0);
*addmask_key = last_zeroed = mlen;
x = rn_search(addmask_key, rn_masktop);
if (memcmp(addmask_key, x->rn_key, mlen) != 0)
x = NULL;
if (x != NULL || search != 0)
return (x);
x = rtmalloc(max_keylen + 2*sizeof (*x), "rn_addmask");
saved_x = x;
(void) memset(x, 0, max_keylen + 2 * sizeof (*x));
netmask = cp = (uint8_t *)(x + 2);
(void) memmove(cp, addmask_key, mlen);
x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
if (maskduplicated) {
#ifdef DEBUG
logbad(1, "rn_addmask: mask impossibly already in tree");
#else
msglog("rn_addmask: mask impossibly already in tree");
#endif
free(saved_x);
return (x);
}
/*
* Calculate index of mask, and check for normalcy.
*/
cplim = netmask + mlen;
x->rn_flags |= RNF_NORMAL;
for (cp = netmask + skip; (cp < cplim) && *cp == 0xff; )
cp++;
if (cp != cplim) {
for (j = 0x80; (j & *cp) != 0; j >>= 1)
b++;
if (*cp != (0xFF & ~(0xFF >> b)) || cp != (cplim - 1))
x->rn_flags &= ~RNF_NORMAL;
}
b += (cp - netmask) << 3;
x->rn_b = -1 - b;
return (x);
}
static boolean_t /* Note: arbitrary ordering for non-contiguous masks */
rn_lexobetter(void *m_arg, void *n_arg)
{
uint8_t *mp = m_arg, *np = n_arg, *lim;
lim = mp + sizeof (struct sockaddr);
while (mp < lim)
if (*mp++ > *np++)
return (_B_TRUE);
return (_B_FALSE);
}
static struct radix_mask *
rn_new_radix_mask(struct radix_node *tt,
struct radix_mask *next)
{
struct radix_mask *m;
MKGet(m);
if (m == NULL) {
#ifdef DEBUG
logbad(1, "Mask for route not entered");
#else
msglog("Mask for route not entered");
#endif
return (NULL);
}
(void) memset(m, 0, sizeof (*m));
m->rm_b = tt->rn_b;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL)
m->rm_leaf = tt;
else
m->rm_mask = tt->rn_mask;
m->rm_mklist = next;
tt->rn_mklist = m;
return (m);
}
static struct radix_node *
rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
struct radix_node treenodes[2])
{
uint8_t *v = v_arg, *netmask = n_arg;
struct radix_node *t, *x = 0, *tt;
struct radix_node *saved_tt, *top = head->rnh_treetop;
short b = 0, b_leaf = 0;
boolean_t keyduplicated;
uint8_t *mmask;
struct radix_mask *m, **mp;
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (netmask) {
if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL) {
DBGMSG(("rn_addroute: addmask failed"));
return (NULL);
}
b_leaf = x->rn_b;
b = -1 - x->rn_b;
netmask = x->rn_key;
}
/*
* Deal with duplicated keys: attach node to previous instance
*/
saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
if (keyduplicated) {
for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
if (tt->rn_mask == netmask) {
DBGMSG(("rn_addroute: duplicated route and "
"mask"));
return (NULL);
}
if (netmask == NULL ||
(tt->rn_mask &&
((b_leaf < tt->rn_b) ||
rn_refines(netmask, tt->rn_mask) ||
rn_lexobetter(netmask, tt->rn_mask))))
break;
}
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*/
if (tt == saved_tt) {
struct radix_node *xx = x;
/* link in at head of list */
(tt = treenodes)->rn_dupedkey = t;
tt->rn_flags = t->rn_flags;
tt->rn_p = x = t->rn_p;
if (x->rn_l == t)
x->rn_l = tt;
else
x->rn_r = tt;
saved_tt = tt;
x = xx;
} else {
(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
t->rn_dupedkey = tt;
}
#ifdef RN_DEBUG
t = tt + 1;
tt->rn_info = rn_nodenum++;
t->rn_info = rn_nodenum++;
tt->rn_twin = t;
tt->rn_ybro = rn_clist;
rn_clist = tt;
#endif
tt->rn_key = v;
tt->rn_b = -1;
tt->rn_flags = RNF_ACTIVE;
}
/*
* Put mask in tree.
*/
if (netmask) {
tt->rn_mask = netmask;
tt->rn_b = x->rn_b;
tt->rn_flags |= x->rn_flags & RNF_NORMAL;
}
t = saved_tt->rn_p;
if (keyduplicated)
goto key_already_in_tree;
b_leaf = -1 - t->rn_b;
if (t->rn_r == saved_tt)
x = t->rn_l;
else
x = t->rn_r;
/* Promote general routes from below */
if (x->rn_b < 0) {
for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
if (x->rn_mask != NULL && (x->rn_b >= b_leaf) &&
x->rn_mklist == NULL) {
if ((*mp = m = rn_new_radix_mask(x, 0)) != NULL)
mp = &m->rm_mklist;
}
} else if (x->rn_mklist) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
if (m->rm_b >= b_leaf)
break;
t->rn_mklist = m;
*mp = 0;
}
key_already_in_tree:
/* Add new route to highest possible ancestor's list */
if ((netmask == NULL) || (b > t->rn_b)) {
return (tt); /* can't lift at all */
}
b_leaf = tt->rn_b;
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
if (m->rm_b < b_leaf)
continue;
if (m->rm_b > b_leaf)
break;
if (m->rm_flags & RNF_NORMAL) {
mmask = m->rm_leaf->rn_mask;
if (tt->rn_flags & RNF_NORMAL) {
#ifdef DEBUG
logbad(1, "Non-unique normal route, mask "
"not entered");
#else
msglog("Non-unique normal route, mask "
"not entered");
#endif
return (tt);
}
} else
mmask = m->rm_mask;
if (mmask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return (tt);
}
if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
break;
}
*mp = rn_new_radix_mask(tt, *mp);
return (tt);
}
static struct radix_node *
rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
{
struct radix_node *t, *p, *x, *tt;
struct radix_mask *m, *saved_m, **mp;
struct radix_node *dupedkey, *saved_tt, *top;
uint8_t *v, *netmask;
int b;
uint_t head_off, vlen;
v = v_arg;
netmask = netmask_arg;
x = head->rnh_treetop;
tt = rn_search(v, x);
head_off = x->rn_off;
vlen = sizeof (struct sockaddr);
saved_tt = tt;
top = x;
if (tt == NULL ||
memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0) {
DBGMSG(("rn_delete: unable to locate route to delete"));
return (NULL);
}
/*
* Delete our route from mask lists.
*/
if (netmask) {
if ((x = rn_addmask(netmask, 1, head_off)) == NULL) {
DBGMSG(("rn_delete: cannot add mask"));
return (NULL);
}
netmask = x->rn_key;
while (tt->rn_mask != netmask)
if ((tt = tt->rn_dupedkey) == NULL) {
DBGMSG(("rn_delete: cannot locate mask"));
return (NULL);
}
}
if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
goto annotation_removed;
if (tt->rn_flags & RNF_NORMAL) {
if (m->rm_leaf != tt || m->rm_refs > 0) {
#ifdef DEBUG
logbad(1, "rn_delete: inconsistent annotation");
#else
msglog("rn_delete: inconsistent annotation");
#endif
return (NULL); /* dangling ref could cause disaster */
}
} else {
if (m->rm_mask != tt->rn_mask) {
#ifdef DEBUG
logbad(1, "rn_delete: inconsistent annotation");
#else
msglog("rn_delete: inconsistent annotation");
#endif
goto annotation_removed;
}
if (--m->rm_refs >= 0)
goto annotation_removed;
}
b = -1 - tt->rn_b;
t = saved_tt->rn_p;
if (b > t->rn_b)
goto annotation_removed; /* Wasn't lifted at all */
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
if (m == saved_m) {
*mp = m->rm_mklist;
MKFree(m);
break;
}
if (m == NULL) {
#ifdef DEBUG
logbad(1, "rn_delete: couldn't find our annotation");
#else
msglog("rn_delete: couldn't find our annotation");
#endif
if (tt->rn_flags & RNF_NORMAL)
return (NULL); /* Dangling ref to us */
}
annotation_removed:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT) {
DBGMSG(("rn_delete: cannot delete root"));
return (NULL);
}
#ifdef RN_DEBUG
/* Get us out of the creation list */
for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
if (t != NULL)
t->rn_ybro = tt->rn_ybro;
#endif
t = tt->rn_p;
if ((dupedkey = saved_tt->rn_dupedkey) != NULL) {
if (tt == saved_tt) {
x = dupedkey;
x->rn_p = t;
if (t->rn_l == tt)
t->rn_l = x;
else
t->rn_r = x;
} else {
for (x = p = saved_tt; p && p->rn_dupedkey != tt; )
p = p->rn_dupedkey;
if (p != NULL) {
p->rn_dupedkey = tt->rn_dupedkey;
} else {
#ifdef DEBUG
logbad(1, "rn_delete: couldn't find us");
#else
msglog("rn_delete: couldn't find us");
#endif
}
}
t = tt + 1;
if (t->rn_flags & RNF_ACTIVE) {
#ifndef RN_DEBUG
*++x = *t;
p = t->rn_p;
#else
b = t->rn_info;
*++x = *t;
t->rn_info = b;
p = t->rn_p;
#endif
if (p->rn_l == t)
p->rn_l = x;
else
p->rn_r = x;
x->rn_l->rn_p = x;
x->rn_r->rn_p = x;
}
goto out;
}
if (t->rn_l == tt)
x = t->rn_r;
else
x = t->rn_l;
p = t->rn_p;
if (p->rn_r == t)
p->rn_r = x;
else
p->rn_l = x;
x->rn_p = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist) {
if (x->rn_b >= 0) {
for (mp = &x->rn_mklist; (m = *mp) != NULL; )
mp = &m->rm_mklist;
*mp = t->rn_mklist;
} else {
/*
* If there are any key,mask pairs in a sibling
* duped-key chain, some subset will appear sorted
* in the same order attached to our mklist
*/
for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
if (m == x->rn_mklist) {
struct radix_mask *mm = m->rm_mklist;
x->rn_mklist = 0;
if (--(m->rm_refs) < 0)
MKFree(m);
m = mm;
}
if (m != NULL) {
#ifdef DEBUG
logbad(1, "rn_delete: Orphaned Mask %p at %p\n",
m, x);
#else
msglog("rn_delete: Orphaned Mask %p at %p\n", m,
x);
#endif
}
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
#ifndef RN_DEBUG
*t = *x;
#else
b = t->rn_info;
*t = *x;
t->rn_info = b;
#endif
t->rn_l->rn_p = t;
t->rn_r->rn_p = t;
p = x->rn_p;
if (p->rn_l == x)
p->rn_l = t;
else
p->rn_r = t;
}
out:
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return (tt);
}
int
rn_walktree(struct radix_node_head *h,
int (*f)(struct radix_node *, void *),
void *w)
{
int error;
struct radix_node *base, *next;
struct radix_node *rn = h->rnh_treetop;
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
/* First time through node, go left */
while (rn->rn_b >= 0)
rn = rn->rn_l;
do {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT))
rn = rn->rn_p;
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0; )
rn = rn->rn_l;
next = rn;
/* Process leaves */
while ((rn = base) != NULL) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
return (error);
}
rn = next;
} while (!(rn->rn_flags & RNF_ROOT));
return (0);
}
int
rn_inithead(void **head, uint_t off)
{
struct radix_node_head *rnh;
struct radix_node *t, *tt, *ttt;
if (*head)
return (1);
rnh = rtmalloc(sizeof (*rnh), "rn_inithead");
(void) memset(rnh, 0, sizeof (*rnh));
*head = rnh;
t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_r = ttt;
t->rn_p = t;
tt = t->rn_l;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_b = -1 - off;
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_addaddr = rn_addroute;
rnh->rnh_deladdr = rn_delete;
rnh->rnh_matchaddr = rn_match;
rnh->rnh_lookup = rn_lookup;
rnh->rnh_walktree = rn_walktree;
rnh->rnh_treetop = t;
return (1);
}
void
rn_init(void)
{
uint8_t *cp, *cplim;
if (max_keylen == 0) {
logbad(1, "radix functions require max_keylen be set");
return;
}
rn_zeros = rtmalloc(3 * max_keylen, "rn_init");
(void) memset(rn_zeros, 0, 3 * max_keylen);
rn_ones = cp = rn_zeros + max_keylen;
addmask_key = cplim = rn_ones + max_keylen;
while (cp < cplim)
*cp++ = 0xFF;
if (rn_inithead((void **)&mask_rnhead, 0) == 0) {
logbad(0, "rn_init: could not initialize radix tree");
}
}