mpd_main.c revision c61f3fa8aac69b7fcecb24979ae8cc3b399cddfd
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "mpd_defs.h"
#include "mpd_tables.h"
int debug = 0; /* Debug flag */
static int pollfd_num = 0; /* Num. of poll descriptors */
static struct pollfd *pollfds = NULL; /* Array of poll descriptors */
/* All times below in ms */
int user_failure_detection_time; /* user specified failure detection */
/* time (fdt) */
int user_probe_interval; /* derived from user specified fdt */
/*
* Structure to store mib2 information returned by the kernel.
* This is used to process routing table information.
*/
typedef struct mib_item_s {
struct mib_item_s *mi_next;
struct opthdr mi_opthdr;
void *mi_valp;
} mib_item_t;
static int rtsock_v4; /* AF_INET routing socket */
static int rtsock_v6; /* AF_INET6 routing socket */
int ifsock_v4 = -1; /* IPv4 socket for ioctls */
int ifsock_v6 = -1; /* IPv6 socket for ioctls */
static int lsock_v4; /* Listen socket to detect mpathd */
static int lsock_v6; /* Listen socket to detect mpathd */
static int mibfd = -1; /* fd to get mib info */
static boolean_t force_mcast = _B_FALSE; /* Only for test purposes */
static uint_t last_initifs_time; /* Time when initifs was last run */
static char **argv0; /* Saved for re-exec on SIGHUP */
boolean_t handle_link_notifications = _B_TRUE;
static int ipRouteEntrySize; /* Size of IPv4 route entry */
static int ipv6RouteEntrySize; /* Size of IPv6 route entry */
static void initlog(void);
static void run_timeouts(void);
static void initifs(void);
static void check_if_removed(struct phyint_instance *pii);
static void select_test_ifs(void);
static void update_router_list(mib_item_t *item);
static void mib_get_constants(mib_item_t *item);
static int mibwalk(void (*proc)(mib_item_t *));
static void ire_process_v4(mib2_ipRouteEntry_t *buf, size_t len);
static void ire_process_v6(mib2_ipv6RouteEntry_t *buf, size_t len);
static void router_add_common(int af, char *ifname,
struct in6_addr nexthop);
static void init_router_targets();
static void cleanup(void);
static int setup_listener(int af);
static void check_config(void);
static void check_testconfig(void);
static void check_addr_unique(struct phyint_instance *,
struct sockaddr_storage *);
static void init_host_targets(void);
static void dup_host_targets(struct phyint_instance *desired_pii);
static void loopback_cmd(int sock, int family);
static boolean_t daemonize(void);
static int closefunc(void *, int);
static unsigned int process_cmd(int newfd, union mi_commands *mpi);
static unsigned int process_query(int fd, mi_query_t *miq);
static unsigned int send_addrinfo(int fd, ipmp_addrinfo_t *adinfop);
static unsigned int send_groupinfo(int fd, ipmp_groupinfo_t *grinfop);
static unsigned int send_grouplist(int fd, ipmp_grouplist_t *grlistp);
static unsigned int send_ifinfo(int fd, ipmp_ifinfo_t *ifinfop);
static unsigned int send_result(int fd, unsigned int error, int syserror);
addrlist_t *localaddrs;
/*
* Return the current time in milliseconds (from an arbitrary reference)
* truncated to fit into an int. Truncation is ok since we are interested
* only in differences and not the absolute values.
*/
uint_t
getcurrenttime(void)
{
uint_t cur_time; /* In ms */
/*
* Use of a non-user-adjustable source of time is
* required. However millisecond precision is sufficient.
* divide by 10^6
*/
cur_time = (uint_t)(gethrtime() / 1000000LL);
return (cur_time);
}
uint64_t
getcurrentsec(void)
{
return (gethrtime() / NANOSEC);
}
/*
* Add fd to the set being polled. Returns 0 if ok; -1 if failed.
*/
int
poll_add(int fd)
{
int i;
int new_num;
struct pollfd *newfds;
retry:
/* Check if already present */
for (i = 0; i < pollfd_num; i++) {
if (pollfds[i].fd == fd)
return (0);
}
/* Check for empty spot already present */
for (i = 0; i < pollfd_num; i++) {
if (pollfds[i].fd == -1) {
pollfds[i].fd = fd;
return (0);
}
}
/* Allocate space for 32 more fds and initialize to -1 */
new_num = pollfd_num + 32;
newfds = realloc(pollfds, new_num * sizeof (struct pollfd));
if (newfds == NULL) {
logperror("poll_add: realloc");
return (-1);
}
for (i = pollfd_num; i < new_num; i++) {
newfds[i].fd = -1;
newfds[i].events = POLLIN;
}
pollfd_num = new_num;
pollfds = newfds;
goto retry;
}
/*
* Remove fd from the set being polled. Returns 0 if ok; -1 if failed.
*/
int
poll_remove(int fd)
{
int i;
/* Check if already present */
for (i = 0; i < pollfd_num; i++) {
if (pollfds[i].fd == fd) {
pollfds[i].fd = -1;
return (0);
}
}
return (-1);
}
/*
* Extract information about the phyint instance. If the phyint instance still
* exists in the kernel then set pii_in_use, else clear it. check_if_removed()
* will use it to detect phyint instances that don't exist any longer and
* remove them, from our database of phyint instances.
* Return value:
* returns true if the phyint instance exists in the kernel,
* returns false otherwise
*/
static boolean_t
pii_process(int af, char *name, struct phyint_instance **pii_p)
{
int err;
struct phyint_instance *pii;
struct phyint_instance *pii_other;
if (debug & D_PHYINT)
logdebug("pii_process(%s %s)\n", AF_STR(af), name);
pii = phyint_inst_lookup(af, name);
if (pii == NULL) {
/*
* Phyint instance does not exist in our tables,
* create new phyint instance
*/
pii = phyint_inst_init_from_k(af, name);
} else {
/* Phyint exists in our tables */
err = phyint_inst_update_from_k(pii);
switch (err) {
case PI_IOCTL_ERROR:
/* Some ioctl error. don't change anything */
pii->pii_in_use = 1;
break;
case PI_GROUP_CHANGED:
case PI_IFINDEX_CHANGED:
/*
* Interface index or group membership has changed.
* Delete the old state and recreate based on the new
* state (it may no longer be in a group).
*/
pii_other = phyint_inst_other(pii);
if (pii_other != NULL)
phyint_inst_delete(pii_other);
phyint_inst_delete(pii);
pii = phyint_inst_init_from_k(af, name);
break;
case PI_DELETED:
/* Phyint instance has disappeared from kernel */
pii->pii_in_use = 0;
break;
case PI_OK:
/* Phyint instance exists and is fine */
pii->pii_in_use = 1;
break;
default:
/* Unknown status */
logerr("pii_process: Unknown status %d\n", err);
break;
}
}
*pii_p = pii;
if (pii != NULL)
return (pii->pii_in_use ? _B_TRUE : _B_FALSE);
else
return (_B_FALSE);
}
/*
* Scan all interfaces to detect changes as well as new and deleted interfaces
*/
static void
initifs()
{
int i, nlifr;
int af;
char *cp;
char *buf;
int sockfd;
uint64_t flags;
struct lifnum lifn;
struct lifconf lifc;
struct lifreq lifreq;
struct lifreq *lifr;
struct logint *li;
struct phyint_instance *pii;
struct phyint_instance *next_pii;
struct phyint_group *pg, *next_pg;
char pi_name[LIFNAMSIZ + 1];
if (debug & D_PHYINT)
logdebug("initifs: Scanning interfaces\n");
last_initifs_time = getcurrenttime();
/*
* Free the existing local address list; we'll build a new list below.
*/
addrlist_free(&localaddrs);
/*
* Mark the interfaces so that we can find phyints and logints
* which have disappeared from the kernel. pii_process() and
* logint_init_from_k() will set {pii,li}_in_use when they find
* the interface in the kernel. Also, clear dupaddr bit on probe
* logint. check_addr_unique() will set the dupaddr bit on the
* probe logint, if the testaddress is not unique.
*/
for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) {
pii->pii_in_use = 0;
for (li = pii->pii_logint; li != NULL; li = li->li_next) {
li->li_in_use = 0;
if (pii->pii_probe_logint == li)
li->li_dupaddr = 0;
}
}
/*
* As above, mark groups so that we can detect IPMP interfaces which
* have been removed from the kernel. Also, delete the group address
* list since we'll iteratively recreate it below.
*/
for (pg = phyint_groups; pg != NULL; pg = pg->pg_next) {
pg->pg_in_use = _B_FALSE;
addrlist_free(&pg->pg_addrs);
}
lifn.lifn_family = AF_UNSPEC;
lifn.lifn_flags = LIFC_ALLZONES | LIFC_UNDER_IPMP;
again:
if (ioctl(ifsock_v4, SIOCGLIFNUM, (char *)&lifn) < 0) {
logperror("initifs: ioctl (get interface count)");
return;
}
/*
* Pad the interface count to detect when additional interfaces have
* been configured between SIOCGLIFNUM and SIOCGLIFCONF.
*/
lifn.lifn_count += 4;
if ((buf = calloc(lifn.lifn_count, sizeof (struct lifreq))) == NULL) {
logperror("initifs: calloc");
return;
}
lifc.lifc_family = AF_UNSPEC;
lifc.lifc_flags = LIFC_ALLZONES | LIFC_UNDER_IPMP;
lifc.lifc_len = lifn.lifn_count * sizeof (struct lifreq);
lifc.lifc_buf = buf;
if (ioctl(ifsock_v4, SIOCGLIFCONF, (char *)&lifc) < 0) {
logperror("initifs: ioctl (get interface configuration)");
free(buf);
return;
}
/*
* If every lifr_req slot is taken, then additional interfaces must
* have been plumbed between the SIOCGLIFNUM and the SIOCGLIFCONF.
* Recalculate to make sure we didn't miss any interfaces.
*/
nlifr = lifc.lifc_len / sizeof (struct lifreq);
if (nlifr >= lifn.lifn_count) {
free(buf);
goto again;
}
/*
* Walk through the lifreqs returned by SIOGGLIFCONF, and refresh the
* global list of addresses, phyint groups, phyints, and logints.
*/
for (lifr = lifc.lifc_req, i = 0; i < nlifr; i++, lifr++) {
af = lifr->lifr_addr.ss_family;
sockfd = (af == AF_INET) ? ifsock_v4 : ifsock_v6;
(void) strlcpy(lifreq.lifr_name, lifr->lifr_name, LIFNAMSIZ);
if (ioctl(sockfd, SIOCGLIFFLAGS, &lifreq) == -1) {
if (errno != ENXIO)
logperror("initifs: ioctl (SIOCGLIFFLAGS)");
continue;
}
flags = lifreq.lifr_flags;
/*
* If the address is IFF_UP, add it to the local address list.
* (We ignore addresses that aren't IFF_UP since another node
* might legitimately have that address IFF_UP.)
*/
if (flags & IFF_UP) {
(void) addrlist_add(&localaddrs, lifr->lifr_name, flags,
&lifr->lifr_addr);
}
/*
* If this address is on an IPMP meta-interface, update our
* phyint_group information (either by recording that group
* still exists or creating a new group), and track what
* group the address is part of.
*/
if (flags & IFF_IPMP) {
if (ioctl(sockfd, SIOCGLIFGROUPNAME, &lifreq) == -1) {
if (errno != ENXIO)
logperror("initifs: ioctl "
"(SIOCGLIFGROUPNAME)");
continue;
}
pg = phyint_group_lookup(lifreq.lifr_groupname);
if (pg == NULL) {
pg = phyint_group_create(lifreq.lifr_groupname);
if (pg == NULL) {
logerr("initifs: cannot create group "
"%s\n", lifreq.lifr_groupname);
continue;
}
phyint_group_insert(pg);
}
pg->pg_in_use = _B_TRUE;
/*
* Add this to the group's list of data addresses.
*/
if (!addrlist_add(&pg->pg_addrs, lifr->lifr_name, flags,
&lifr->lifr_addr)) {
logerr("initifs: insufficient memory to track "
"data address information for %s\n",
lifr->lifr_name);
}
continue;
}
/*
* This isn't an address on an IPMP meta-interface, so it's
* either on an underlying interface or not related to any
* group. Update our phyint and logint information (via
* pii_process() and logint_init_from_k()) -- but first,
* convert the logint name to a phyint name so we can call
* pii_process().
*/
(void) strlcpy(pi_name, lifr->lifr_name, sizeof (pi_name));
if ((cp = strchr(pi_name, IF_SEPARATOR)) != NULL)
*cp = '\0';
if (pii_process(af, pi_name, &pii)) {
/* The phyint is fine. So process the logint */
logint_init_from_k(pii, lifr->lifr_name);
check_addr_unique(pii, &lifr->lifr_addr);
}
}
free(buf);
/*
* Scan for groups, phyints and logints that have disappeared from the
* kernel, and delete them.
*/
for (pii = phyint_instances; pii != NULL; pii = next_pii) {
next_pii = pii->pii_next;
check_if_removed(pii);
}
for (pg = phyint_groups; pg != NULL; pg = next_pg) {
next_pg = pg->pg_next;
if (!pg->pg_in_use) {
phyint_group_delete(pg);
continue;
}
/*
* Refresh the group's state. This is necessary since the
* group's state is defined by the set of usable interfaces in
* the group, and an interface is considered unusable if all
* of its addresses are down. When an address goes down/up,
* the RTM_DELADDR/RTM_NEWADDR brings us through here.
*/
phyint_group_refresh_state(pg);
}
/*
* Select a test address for sending probes on each phyint instance
*/
select_test_ifs();
/*
* Handle link up/down notifications.
*/
process_link_state_changes();
}
/*
* Check that a given test address is unique across all of the interfaces in a
* group. (e.g., IPv6 link-locals may not be inherently unique, and binding
* to such an (IFF_NOFAILOVER) address can produce unexpected results.)
* Any issues will be reported by check_testconfig().
*/
static void
check_addr_unique(struct phyint_instance *ourpii, struct sockaddr_storage *ss)
{
struct phyint *pi;
struct phyint_group *pg;
struct in6_addr addr;
struct phyint_instance *pii;
struct sockaddr_in *sin;
if (ss->ss_family == AF_INET) {
sin = (struct sockaddr_in *)ss;
IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &addr);
} else {
assert(ss->ss_family == AF_INET6);
addr = ((struct sockaddr_in6 *)ss)->sin6_addr;
}
/*
* For anonymous groups, every interface is assumed to be on its own
* link, so there is no chance of overlapping addresses.
*/
pg = ourpii->pii_phyint->pi_group;
if (pg == phyint_anongroup)
return;
/*
* Walk the list of phyint instances in the group and check for test
* addresses matching ours. Of course, we skip ourself.
*/
for (pi = pg->pg_phyint; pi != NULL; pi = pi->pi_pgnext) {
pii = PHYINT_INSTANCE(pi, ss->ss_family);
if (pii == NULL || pii == ourpii ||
pii->pii_probe_logint == NULL)
continue;
/*
* If this test address is not unique, set the dupaddr bit.
*/
if (IN6_ARE_ADDR_EQUAL(&addr, &pii->pii_probe_logint->li_addr))
pii->pii_probe_logint->li_dupaddr = 1;
}
}
/*
* Stop probing an interface. Called when an interface is offlined.
* The probe socket is closed on each interface instance, and the
* interface state set to PI_OFFLINE.
*/
void
stop_probing(struct phyint *pi)
{
struct phyint_instance *pii;
pii = pi->pi_v4;
if (pii != NULL) {
if (pii->pii_probe_sock != -1)
close_probe_socket(pii, _B_TRUE);
pii->pii_probe_logint = NULL;
}
pii = pi->pi_v6;
if (pii != NULL) {
if (pii->pii_probe_sock != -1)
close_probe_socket(pii, _B_TRUE);
pii->pii_probe_logint = NULL;
}
phyint_chstate(pi, PI_OFFLINE);
}
enum { BAD_TESTFLAGS, OK_TESTFLAGS, BEST_TESTFLAGS };
/*
* Rate the provided test flags. By definition, IFF_NOFAILOVER must be set.
* IFF_UP must also be set so that the associated address can be used as a
* source address. Further, we must be able to exchange packets with local
* destinations, so IFF_NOXMIT and IFF_NOLOCAL must be clear. For historical
* reasons, we have a proclivity for IFF_DEPRECATED IPv4 test addresses.
*/
static int
rate_testflags(uint64_t flags)
{
if ((flags & (IFF_NOFAILOVER | IFF_UP)) != (IFF_NOFAILOVER | IFF_UP))
return (BAD_TESTFLAGS);
if ((flags & (IFF_NOXMIT | IFF_NOLOCAL)) != 0)
return (BAD_TESTFLAGS);
if ((flags & (IFF_IPV6 | IFF_DEPRECATED)) == IFF_DEPRECATED)
return (BEST_TESTFLAGS);
if ((flags & (IFF_IPV6 | IFF_DEPRECATED)) == IFF_IPV6)
return (BEST_TESTFLAGS);
return (OK_TESTFLAGS);
}
/*
* Attempt to select a test address for each phyint instance.
* Call phyint_inst_sockinit() to complete the initializations.
*/
static void
select_test_ifs(void)
{
struct phyint *pi;
struct phyint_instance *pii;
struct phyint_instance *next_pii;
struct logint *li;
struct logint *probe_logint;
boolean_t target_scan_reqd = _B_FALSE;
int rating;
if (debug & D_PHYINT)
logdebug("select_test_ifs\n");
/*
* For each phyint instance, do the test address selection
*/
for (pii = phyint_instances; pii != NULL; pii = next_pii) {
next_pii = pii->pii_next;
probe_logint = NULL;
/*
* An interface that is offline should not be probed.
* IFF_OFFLINE interfaces should always be PI_OFFLINE
* unless some other entity has set the offline flag.
*/
if (pii->pii_phyint->pi_flags & IFF_OFFLINE) {
if (pii->pii_phyint->pi_state != PI_OFFLINE) {
logerr("shouldn't be probing offline"
" interface %s (state is: %u)."
" Stopping probes.\n",
pii->pii_phyint->pi_name,
pii->pii_phyint->pi_state);
stop_probing(pii->pii_phyint);
}
continue;
} else {
/*
* If something cleared IFF_OFFLINE (e.g., by accident
* because the SIOCGLIFFLAGS/SIOCSLIFFLAGS sequence is
* inherently racy), the phyint may still be offline.
* Just ignore it.
*/
if (pii->pii_phyint->pi_state == PI_OFFLINE)
continue;
}
li = pii->pii_probe_logint;
if (li != NULL) {
/*
* We've already got a test address; only proceed
* if it's suboptimal.
*/
if (rate_testflags(li->li_flags) == BEST_TESTFLAGS)
continue;
}
/*
* Walk the logints of this phyint instance, and select
* the best available test address
*/
for (li = pii->pii_logint; li != NULL; li = li->li_next) {
/*
* Skip 0.0.0.0 addresses, as those are never
* actually usable.
*/
if (pii->pii_af == AF_INET &&
IN6_IS_ADDR_V4MAPPED_ANY(&li->li_addr))
continue;
/*
* Skip any IPv6 logints that are not link-local,
* since we should always have a link-local address
* anyway and in6_data() expects link-local replies.
*/
if (pii->pii_af == AF_INET6 &&
!IN6_IS_ADDR_LINKLOCAL(&li->li_addr))
continue;
/*
* Rate the testflags. If we've found an optimal
* match, then break out; otherwise, record the most
* recent OK one.
*/
rating = rate_testflags(li->li_flags);
if (rating == BAD_TESTFLAGS)
continue;
probe_logint = li;
if (rating == BEST_TESTFLAGS)
break;
}
/*
* If the probe logint has changed, ditch the old one.
*/
if (pii->pii_probe_logint != NULL &&
pii->pii_probe_logint != probe_logint) {
if (pii->pii_probe_sock != -1)
close_probe_socket(pii, _B_TRUE);
pii->pii_probe_logint = NULL;
}
if (probe_logint == NULL) {
/*
* We don't have a test address; zero out the probe
* stats array since it is no longer relevant.
* Optimize by checking if it is already zeroed out.
*/
int pr_ndx;
pr_ndx = PROBE_INDEX_PREV(pii->pii_probe_next);
if (pii->pii_probes[pr_ndx].pr_status != PR_UNUSED) {
clear_pii_probe_stats(pii);
reset_crtt_all(pii->pii_phyint);
}
continue;
} else if (probe_logint == pii->pii_probe_logint) {
/*
* If we didn't find any new test addr, go to the
* next phyint.
*/
continue;
}
/*
* The phyint is either being assigned a new testaddr
* or is being assigned a testaddr for the 1st time.
* Need to initialize the phyint socket
*/
pii->pii_probe_logint = probe_logint;
if (!phyint_inst_sockinit(pii)) {
if (debug & D_PHYINT) {
logdebug("select_test_ifs: "
"phyint_sockinit failed\n");
}
phyint_inst_delete(pii);
continue;
}
/*
* This phyint instance is now enabled for probes; this
* impacts our state machine in two ways:
*
* 1. If we're probe *capable* as well (i.e., we have
* probe targets) and the interface is in PI_NOTARGETS,
* then transition to PI_RUNNING.
*
* 2. If we're not probe capable, and the other phyint
* instance is also not probe capable, and we were in
* PI_RUNNING, then transition to PI_NOTARGETS.
*
* Also see the state diagram in mpd_probe.c.
*/
if (PROBE_CAPABLE(pii)) {
if (pii->pii_phyint->pi_state == PI_NOTARGETS)
phyint_chstate(pii->pii_phyint, PI_RUNNING);
} else if (!PROBE_CAPABLE(phyint_inst_other(pii))) {
if (pii->pii_phyint->pi_state == PI_RUNNING)
phyint_chstate(pii->pii_phyint, PI_NOTARGETS);
}
/*
* If no targets are currently known for this phyint
* we need to call init_router_targets. Since
* init_router_targets() initializes the list of targets
* for all phyints it is done below the loop.
*/
if (pii->pii_targets == NULL)
target_scan_reqd = _B_TRUE;
/*
* Start the probe timer for this instance.
*/
if (!pii->pii_basetime_inited && PROBE_ENABLED(pii)) {
start_timer(pii);
pii->pii_basetime_inited = 1;
}
}
/*
* Scan the interface list for any interfaces that are PI_FAILED or
* PI_NOTARGETS but no longer enabled to send probes, and call
* phyint_check_for_repair() to see if the link state indicates that
* the interface should be repaired. Also see the state diagram in
* mpd_probe.c.
*/
for (pi = phyints; pi != NULL; pi = pi->pi_next) {
if ((!PROBE_ENABLED(pi->pi_v4) && !PROBE_ENABLED(pi->pi_v6)) &&
(pi->pi_state == PI_FAILED ||
pi->pi_state == PI_NOTARGETS)) {
phyint_check_for_repair(pi);
}
}
check_testconfig();
/*
* Try to populate the target list. init_router_targets populates
* the target list from the routing table. If our target list is
* still empty, init_host_targets adds host targets based on the
* host target list of other phyints in the group.
*/
if (target_scan_reqd) {
init_router_targets();
init_host_targets();
}
}
/*
* Check test address configuration, and log notices/errors if appropriate.
* Note that this function only logs pre-existing conditions (e.g., that
* probe-based failure detection is disabled).
*/
static void
check_testconfig(void)
{
struct phyint *pi;
struct logint *li;
char abuf[INET6_ADDRSTRLEN];
int pri;
for (pi = phyints; pi != NULL; pi = pi->pi_next) {
if (pi->pi_flags & IFF_OFFLINE)
continue;
if (PROBE_ENABLED(pi->pi_v4) || PROBE_ENABLED(pi->pi_v6)) {
if (pi->pi_taddrmsg_printed ||
pi->pi_duptaddrmsg_printed) {
if (pi->pi_duptaddrmsg_printed)
pri = LOG_ERR;
else
pri = LOG_INFO;
logmsg(pri, "Test address now configured on "
"interface %s; enabling probe-based "
"failure detection on it\n", pi->pi_name);
pi->pi_taddrmsg_printed = 0;
pi->pi_duptaddrmsg_printed = 0;
}
continue;
}
li = NULL;
if (pi->pi_v4 != NULL && pi->pi_v4->pii_probe_logint != NULL &&
pi->pi_v4->pii_probe_logint->li_dupaddr)
li = pi->pi_v4->pii_probe_logint;
if (pi->pi_v6 != NULL && pi->pi_v6->pii_probe_logint != NULL &&
pi->pi_v6->pii_probe_logint->li_dupaddr)
li = pi->pi_v6->pii_probe_logint;
if (li != NULL && li->li_dupaddr) {
if (pi->pi_duptaddrmsg_printed)
continue;
logerr("Test address %s is not unique in group; "
"disabling probe-based failure detection on %s\n",
pr_addr(li->li_phyint_inst->pii_af,
li->li_addr, abuf, sizeof (abuf)), pi->pi_name);
pi->pi_duptaddrmsg_printed = 1;
continue;
}
if (getcurrentsec() < pi->pi_taddrthresh)
continue;
if (!pi->pi_taddrmsg_printed) {
logtrace("No test address configured on interface %s; "
"disabling probe-based failure detection on it\n",
pi->pi_name);
pi->pi_taddrmsg_printed = 1;
}
}
}
/*
* Check phyint group configuration, to detect any inconsistencies,
* and log an error message. This is called from runtimeouts every
* 20 secs. But the error message is displayed once. If the
* consistency is resolved by the admin, a recovery message is displayed
* once.
*/
static void
check_config(void)
{
struct phyint_group *pg;
struct phyint *pi;
boolean_t v4_in_group;
boolean_t v6_in_group;
/*
* All phyints of a group must be homogeneous to ensure that they can
* take over for one another. If any phyint in a group has IPv4
* plumbed, check that all phyints have IPv4 plumbed. Do a similar
* check for IPv6.
*/
for (pg = phyint_groups; pg != NULL; pg = pg->pg_next) {
if (pg == phyint_anongroup)
continue;
v4_in_group = _B_FALSE;
v6_in_group = _B_FALSE;
/*
* 1st pass. Determine if at least 1 phyint in the group
* has IPv4 plumbed and if so set v4_in_group to true.
* Repeat similarly for IPv6.
*/
for (pi = pg->pg_phyint; pi != NULL; pi = pi->pi_pgnext) {
if (pi->pi_v4 != NULL)
v4_in_group = _B_TRUE;
if (pi->pi_v6 != NULL)
v6_in_group = _B_TRUE;
}
/*
* 2nd pass. If v4_in_group is true, check that phyint
* has IPv4 plumbed. Repeat similarly for IPv6. Print
* out a message the 1st time only.
*/
for (pi = pg->pg_phyint; pi != NULL; pi = pi->pi_pgnext) {
if (pi->pi_flags & IFF_OFFLINE)
continue;
if (v4_in_group == _B_TRUE && pi->pi_v4 == NULL) {
if (!pi->pi_cfgmsg_printed) {
logerr("IP interface %s in group %s is"
" not plumbed for IPv4, affecting"
" IPv4 connectivity\n",
pi->pi_name,
pi->pi_group->pg_name);
pi->pi_cfgmsg_printed = 1;
}
} else if (v6_in_group == _B_TRUE &&
pi->pi_v6 == NULL) {
if (!pi->pi_cfgmsg_printed) {
logerr("IP interface %s in group %s is"
" not plumbed for IPv6, affecting"
" IPv6 connectivity\n",
pi->pi_name,
pi->pi_group->pg_name);
pi->pi_cfgmsg_printed = 1;
}
} else {
/*
* The phyint matches the group configuration,
* if we have reached this point. If it was
* improperly configured earlier, log an
* error recovery message
*/
if (pi->pi_cfgmsg_printed) {
logerr("IP interface %s is now"
" consistent with group %s "
" and connectivity is restored\n",
pi->pi_name, pi->pi_group->pg_name);
pi->pi_cfgmsg_printed = 0;
}
}
}
}
}
/*
* Timer mechanism using relative time (in milliseconds) from the
* previous timer event. Timers exceeding TIMER_INFINITY milliseconds
* will fire after TIMER_INFINITY milliseconds.
* Unsigned arithmetic note: We assume a 32-bit circular sequence space for
* time values. Hence 2 consecutive timer events cannot be spaced farther
* than 0x7fffffff. We call this TIMER_INFINITY, and it is the maximum value
* that can be passed for the delay parameter of timer_schedule()
*/
static uint_t timer_next; /* Currently scheduled timeout */
static boolean_t timer_active = _B_FALSE; /* SIGALRM has not yet occurred */
static void
timer_init(void)
{
timer_next = getcurrenttime() + TIMER_INFINITY;
/*
* The call to run_timeouts() will get the timer started
* Since there are no phyints at this point, the timer will
* be set for IF_SCAN_INTERVAL ms.
*/
run_timeouts();
}
/*
* Make sure the next SIGALRM occurs delay milliseconds from the current
* time if not earlier. We are interested only in time differences.
*/
void
timer_schedule(uint_t delay)
{
uint_t now;
struct itimerval itimerval;
if (debug & D_TIMER)
logdebug("timer_schedule(%u)\n", delay);
assert(delay <= TIMER_INFINITY);
now = getcurrenttime();
if (delay == 0) {
/* Minimum allowed delay */
delay = 1;
}
/* Will this timer occur before the currently scheduled SIGALRM? */
if (timer_active && TIME_GE(now + delay, timer_next)) {
if (debug & D_TIMER) {
logdebug("timer_schedule(%u) - no action: "
"now %u next %u\n", delay, now, timer_next);
}
return;
}
timer_next = now + delay;
itimerval.it_value.tv_sec = delay / 1000;
itimerval.it_value.tv_usec = (delay % 1000) * 1000;
itimerval.it_interval.tv_sec = 0;
itimerval.it_interval.tv_usec = 0;
if (debug & D_TIMER) {
logdebug("timer_schedule(%u): sec %ld usec %ld\n",
delay, itimerval.it_value.tv_sec,
itimerval.it_value.tv_usec);
}
timer_active = _B_TRUE;
if (setitimer(ITIMER_REAL, &itimerval, NULL) < 0) {
logperror("timer_schedule: setitimer");
exit(2);
}
}
static void
timer_cancel(void)
{
struct itimerval itimerval;
if (debug & D_TIMER)
logdebug("timer_cancel()\n");
bzero(&itimerval, sizeof (itimerval));
if (setitimer(ITIMER_REAL, &itimerval, NULL) < 0)
logperror("timer_cancel: setitimer");
}
/*
* Timer has fired. Determine when the next timer event will occur by asking
* all the timer routines. Should not be called from a timer routine.
*/
static void
run_timeouts(void)
{
uint_t next;
uint_t next_event_time;
struct phyint_instance *pii;
struct phyint_instance *next_pii;
static boolean_t timeout_running;
/* assert that recursive timeouts don't happen. */
assert(!timeout_running);
timeout_running = _B_TRUE;
if (debug & D_TIMER)
logdebug("run_timeouts()\n");
if ((getcurrenttime() - last_initifs_time) > IF_SCAN_INTERVAL) {
initifs();
check_config();
}
next = TIMER_INFINITY;
for (pii = phyint_instances; pii != NULL; pii = next_pii) {
next_pii = pii->pii_next;
next_event_time = phyint_inst_timer(pii);
if (next_event_time != TIMER_INFINITY && next_event_time < next)
next = next_event_time;
if (debug & D_TIMER) {
logdebug("run_timeouts(%s %s): next scheduled for"
" this phyint inst %u, next scheduled global"
" %u ms\n",
AF_STR(pii->pii_af), pii->pii_phyint->pi_name,
next_event_time, next);
}
}
/*
* Make sure initifs() is called at least once every
* IF_SCAN_INTERVAL, to make sure that we are in sync
* with the kernel, in case we have missed any routing
* socket messages.
*/
if (next > IF_SCAN_INTERVAL)
next = IF_SCAN_INTERVAL;
if (debug & D_TIMER)
logdebug("run_timeouts: %u ms\n", next);
timer_schedule(next);
timeout_running = _B_FALSE;
}
static int eventpipe_read = -1; /* Used for synchronous signal delivery */
static int eventpipe_write = -1;
boolean_t cleanup_started = _B_FALSE; /* true if we're going away */
/*
* Ensure that signals are processed synchronously with the rest of
* the code by just writing a one character signal number on the pipe.
* The poll loop will pick this up and process the signal event.
*/
static void
sig_handler(int signo)
{
uchar_t buf = (uchar_t)signo;
/*
* Don't write to pipe if cleanup has already begun. cleanup()
* might have closed the pipe already
*/
if (cleanup_started)
return;
if (eventpipe_write == -1) {
logerr("sig_handler: no pipe found\n");
return;
}
if (write(eventpipe_write, &buf, sizeof (buf)) < 0)
logperror("sig_handler: write");
}
extern struct probes_missed probes_missed;
/*
* Pick up a signal "byte" from the pipe and process it.
*/
static void
in_signal(int fd)
{
uchar_t buf;
uint64_t sent, acked, lost, unacked, unknown;
struct phyint_instance *pii;
int pr_ndx;
switch (read(fd, &buf, sizeof (buf))) {
case -1:
logperror("in_signal: read");
exit(1);
/* NOTREACHED */
case 1:
break;
case 0:
logerr("in_signal: read end of file\n");
exit(1);
/* NOTREACHED */
default:
logerr("in_signal: read > 1\n");
exit(1);
}
if (debug & D_TIMER)
logdebug("in_signal() got %d\n", buf);
switch (buf) {
case SIGALRM:
if (debug & D_TIMER) {
uint_t now = getcurrenttime();
logdebug("in_signal(SIGALRM) delta %u\n",
now - timer_next);
}
timer_active = _B_FALSE;
run_timeouts();
break;
case SIGUSR1:
logdebug("Printing configuration:\n");
/* Print out the internal tables */
phyint_inst_print_all();
/*
* Print out the accumulated statistics about missed
* probes (happens due to scheduling delay).
*/
logerr("Missed sending total of %d probes spread over"
" %d occurrences\n", probes_missed.pm_nprobes,
probes_missed.pm_ntimes);
/*
* Print out the accumulated statistics about probes
* that were sent.
*/
for (pii = phyint_instances; pii != NULL;
pii = pii->pii_next) {
unacked = 0;
acked = pii->pii_cum_stats.acked;
lost = pii->pii_cum_stats.lost;
sent = pii->pii_cum_stats.sent;
unknown = pii->pii_cum_stats.unknown;
for (pr_ndx = 0; pr_ndx < PROBE_STATS_COUNT; pr_ndx++) {
switch (pii->pii_probes[pr_ndx].pr_status) {
case PR_ACKED:
acked++;
break;
case PR_LOST:
lost++;
break;
case PR_UNACKED:
unacked++;
break;
}
}
logerr("\nProbe stats on (%s %s)\n"
"Number of probes sent %lld\n"
"Number of probe acks received %lld\n"
"Number of probes/acks lost %lld\n"
"Number of valid unacknowledged probes %lld\n"
"Number of ambiguous probe acks received %lld\n",
AF_STR(pii->pii_af), pii->pii_name,
sent, acked, lost, unacked, unknown);
}
break;
case SIGHUP:
logerr("SIGHUP: restart and reread config file\n");
/*
* Cancel the interval timer. Needed since setitimer() uses
* alarm() and the time left is inherited across exec(), and
* thus the SIGALRM may be delivered before a handler has been
* setup, causing in.mpathd to erroneously exit.
*/
timer_cancel();
cleanup();
(void) execv(argv0[0], argv0);
_exit(0177);
/* NOTREACHED */
case SIGINT:
case SIGTERM:
case SIGQUIT:
cleanup();
exit(0);
/* NOTREACHED */
default:
logerr("in_signal: unknown signal: %d\n", buf);
}
}
static void
cleanup(void)
{
struct phyint_instance *pii;
struct phyint_instance *next_pii;
/*
* Make sure that we don't write to eventpipe in
* sig_handler() if any signal notably SIGALRM,
* occurs after we close the eventpipe descriptor below
*/
cleanup_started = _B_TRUE;
for (pii = phyint_instances; pii != NULL; pii = next_pii) {
next_pii = pii->pii_next;
phyint_inst_delete(pii);
}
(void) close(ifsock_v4);
(void) close(ifsock_v6);
(void) close(rtsock_v4);
(void) close(rtsock_v6);
(void) close(lsock_v4);
(void) close(lsock_v6);
(void) close(0);
(void) close(1);
(void) close(2);
(void) close(mibfd);
(void) close(eventpipe_read);
(void) close(eventpipe_write);
}
/*
* Create pipe for signal delivery and set up signal handlers.
*/
static void
setup_eventpipe(void)
{
int fds[2];
struct sigaction act;
if ((pipe(fds)) < 0) {
logperror("setup_eventpipe: pipe");
exit(1);
}
eventpipe_read = fds[0];
eventpipe_write = fds[1];
if (poll_add(eventpipe_read) == -1) {
exit(1);
}
act.sa_handler = sig_handler;
act.sa_flags = SA_RESTART;
(void) sigaction(SIGALRM, &act, NULL);
(void) sigset(SIGHUP, sig_handler);
(void) sigset(SIGUSR1, sig_handler);
(void) sigset(SIGTERM, sig_handler);
(void) sigset(SIGINT, sig_handler);
(void) sigset(SIGQUIT, sig_handler);
}
/*
* Create a routing socket for receiving RTM_IFINFO messages.
*/
static int
setup_rtsock(int af)
{
int s;
int flags;
int aware = RTAW_UNDER_IPMP;
s = socket(PF_ROUTE, SOCK_RAW, af);
if (s == -1) {
logperror("setup_rtsock: socket PF_ROUTE");
exit(1);
}
if (setsockopt(s, SOL_ROUTE, RT_AWARE, &aware, sizeof (aware)) == -1) {
logperror("setup_rtsock: setsockopt RT_AWARE");
(void) close(s);
exit(1);
}
if ((flags = fcntl(s, F_GETFL, 0)) < 0) {
logperror("setup_rtsock: fcntl F_GETFL");
(void) close(s);
exit(1);
}
if ((fcntl(s, F_SETFL, flags | O_NONBLOCK)) < 0) {
logperror("setup_rtsock: fcntl F_SETFL");
(void) close(s);
exit(1);
}
if (poll_add(s) == -1) {
(void) close(s);
exit(1);
}
return (s);
}
/*
* Process an RTM_IFINFO message received on a routing socket.
* The return value indicates whether a full interface scan is required.
* Link up/down notifications are reflected in the IFF_RUNNING flag.
* If just the state of the IFF_RUNNING interface flag has changed, a
* a full interface scan isn't required.
*/
static boolean_t
process_rtm_ifinfo(if_msghdr_t *ifm, int type)
{
struct sockaddr_dl *sdl;
struct phyint *pi;
uint64_t old_flags;
struct phyint_instance *pii;
assert(ifm->ifm_type == RTM_IFINFO && ifm->ifm_addrs == RTA_IFP);
/*
* Although the sockaddr_dl structure is directly after the
* if_msghdr_t structure. At the time of writing, the size of the
* if_msghdr_t structure is different on 32 and 64 bit kernels, due
* to the presence of a timeval structure, which contains longs,
* in the if_data structure. Anyway, we know where the message ends,
* so we work backwards to get the start of the sockaddr_dl structure.
*/
/*LINTED*/
sdl = (struct sockaddr_dl *)((char *)ifm + ifm->ifm_msglen -
sizeof (struct sockaddr_dl));
assert(sdl->sdl_family == AF_LINK);
/*
* The interface name is in sdl_data.
* RTM_IFINFO messages are only generated for logical interface
* zero, so there is no colon and logical interface number to
* strip from the name. The name is not null terminated, but
* there should be enough space in sdl_data to add the null.
*/
if (sdl->sdl_nlen >= sizeof (sdl->sdl_data)) {
if (debug & D_LINKNOTE)
logdebug("process_rtm_ifinfo: phyint name too long\n");
return (_B_TRUE);
}
sdl->sdl_data[sdl->sdl_nlen] = 0;
pi = phyint_lookup(sdl->sdl_data);
if (pi == NULL) {
if (debug & D_LINKNOTE)
logdebug("process_rtm_ifinfo: phyint lookup failed"
" for %s\n", sdl->sdl_data);
return (_B_TRUE);
}
/*
* We want to try and avoid doing a full interface scan for
* link state notifications from the datalink layer, as indicated
* by the state of the IFF_RUNNING flag. If just the
* IFF_RUNNING flag has changed state, the link state changes
* are processed without a full scan.
* If there is both an IPv4 and IPv6 instance associated with
* the physical interface, we will get an RTM_IFINFO message
* for each instance. If we just maintained a single copy of
* the physical interface flags, it would appear that no flags
* had changed when the second message is processed, leading us
* to believe that the message wasn't generated by a flags change,
* and that a full interface scan is required.
* To get around this problem, two additional copies of the flags
* are kept, one copy for each instance. These are only used in
* this routine. At any one time, all three copies of the flags
* should be identical except for the IFF_RUNNING flag. The
* copy of the flags in the "phyint" structure is always up to
* date.
*/
pii = (type == AF_INET) ? pi->pi_v4 : pi->pi_v6;
if (pii == NULL) {
if (debug & D_LINKNOTE)
logdebug("process_rtm_ifinfo: no instance of address "
"family %s for %s\n", AF_STR(type), pi->pi_name);
return (_B_TRUE);
}
old_flags = pii->pii_flags;
pii->pii_flags = PHYINT_FLAGS(ifm->ifm_flags);
pi->pi_flags = pii->pii_flags;
if (debug & D_LINKNOTE) {
logdebug("process_rtm_ifinfo: %s address family: %s, "
"old flags: %llx, new flags: %llx\n", pi->pi_name,
AF_STR(type), old_flags, pi->pi_flags);
}
/*
* If IFF_STANDBY has changed, indicate that the interface has changed
* types.
*/
if ((old_flags ^ pii->pii_flags) & IFF_STANDBY)
phyint_changed(pi);
/* Has just the IFF_RUNNING flag changed state ? */
if ((old_flags ^ pii->pii_flags) != IFF_RUNNING) {
struct phyint_instance *pii_other;
/*
* It wasn't just a link state change. Update
* the other instance's copy of the flags.
*/
pii_other = phyint_inst_other(pii);
if (pii_other != NULL)
pii_other->pii_flags = pii->pii_flags;
return (_B_TRUE);
}
return (_B_FALSE);
}
/*
* Retrieve as many routing socket messages as possible, and try to
* empty the routing sockets. Initiate full scan of targets or interfaces
* as needed.
* We listen on separate IPv4 an IPv6 sockets so that we can accurately
* detect changes in certain flags (see "process_rtm_ifinfo()" above).
*/
static void
process_rtsock(int rtsock_v4, int rtsock_v6)
{
int nbytes;
int64_t msg[2048 / 8];
struct rt_msghdr *rtm;
boolean_t need_if_scan = _B_FALSE;
boolean_t need_rt_scan = _B_FALSE;
boolean_t rtm_ifinfo_seen = _B_FALSE;
int type;
/* Read as many messages as possible and try to empty the sockets */
for (type = AF_INET; ; type = AF_INET6) {
for (;;) {
nbytes = read((type == AF_INET) ? rtsock_v4 :
rtsock_v6, msg, sizeof (msg));
if (nbytes <= 0) {
/* No more messages */
break;
}
rtm = (struct rt_msghdr *)msg;
if (rtm->rtm_version != RTM_VERSION) {
logerr("process_rtsock: version %d "
"not understood\n", rtm->rtm_version);
break;
}
if (debug & D_PHYINT) {
logdebug("process_rtsock: message %d\n",
rtm->rtm_type);
}
switch (rtm->rtm_type) {
case RTM_NEWADDR:
case RTM_DELADDR:
/*
* Some logical interface has changed,
* have to scan everything to determine
* what actually changed.
*/
need_if_scan = _B_TRUE;
break;
case RTM_IFINFO:
rtm_ifinfo_seen = _B_TRUE;
need_if_scan |= process_rtm_ifinfo(
(if_msghdr_t *)rtm, type);
break;
case RTM_ADD:
case RTM_DELETE:
case RTM_CHANGE:
case RTM_OLDADD:
case RTM_OLDDEL:
need_rt_scan = _B_TRUE;
break;
default:
/* Not interesting */
break;
}
}
if (type == AF_INET6)
break;
}
if (need_if_scan) {
if (debug & D_LINKNOTE && rtm_ifinfo_seen)
logdebug("process_rtsock: synchronizing with kernel\n");
initifs();
} else if (rtm_ifinfo_seen) {
if (debug & D_LINKNOTE)
logdebug("process_rtsock: "
"link up/down notification(s) seen\n");
process_link_state_changes();
}
if (need_rt_scan)
init_router_targets();
}
/*
* Look if the phyint instance or one of its logints have been removed from
* the kernel and take appropriate action.
* Uses {pii,li}_in_use.
*/
static void
check_if_removed(struct phyint_instance *pii)
{
struct logint *li;
struct logint *next_li;
/* Detect phyints that have been removed from the kernel. */
if (!pii->pii_in_use) {
logtrace("%s %s has been removed from kernel\n",
AF_STR(pii->pii_af), pii->pii_phyint->pi_name);
phyint_inst_delete(pii);
} else {
/* Detect logints that have been removed. */
for (li = pii->pii_logint; li != NULL; li = next_li) {
next_li = li->li_next;
if (!li->li_in_use) {
logint_delete(li);
}
}
}
}
/*
* Parse the supplied mib2 information to extract the routing information
* table. Process the routing table to get the list of known onlink routers
* and update our database. These onlink routers will serve as probe
* targets.
*/
static void
update_router_list(mib_item_t *item)
{
for (; item != NULL; item = item->mi_next) {
if (item->mi_opthdr.name == 0)
continue;
if (item->mi_opthdr.level == MIB2_IP &&
item->mi_opthdr.name == MIB2_IP_ROUTE) {
ire_process_v4((mib2_ipRouteEntry_t *)item->mi_valp,
item->mi_opthdr.len);
} else if (item->mi_opthdr.level == MIB2_IP6 &&
item->mi_opthdr.name == MIB2_IP6_ROUTE) {
ire_process_v6((mib2_ipv6RouteEntry_t *)item->mi_valp,
item->mi_opthdr.len);
}
}
}
/*
* Convert octet `octp' to a phyint name and store in `ifname'
*/
static void
oct2ifname(const Octet_t *octp, char *ifname, size_t ifsize)
{
char *cp;
size_t len = MIN(octp->o_length, ifsize - 1);
(void) strncpy(ifname, octp->o_bytes, len);
ifname[len] = '\0';
if ((cp = strchr(ifname, IF_SEPARATOR)) != NULL)
*cp = '\0';
}
/*
* Examine the IPv4 routing table `buf' for possible targets. For each
* possible target, if it's on the same subnet an interface route, pass
* it to router_add_common() for further consideration.
*/
static void
ire_process_v4(mib2_ipRouteEntry_t *buf, size_t len)
{
char ifname[LIFNAMSIZ];
mib2_ipRouteEntry_t *rp, *rp1, *endp;
struct in_addr nexthop_v4;
struct in6_addr nexthop;
if (debug & D_TARGET)
logdebug("ire_process_v4(len %d)\n", len);
if (len == 0)
return;
assert((len % ipRouteEntrySize) == 0);
endp = buf + (len / ipRouteEntrySize);
/*
* Scan the routing table entries for any IRE_OFFSUBNET entries, and
* cross-reference them with the interface routes to determine if
* they're possible probe targets.
*/
for (rp = buf; rp < endp; rp++) {
if (!(rp->ipRouteInfo.re_ire_type & IRE_OFFSUBNET))
continue;
/* Get the nexthop address. */
nexthop_v4.s_addr = rp->ipRouteNextHop;
/*
* Rescan the routing table looking for interface routes that
* are on the same subnet, and try to add them. If they're
* not relevant (e.g., the interface route isn't part of an
* IPMP group, router_add_common() will discard).
*/
for (rp1 = buf; rp1 < endp; rp1++) {
if (!(rp1->ipRouteInfo.re_ire_type & IRE_INTERFACE) ||
rp1->ipRouteIfIndex.o_length == 0)
continue;
if ((rp1->ipRouteDest & rp1->ipRouteMask) !=
(nexthop_v4.s_addr & rp1->ipRouteMask))
continue;
oct2ifname(&rp1->ipRouteIfIndex, ifname, LIFNAMSIZ);
IN6_INADDR_TO_V4MAPPED(&nexthop_v4, &nexthop);
router_add_common(AF_INET, ifname, nexthop);
}
}
}
void
router_add_common(int af, char *ifname, struct in6_addr nexthop)
{
struct phyint_instance *pii;
struct phyint *pi;
if (debug & D_TARGET)
logdebug("router_add_common(%s %s)\n", AF_STR(af), ifname);
/*
* Retrieve the phyint instance; bail if it's not known to us yet.
*/
pii = phyint_inst_lookup(af, ifname);
if (pii == NULL)
return;
/*
* Don't use our own addresses as targets.
*/
if (own_address(nexthop))
return;
/*
* If the phyint is part a named group, then add the address to all
* members of the group; note that this is suboptimal in the IPv4 case
* as it has already been added to all matching interfaces in
* ire_process_v4(). Otherwise, add the address only to the phyint
* itself, since other phyints in the anongroup may not be on the same
* subnet.
*/
pi = pii->pii_phyint;
if (pi->pi_group == phyint_anongroup) {
target_add(pii, nexthop, _B_TRUE);
} else {
pi = pi->pi_group->pg_phyint;
for (; pi != NULL; pi = pi->pi_pgnext)
target_add(PHYINT_INSTANCE(pi, af), nexthop, _B_TRUE);
}
}
/*
* Examine the IPv6 routing table `buf' for possible link-local targets, and
* pass any contenders to router_add_common() for further consideration.
*/
static void
ire_process_v6(mib2_ipv6RouteEntry_t *buf, size_t len)
{
struct lifreq lifr;
char ifname[LIFNAMSIZ];
char grname[LIFGRNAMSIZ];
mib2_ipv6RouteEntry_t *rp, *rp1, *endp;
struct in6_addr nexthop_v6;
if (debug & D_TARGET)
logdebug("ire_process_v6(len %d)\n", len);
if (len == 0)
return;
assert((len % ipv6RouteEntrySize) == 0);
endp = buf + (len / ipv6RouteEntrySize);
/*
* Scan the routing table entries for any IRE_OFFSUBNET entries, and
* cross-reference them with the interface routes to determine if
* they're possible probe targets.
*/
for (rp = buf; rp < endp; rp++) {
if (!(rp->ipv6RouteInfo.re_ire_type & IRE_OFFSUBNET) ||
!IN6_IS_ADDR_LINKLOCAL(&rp->ipv6RouteNextHop))
continue;
/* Get the nexthop address. */
nexthop_v6 = rp->ipv6RouteNextHop;
/*
* The interface name should always exist for link-locals;
* we use it to map this entry to an IPMP group name.
*/
if (rp->ipv6RouteIfIndex.o_length == 0)
continue;
oct2ifname(&rp->ipv6RouteIfIndex, lifr.lifr_name, LIFNAMSIZ);
if (ioctl(ifsock_v6, SIOCGLIFGROUPNAME, &lifr) == -1 ||
strlcpy(grname, lifr.lifr_groupname, LIFGRNAMSIZ) == 0) {
continue;
}
/*
* Rescan the list of routes for interface routes, and add the
* above target to any interfaces in the same IPMP group.
*/
for (rp1 = buf; rp1 < endp; rp1++) {
if (!(rp1->ipv6RouteInfo.re_ire_type & IRE_INTERFACE) ||
rp1->ipv6RouteIfIndex.o_length == 0) {
continue;
}
oct2ifname(&rp1->ipv6RouteIfIndex, ifname, LIFNAMSIZ);
(void) strlcpy(lifr.lifr_name, ifname, LIFNAMSIZ);
if (ioctl(ifsock_v6, SIOCGLIFGROUPNAME, &lifr) != -1 &&
strcmp(lifr.lifr_groupname, grname) == 0) {
router_add_common(AF_INET6, ifname, nexthop_v6);
}
}
}
}
/*
* Build a list of target routers, by scanning the routing tables.
* It is assumed that interface routes exist, to reach the routers.
*/
static void
init_router_targets(void)
{
struct target *tg;
struct target *next_tg;
struct phyint_instance *pii;
struct phyint *pi;
if (force_mcast)
return;
for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) {
pi = pii->pii_phyint;
/*
* Set tg_in_use to false only for router targets.
*/
if (!pii->pii_targets_are_routers)
continue;
for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next)
tg->tg_in_use = 0;
}
if (mibwalk(update_router_list) == -1)
exit(1);
for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) {
pi = pii->pii_phyint;
if (!pii->pii_targets_are_routers)
continue;
for (tg = pii->pii_targets; tg != NULL; tg = next_tg) {
next_tg = tg->tg_next;
/*
* If the group has failed, it's likely the route was
* removed by an application affected by that failure.
* In that case, we keep the target so that we can
* reliably repair, at which point we'll refresh the
* target list again.
*/
if (!tg->tg_in_use && !GROUP_FAILED(pi->pi_group))
target_delete(tg);
}
}
}
/*
* Attempt to assign host targets to any interfaces that do not currently
* have probe targets by sharing targets with other interfaces in the group.
*/
static void
init_host_targets(void)
{
struct phyint_instance *pii;
struct phyint_group *pg;
for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) {
pg = pii->pii_phyint->pi_group;
if (pg != phyint_anongroup && pii->pii_targets == NULL)
dup_host_targets(pii);
}
}
/*
* Duplicate host targets from other phyints of the group to
* the phyint instance 'desired_pii'.
*/
static void
dup_host_targets(struct phyint_instance *desired_pii)
{
int af;
struct phyint *pi;
struct phyint_instance *pii;
struct target *tg;
assert(desired_pii->pii_phyint->pi_group != phyint_anongroup);
af = desired_pii->pii_af;
/*
* For every phyint in the same group as desired_pii, check if
* it has any host targets. If so add them to desired_pii.
*/
for (pi = desired_pii->pii_phyint; pi != NULL; pi = pi->pi_pgnext) {
pii = PHYINT_INSTANCE(pi, af);
/*
* We know that we don't have targets on this phyint instance
* since we have been called. But we still check for
* pii_targets_are_routers because another phyint instance
* could have router targets, since IFF_NOFAILOVER addresses
* on different phyint instances may belong to different
* subnets.
*/
if ((pii == NULL) || (pii == desired_pii) ||
pii->pii_targets_are_routers)
continue;
for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next) {
target_create(desired_pii, tg->tg_address, _B_FALSE);
}
}
}
static void
usage(char *cmd)
{
(void) fprintf(stderr, "usage: %s\n", cmd);
}
#define MPATHD_DEFAULT_FILE "/etc/default/mpathd"
/* Get an option from the /etc/default/mpathd file */
static char *
getdefault(char *name)
{
char namebuf[BUFSIZ];
char *value = NULL;
if (defopen(MPATHD_DEFAULT_FILE) == 0) {
char *cp;
int flags;
/*
* ignore case
*/
flags = defcntl(DC_GETFLAGS, 0);
TURNOFF(flags, DC_CASE);
(void) defcntl(DC_SETFLAGS, flags);
/* Add "=" to the name */
(void) strncpy(namebuf, name, sizeof (namebuf) - 2);
(void) strncat(namebuf, "=", 2);
if ((cp = defread(namebuf)) != NULL)
value = strdup(cp);
/* close */
(void) defopen((char *)NULL);
}
return (value);
}
/*
* Command line options below
*/
boolean_t failback_enabled = _B_TRUE; /* failback enabled/disabled */
boolean_t track_all_phyints = _B_FALSE; /* track all IP interfaces */
static boolean_t adopt = _B_FALSE;
static boolean_t foreground = _B_FALSE;
int
main(int argc, char *argv[])
{
int i;
int c;
struct phyint *pi;
struct phyint_instance *pii;
char *value;
argv0 = argv; /* Saved for re-exec on SIGHUP */
srandom(gethostid()); /* Initialize the random number generator */
/*
* NOTE: The messages output by in.mpathd are not suitable for
* translation, so we do not call textdomain().
*/
(void) setlocale(LC_ALL, "");
/*
* Get the user specified value of 'failure detection time'
* from /etc/default/mpathd
*/
value = getdefault("FAILURE_DETECTION_TIME");
if (value != NULL) {
user_failure_detection_time =
(int)strtol((char *)value, NULL, 0);
if (user_failure_detection_time <= 0) {
user_failure_detection_time = FAILURE_DETECTION_TIME;
logerr("Invalid failure detection time %s, assuming "
"default of %d ms\n", value,
user_failure_detection_time);
} else if (user_failure_detection_time <
MIN_FAILURE_DETECTION_TIME) {
user_failure_detection_time =
MIN_FAILURE_DETECTION_TIME;
logerr("Too small failure detection time of %s, "
"assuming minimum of %d ms\n", value,
user_failure_detection_time);
}
free(value);
} else {
/* User has not specified the parameter, Use default value */
user_failure_detection_time = FAILURE_DETECTION_TIME;
}
/*
* This gives the frequency at which probes will be sent.
* When fdt ms elapses, we should be able to determine
* whether 5 consecutive probes have failed or not.
* 1 probe will be sent in every user_probe_interval ms,
* randomly anytime in the (0.5 - 1.0) 2nd half of every
* user_probe_interval. Thus when we send out probe 'n' we
* can be sure that probe 'n - 2' is lost, if we have not
* got the ack. (since the probe interval is > crtt). But
* probe 'n - 1' may be a valid unacked probe, since the
* time between 2 successive probes could be as small as
* 0.5 * user_probe_interval. Hence the NUM_PROBE_FAILS + 2
*/
user_probe_interval = user_failure_detection_time /
(NUM_PROBE_FAILS + 2);
/*
* Get the user specified value of failback_enabled from
* /etc/default/mpathd
*/
value = getdefault("FAILBACK");
if (value != NULL) {
if (strcasecmp(value, "yes") == 0)
failback_enabled = _B_TRUE;
else if (strcasecmp(value, "no") == 0)
failback_enabled = _B_FALSE;
else
logerr("Invalid value for FAILBACK %s\n", value);
free(value);
} else {
failback_enabled = _B_TRUE;
}
/*
* Get the user specified value of track_all_phyints from
* /etc/default/mpathd. The sense is reversed in
* TRACK_INTERFACES_ONLY_WITH_GROUPS.
*/
value = getdefault("TRACK_INTERFACES_ONLY_WITH_GROUPS");
if (value != NULL) {
if (strcasecmp(value, "yes") == 0)
track_all_phyints = _B_FALSE;
else if (strcasecmp(value, "no") == 0)
track_all_phyints = _B_TRUE;
else
logerr("Invalid value for "
"TRACK_INTERFACES_ONLY_WITH_GROUPS %s\n", value);
free(value);
} else {
track_all_phyints = _B_FALSE;
}
while ((c = getopt(argc, argv, "adD:ml")) != EOF) {
switch (c) {
case 'a':
adopt = _B_TRUE;
break;
case 'm':
force_mcast = _B_TRUE;
break;
case 'd':
debug = D_ALL;
foreground = _B_TRUE;
break;
case 'D':
i = (int)strtol(optarg, NULL, 0);
if (i == 0) {
(void) fprintf(stderr, "Bad debug flags: %s\n",
optarg);
exit(1);
}
debug |= i;
foreground = _B_TRUE;
break;
case 'l':
/*
* Turn off link state notification handling.
* Undocumented command line flag, for debugging
* purposes.
*/
handle_link_notifications = _B_FALSE;
break;
default:
usage(argv[0]);
exit(1);
}
}
/*
* The sockets for the loopback command interface should be listening
* before we fork and exit in daemonize(). This way, whoever started us
* can use the loopback interface as soon as they get a zero exit
* status.
*/
lsock_v4 = setup_listener(AF_INET);
lsock_v6 = setup_listener(AF_INET6);
if (lsock_v4 < 0 && lsock_v6 < 0) {
logerr("main: setup_listener failed for both IPv4 and IPv6\n");
exit(1);
}
if (!foreground) {
if (!daemonize()) {
logerr("cannot daemonize\n");
exit(EXIT_FAILURE);
}
initlog();
}
/*
* Initializations:
* 1. Create ifsock* sockets. These are used for performing SIOC*
* ioctls. We have 2 sockets 1 each for IPv4 and IPv6.
* 2. Initialize a pipe for handling/recording signal events.
* 3. Create the routing sockets, used for listening
* to routing / interface changes.
* 4. phyint_init() - Initialize physical interface state
* (in mpd_tables.c). Must be done before creating interfaces,
* which timer_init() does indirectly.
* 5. Query kernel for route entry sizes (v4 and v6).
* 6. timer_init() - Initialize timer related stuff
* 7. initifs() - Initialize our database of all known interfaces
* 8. init_router_targets() - Initialize our database of all known
* router targets.
*/
ifsock_v4 = socket(AF_INET, SOCK_DGRAM, 0);
if (ifsock_v4 < 0) {
logperror("main: IPv4 socket open");
exit(1);
}
ifsock_v6 = socket(AF_INET6, SOCK_DGRAM, 0);
if (ifsock_v6 < 0) {
logperror("main: IPv6 socket open");
exit(1);
}
setup_eventpipe();
rtsock_v4 = setup_rtsock(AF_INET);
rtsock_v6 = setup_rtsock(AF_INET6);
if (phyint_init() == -1) {
logerr("cannot initialize physical interface structures");
exit(1);
}
if (mibwalk(mib_get_constants) == -1)
exit(1);
timer_init();
initifs();
/*
* If we're operating in "adopt" mode and no interfaces need to be
* tracked, shut down (ifconfig(1M) will restart us on demand if
* interfaces are subsequently put into multipathing groups).
*/
if (adopt && phyint_instances == NULL)
exit(0);
/*
* Main body. Keep listening for activity on any of the sockets
* that we are monitoring and take appropriate action as necessary.
* signals are also handled synchronously.
*/
for (;;) {
if (poll(pollfds, pollfd_num, -1) < 0) {
if (errno == EINTR)
continue;
logperror("main: poll");
exit(1);
}
for (i = 0; i < pollfd_num; i++) {
if ((pollfds[i].fd == -1) ||
!(pollfds[i].revents & POLLIN))
continue;
if (pollfds[i].fd == eventpipe_read) {
in_signal(eventpipe_read);
break;
}
if (pollfds[i].fd == rtsock_v4 ||
pollfds[i].fd == rtsock_v6) {
process_rtsock(rtsock_v4, rtsock_v6);
break;
}
for (pii = phyint_instances; pii != NULL;
pii = pii->pii_next) {
if (pollfds[i].fd == pii->pii_probe_sock) {
if (pii->pii_af == AF_INET)
in_data(pii);
else
in6_data(pii);
break;
}
}
for (pi = phyints; pi != NULL; pi = pi->pi_next) {
if (pi->pi_notes != 0 &&
pollfds[i].fd == dlpi_fd(pi->pi_dh)) {
(void) dlpi_recv(pi->pi_dh, NULL, NULL,
NULL, NULL, 0, NULL);
break;
}
}
if (pollfds[i].fd == lsock_v4)
loopback_cmd(lsock_v4, AF_INET);
else if (pollfds[i].fd == lsock_v6)
loopback_cmd(lsock_v6, AF_INET6);
}
}
/* NOTREACHED */
return (EXIT_SUCCESS);
}
static int
setup_listener(int af)
{
int sock;
int on;
int len;
int ret;
struct sockaddr_storage laddr;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct in6_addr loopback_addr = IN6ADDR_LOOPBACK_INIT;
assert(af == AF_INET || af == AF_INET6);
sock = socket(af, SOCK_STREAM, 0);
if (sock < 0) {
logperror("setup_listener: socket");
exit(1);
}
on = 1;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&on,
sizeof (on)) < 0) {
logperror("setup_listener: setsockopt (SO_REUSEADDR)");
exit(1);
}
bzero(&laddr, sizeof (laddr));
laddr.ss_family = af;
if (af == AF_INET) {
sin = (struct sockaddr_in *)&laddr;
sin->sin_port = htons(MPATHD_PORT);
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
len = sizeof (struct sockaddr_in);
} else {
sin6 = (struct sockaddr_in6 *)&laddr;
sin6->sin6_port = htons(MPATHD_PORT);
sin6->sin6_addr = loopback_addr;
len = sizeof (struct sockaddr_in6);
}
ret = bind(sock, (struct sockaddr *)&laddr, len);
if (ret < 0) {
if (errno == EADDRINUSE) {
/*
* Another instance of mpathd may be already active.
*/
logerr("main: is another instance of in.mpathd "
"already active?\n");
exit(1);
} else {
(void) close(sock);
return (-1);
}
}
if (listen(sock, 30) < 0) {
logperror("main: listen");
exit(1);
}
if (poll_add(sock) == -1) {
(void) close(sock);
exit(1);
}
return (sock);
}
/*
* Table of commands and their expected size; used by loopback_cmd().
*/
static struct {
const char *name;
unsigned int size;
} commands[] = {
{ "MI_PING", sizeof (uint32_t) },
{ "MI_OFFLINE", sizeof (mi_offline_t) },
{ "MI_UNDO_OFFLINE", sizeof (mi_undo_offline_t) },
{ "MI_QUERY", sizeof (mi_query_t) }
};
/*
* Commands received over the loopback interface come here (via libipmp).
*/
static void
loopback_cmd(int sock, int family)
{
int newfd;
ssize_t len;
boolean_t is_priv = _B_FALSE;
struct sockaddr_storage peer;
struct sockaddr_in *peer_sin;
struct sockaddr_in6 *peer_sin6;
socklen_t peerlen;
union mi_commands mpi;
char abuf[INET6_ADDRSTRLEN];
uint_t cmd;
int retval;
peerlen = sizeof (peer);
newfd = accept(sock, (struct sockaddr *)&peer, &peerlen);
if (newfd < 0) {
logperror("loopback_cmd: accept");
return;
}
switch (family) {
case AF_INET:
/*
* Validate the address and port to make sure that
* non privileged processes don't connect and start
* talking to us.
*/
if (peerlen != sizeof (struct sockaddr_in)) {
logerr("loopback_cmd: AF_INET peerlen %d\n", peerlen);
(void) close(newfd);
return;
}
peer_sin = (struct sockaddr_in *)&peer;
is_priv = ntohs(peer_sin->sin_port) < IPPORT_RESERVED;
(void) inet_ntop(AF_INET, &peer_sin->sin_addr.s_addr,
abuf, sizeof (abuf));
if (ntohl(peer_sin->sin_addr.s_addr) != INADDR_LOOPBACK) {
logerr("Attempt to connect from addr %s port %d\n",
abuf, ntohs(peer_sin->sin_port));
(void) close(newfd);
return;
}
break;
case AF_INET6:
if (peerlen != sizeof (struct sockaddr_in6)) {
logerr("loopback_cmd: AF_INET6 peerlen %d\n", peerlen);
(void) close(newfd);
return;
}
/*
* Validate the address and port to make sure that
* non privileged processes don't connect and start
* talking to us.
*/
peer_sin6 = (struct sockaddr_in6 *)&peer;
is_priv = ntohs(peer_sin6->sin6_port) < IPPORT_RESERVED;
(void) inet_ntop(AF_INET6, &peer_sin6->sin6_addr, abuf,
sizeof (abuf));
if (!IN6_IS_ADDR_LOOPBACK(&peer_sin6->sin6_addr)) {
logerr("Attempt to connect from addr %s port %d\n",
abuf, ntohs(peer_sin6->sin6_port));
(void) close(newfd);
return;
}
default:
logdebug("loopback_cmd: family %d\n", family);
(void) close(newfd);
return;
}
/*
* The sizeof the 'mpi' buffer corresponds to the maximum size of
* all supported commands
*/
len = read(newfd, &mpi, sizeof (mpi));
/*
* In theory, we can receive any sized message for a stream socket,
* but we don't expect that to happen for a small message over a
* loopback connection.
*/
if (len < sizeof (uint32_t)) {
logerr("loopback_cmd: bad command format or read returns "
"partial data %d\n", len);
(void) close(newfd);
return;
}
cmd = mpi.mi_command;
if (cmd >= MI_NCMD) {
logerr("loopback_cmd: unknown command id `%d'\n", cmd);
(void) close(newfd);
return;
}
/*
* Only MI_PING and MI_QUERY can come from unprivileged sources.
*/
if (!is_priv && (cmd != MI_QUERY && cmd != MI_PING)) {
logerr("Unprivileged request from %s for privileged "
"command %s\n", abuf, commands[cmd].name);
(void) close(newfd);
return;
}
if (len < commands[cmd].size) {
logerr("loopback_cmd: short %s command (expected %d, got %d)\n",
commands[cmd].name, commands[cmd].size, len);
(void) close(newfd);
return;
}
retval = process_cmd(newfd, &mpi);
if (retval != IPMP_SUCCESS) {
logerr("failed processing %s: %s\n", commands[cmd].name,
ipmp_errmsg(retval));
}
(void) close(newfd);
}
/*
* Process the commands received via libipmp.
*/
static unsigned int
process_cmd(int newfd, union mi_commands *mpi)
{
struct phyint *pi;
struct mi_offline *mio;
struct mi_undo_offline *miu;
unsigned int retval;
switch (mpi->mi_command) {
case MI_PING:
return (send_result(newfd, IPMP_SUCCESS, 0));
case MI_OFFLINE:
mio = &mpi->mi_ocmd;
pi = phyint_lookup(mio->mio_ifname);
if (pi == NULL)
return (send_result(newfd, IPMP_EUNKIF, 0));
retval = phyint_offline(pi, mio->mio_min_redundancy);
if (retval == IPMP_FAILURE)
return (send_result(newfd, IPMP_FAILURE, errno));
return (send_result(newfd, retval, 0));
case MI_UNDO_OFFLINE:
miu = &mpi->mi_ucmd;
pi = phyint_lookup(miu->miu_ifname);
if (pi == NULL)
return (send_result(newfd, IPMP_EUNKIF, 0));
retval = phyint_undo_offline(pi);
if (retval == IPMP_FAILURE)
return (send_result(newfd, IPMP_FAILURE, errno));
return (send_result(newfd, retval, 0));
case MI_QUERY:
return (process_query(newfd, &mpi->mi_qcmd));
default:
break;
}
return (send_result(newfd, IPMP_EPROTO, 0));
}
/*
* Process the query request pointed to by `miq' and send a reply on file
* descriptor `fd'. Returns an IPMP error code.
*/
static unsigned int
process_query(int fd, mi_query_t *miq)
{
ipmp_addrinfo_t *adinfop;
ipmp_addrinfolist_t *adlp;
ipmp_groupinfo_t *grinfop;
ipmp_groupinfolist_t *grlp;
ipmp_grouplist_t *grlistp;
ipmp_ifinfo_t *ifinfop;
ipmp_ifinfolist_t *iflp;
ipmp_snap_t *snap;
unsigned int retval;
switch (miq->miq_inforeq) {
case IPMP_ADDRINFO:
retval = getgraddrinfo(miq->miq_grname, &miq->miq_addr,
&adinfop);
if (retval != IPMP_SUCCESS)
return (send_result(fd, retval, errno));
retval = send_result(fd, IPMP_SUCCESS, 0);
if (retval == IPMP_SUCCESS)
retval = send_addrinfo(fd, adinfop);
ipmp_freeaddrinfo(adinfop);
return (retval);
case IPMP_GROUPLIST:
retval = getgrouplist(&grlistp);
if (retval != IPMP_SUCCESS)
return (send_result(fd, retval, errno));
retval = send_result(fd, IPMP_SUCCESS, 0);
if (retval == IPMP_SUCCESS)
retval = send_grouplist(fd, grlistp);
ipmp_freegrouplist(grlistp);
return (retval);
case IPMP_GROUPINFO:
miq->miq_grname[LIFGRNAMSIZ - 1] = '\0';
retval = getgroupinfo(miq->miq_grname, &grinfop);
if (retval != IPMP_SUCCESS)
return (send_result(fd, retval, errno));
retval = send_result(fd, IPMP_SUCCESS, 0);
if (retval == IPMP_SUCCESS)
retval = send_groupinfo(fd, grinfop);
ipmp_freegroupinfo(grinfop);
return (retval);
case IPMP_IFINFO:
miq->miq_ifname[LIFNAMSIZ - 1] = '\0';
retval = getifinfo(miq->miq_ifname, &ifinfop);
if (retval != IPMP_SUCCESS)
return (send_result(fd, retval, errno));
retval = send_result(fd, IPMP_SUCCESS, 0);
if (retval == IPMP_SUCCESS)
retval = send_ifinfo(fd, ifinfop);
ipmp_freeifinfo(ifinfop);
return (retval);
case IPMP_SNAP:
/*
* Before taking the snapshot, sync with the kernel.
*/
initifs();
retval = getsnap(&snap);
if (retval != IPMP_SUCCESS)
return (send_result(fd, retval, errno));
retval = send_result(fd, IPMP_SUCCESS, 0);
if (retval != IPMP_SUCCESS)
goto out;
retval = ipmp_writetlv(fd, IPMP_SNAP, sizeof (*snap), snap);
if (retval != IPMP_SUCCESS)
goto out;
retval = send_grouplist(fd, snap->sn_grlistp);
if (retval != IPMP_SUCCESS)
goto out;
iflp = snap->sn_ifinfolistp;
for (; iflp != NULL; iflp = iflp->ifl_next) {
retval = send_ifinfo(fd, iflp->ifl_ifinfop);
if (retval != IPMP_SUCCESS)
goto out;
}
grlp = snap->sn_grinfolistp;
for (; grlp != NULL; grlp = grlp->grl_next) {
retval = send_groupinfo(fd, grlp->grl_grinfop);
if (retval != IPMP_SUCCESS)
goto out;
}
adlp = snap->sn_adinfolistp;
for (; adlp != NULL; adlp = adlp->adl_next) {
retval = send_addrinfo(fd, adlp->adl_adinfop);
if (retval != IPMP_SUCCESS)
goto out;
}
out:
ipmp_snap_free(snap);
return (retval);
default:
break;
}
return (send_result(fd, IPMP_EPROTO, 0));
}
/*
* Send the group information pointed to by `grinfop' on file descriptor `fd'.
* Returns an IPMP error code.
*/
static unsigned int
send_groupinfo(int fd, ipmp_groupinfo_t *grinfop)
{
ipmp_iflist_t *iflistp = grinfop->gr_iflistp;
ipmp_addrlist_t *adlistp = grinfop->gr_adlistp;
unsigned int retval;
retval = ipmp_writetlv(fd, IPMP_GROUPINFO, sizeof (*grinfop), grinfop);
if (retval != IPMP_SUCCESS)
return (retval);
retval = ipmp_writetlv(fd, IPMP_IFLIST,
IPMP_IFLIST_SIZE(iflistp->il_nif), iflistp);
if (retval != IPMP_SUCCESS)
return (retval);
return (ipmp_writetlv(fd, IPMP_ADDRLIST,
IPMP_ADDRLIST_SIZE(adlistp->al_naddr), adlistp));
}
/*
* Send the interface information pointed to by `ifinfop' on file descriptor
* `fd'. Returns an IPMP error code.
*/
static unsigned int
send_ifinfo(int fd, ipmp_ifinfo_t *ifinfop)
{
ipmp_addrlist_t *adlist4p = ifinfop->if_targinfo4.it_targlistp;
ipmp_addrlist_t *adlist6p = ifinfop->if_targinfo6.it_targlistp;
unsigned int retval;
retval = ipmp_writetlv(fd, IPMP_IFINFO, sizeof (*ifinfop), ifinfop);
if (retval != IPMP_SUCCESS)
return (retval);
retval = ipmp_writetlv(fd, IPMP_ADDRLIST,
IPMP_ADDRLIST_SIZE(adlist4p->al_naddr), adlist4p);
if (retval != IPMP_SUCCESS)
return (retval);
return (ipmp_writetlv(fd, IPMP_ADDRLIST,
IPMP_ADDRLIST_SIZE(adlist6p->al_naddr), adlist6p));
}
/*
* Send the address information pointed to by `adinfop' on file descriptor
* `fd'. Returns an IPMP error code.
*/
static unsigned int
send_addrinfo(int fd, ipmp_addrinfo_t *adinfop)
{
return (ipmp_writetlv(fd, IPMP_ADDRINFO, sizeof (*adinfop), adinfop));
}
/*
* Send the group list pointed to by `grlistp' on file descriptor `fd'.
* Returns an IPMP error code.
*/
static unsigned int
send_grouplist(int fd, ipmp_grouplist_t *grlistp)
{
return (ipmp_writetlv(fd, IPMP_GROUPLIST,
IPMP_GROUPLIST_SIZE(grlistp->gl_ngroup), grlistp));
}
/*
* Initialize an mi_result_t structure using `error' and `syserror' and
* send it on file descriptor `fd'. Returns an IPMP error code.
*/
static unsigned int
send_result(int fd, unsigned int error, int syserror)
{
mi_result_t me;
me.me_mpathd_error = error;
if (error == IPMP_FAILURE)
me.me_sys_error = syserror;
else
me.me_sys_error = 0;
return (ipmp_write(fd, &me, sizeof (me)));
}
/*
* Daemonize the process.
*/
static boolean_t
daemonize(void)
{
switch (fork()) {
case -1:
return (_B_FALSE);
case 0:
/*
* Lose our controlling terminal, and become both a session
* leader and a process group leader.
*/
if (setsid() == -1)
return (_B_FALSE);
/*
* Under POSIX, a session leader can accidentally (through
* open(2)) acquire a controlling terminal if it does not
* have one. Just to be safe, fork() again so we are not a
* session leader.
*/
switch (fork()) {
case -1:
return (_B_FALSE);
case 0:
(void) chdir("/");
(void) umask(022);
(void) fdwalk(closefunc, NULL);
break;
default:
_exit(EXIT_SUCCESS);
}
break;
default:
_exit(EXIT_SUCCESS);
}
return (_B_TRUE);
}
/*
* The parent has created some fds before forking on purpose, keep them open.
*/
static int
closefunc(void *not_used, int fd)
/* ARGSUSED */
{
if (fd != lsock_v4 && fd != lsock_v6)
(void) close(fd);
return (0);
}
/* LOGGER */
#include <syslog.h>
/*
* Logging routines. All routines log to syslog, unless the daemon is
* running in the foreground, in which case the logging goes to stderr.
*
* The following routines are available:
*
* logdebug(): A printf-like function for outputting debug messages
* (messages at LOG_DEBUG) that are only of use to developers.
*
* logtrace(): A printf-like function for outputting tracing messages
* (messages at LOG_INFO) from the daemon. This is typically used
* to log the receipt of interesting network-related conditions.
*
* logerr(): A printf-like function for outputting error messages
* (messages at LOG_ERR) from the daemon.
*
* logperror*(): A set of functions used to output error messages
* (messages at LOG_ERR); these automatically append strerror(errno)
* and a newline to the message passed to them.
*
* NOTE: since the logging functions write to syslog, the messages passed
* to them are not eligible for localization. Thus, gettext() must
* *not* be used.
*/
static int logging = 0;
static void
initlog(void)
{
logging++;
openlog("in.mpathd", LOG_PID, LOG_DAEMON);
}
/* PRINTFLIKE2 */
void
logmsg(int pri, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (logging)
vsyslog(pri, fmt, ap);
else
(void) vfprintf(stderr, fmt, ap);
va_end(ap);
}
/* PRINTFLIKE1 */
void
logperror(const char *str)
{
if (logging)
syslog(LOG_ERR, "%s: %m\n", str);
else
(void) fprintf(stderr, "%s: %s\n", str, strerror(errno));
}
void
logperror_pii(struct phyint_instance *pii, const char *str)
{
if (logging) {
syslog(LOG_ERR, "%s (%s %s): %m\n",
str, AF_STR(pii->pii_af), pii->pii_phyint->pi_name);
} else {
(void) fprintf(stderr, "%s (%s %s): %s\n",
str, AF_STR(pii->pii_af), pii->pii_phyint->pi_name,
strerror(errno));
}
}
void
logperror_li(struct logint *li, const char *str)
{
struct phyint_instance *pii = li->li_phyint_inst;
if (logging) {
syslog(LOG_ERR, "%s (%s %s): %m\n",
str, AF_STR(pii->pii_af), li->li_name);
} else {
(void) fprintf(stderr, "%s (%s %s): %s\n",
str, AF_STR(pii->pii_af), li->li_name,
strerror(errno));
}
}
void
close_probe_socket(struct phyint_instance *pii, boolean_t polled)
{
if (polled)
(void) poll_remove(pii->pii_probe_sock);
(void) close(pii->pii_probe_sock);
pii->pii_probe_sock = -1;
pii->pii_basetime_inited = 0;
}
boolean_t
addrlist_add(addrlist_t **addrsp, const char *name, uint64_t flags,
struct sockaddr_storage *ssp)
{
addrlist_t *addrp;
if ((addrp = malloc(sizeof (addrlist_t))) == NULL)
return (_B_FALSE);
(void) strlcpy(addrp->al_name, name, LIFNAMSIZ);
addrp->al_flags = flags;
addrp->al_addr = *ssp;
addrp->al_next = *addrsp;
*addrsp = addrp;
return (_B_TRUE);
}
void
addrlist_free(addrlist_t **addrsp)
{
addrlist_t *addrp, *next_addrp;
for (addrp = *addrsp; addrp != NULL; addrp = next_addrp) {
next_addrp = addrp->al_next;
free(addrp);
}
*addrsp = NULL;
}
/*
* Send down a T_OPTMGMT_REQ to ip asking for all data in the various
* tables defined by mib2.h. Pass the table information returned to the
* supplied function.
*/
static int
mibwalk(void (*proc)(mib_item_t *))
{
mib_item_t *head_item = NULL;
mib_item_t *last_item = NULL;
mib_item_t *tmp;
struct strbuf ctlbuf, databuf;
int flags;
int rval;
uintptr_t buf[512 / sizeof (uintptr_t)];
struct T_optmgmt_req *tor = (struct T_optmgmt_req *)buf;
struct T_optmgmt_ack *toa = (struct T_optmgmt_ack *)buf;
struct T_error_ack *tea = (struct T_error_ack *)buf;
struct opthdr *req, *optp;
int status = -1;
if (mibfd == -1) {
if ((mibfd = open("/dev/ip", O_RDWR)) < 0) {
logperror("mibwalk(): ip open");
return (status);
}
}
tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
tor->OPT_offset = sizeof (struct T_optmgmt_req);
tor->OPT_length = sizeof (struct opthdr);
tor->MGMT_flags = T_CURRENT;
/*
* Note: we use the special level value below so that IP will return
* us information concerning IRE_MARK_TESTHIDDEN routes.
*/
req = (struct opthdr *)&tor[1];
req->level = EXPER_IP_AND_TESTHIDDEN;
req->name = 0;
req->len = 0;
ctlbuf.buf = (char *)&buf;
ctlbuf.len = tor->OPT_length + tor->OPT_offset;
if (putmsg(mibfd, &ctlbuf, NULL, 0) == -1) {
logperror("mibwalk(): putmsg(ctl)");
return (status);
}
/*
* The response consists of multiple T_OPTMGMT_ACK msgs, 1 msg for
* each table defined in mib2.h. Each T_OPTMGMT_ACK msg contains
* a control and data part. The control part contains a struct
* T_optmgmt_ack followed by a struct opthdr. The 'opthdr' identifies
* the level, name and length of the data in the data part. The
* data part contains the actual table data. The last message
* is an end-of-data (EOD), consisting of a T_OPTMGMT_ACK and a
* single option with zero optlen.
*/
for (;;) {
errno = flags = 0;
ctlbuf.maxlen = sizeof (buf);
rval = getmsg(mibfd, &ctlbuf, NULL, &flags);
if (rval & MORECTL || rval < 0) {
if (errno == EINTR)
continue;
logerr("mibwalk(): getmsg(ctl) ret: %d err: %d\n",
rval, errno);
goto error;
}
if (ctlbuf.len < sizeof (t_scalar_t)) {
logerr("mibwalk(): ctlbuf.len %d\n", ctlbuf.len);
goto error;
}
switch (toa->PRIM_type) {
case T_ERROR_ACK:
if (ctlbuf.len < sizeof (struct T_error_ack)) {
logerr("mibwalk(): T_ERROR_ACK ctlbuf "
"too short: %d\n", ctlbuf.len);
goto error;
}
logerr("mibwalk(): T_ERROR_ACK: TLI_err = 0x%lx: %s\n"
" UNIX_err = 0x%lx\n", tea->TLI_error,
t_strerror(tea->TLI_error), tea->UNIX_error);
goto error;
case T_OPTMGMT_ACK:
optp = (struct opthdr *)&toa[1];
if (ctlbuf.len < (sizeof (struct T_optmgmt_ack) +
sizeof (struct opthdr))) {
logerr("mibwalk(): T_OPTMGMT_ACK ctlbuf too "
"short: %d\n", ctlbuf.len);
goto error;
}
if (toa->MGMT_flags != T_SUCCESS) {
logerr("mibwalk(): MGMT_flags != T_SUCCESS: "
"0x%lx\n", toa->MGMT_flags);
goto error;
}
break;
default:
goto error;
}
/* The following assert also implies MGMT_flags == T_SUCCESS */
assert(toa->PRIM_type == T_OPTMGMT_ACK);
/*
* We have reached the end of this T_OPTMGMT_ACK
* message. If this is the last message i.e EOD,
* break, else process the next T_OPTMGMT_ACK msg.
*/
if (rval == 0) {
if (optp->len == 0 && optp->name == 0 &&
optp->level == 0) {
/* This is the EOD message. */
break;
}
/* Not EOD but no data to retrieve */
continue;
}
/*
* We should only be here if MOREDATA was set.
* Allocate an empty mib_item_t and link into the list
* of MIB items.
*/
if ((tmp = malloc(sizeof (*tmp))) == NULL) {
logperror("mibwalk(): malloc() failed.");
goto error;
}
if (last_item != NULL)
last_item->mi_next = tmp;
else
head_item = tmp;
last_item = tmp;
last_item->mi_next = NULL;
last_item->mi_opthdr = *optp;
last_item->mi_valp = malloc(optp->len);
if (last_item->mi_valp == NULL) {
logperror("mibwalk(): malloc() failed.");
goto error;
}
databuf.maxlen = last_item->mi_opthdr.len;
databuf.buf = (char *)last_item->mi_valp;
databuf.len = 0;
/* Retrieve the actual MIB data */
for (;;) {
flags = 0;
if ((rval = getmsg(mibfd, NULL, &databuf,
&flags)) != 0) {
if (rval < 0 && errno == EINTR)
continue;
/*
* We shouldn't get MOREDATA here so treat that
* as an error.
*/
logperror("mibwalk(): getmsg(data)");
goto error;
}
break;
}
}
status = 0;
/* Pass the accumulated MIB data to the supplied function pointer */
(*proc)(head_item);
error:
while (head_item != NULL) {
tmp = head_item;
head_item = tmp->mi_next;
free(tmp->mi_valp);
free(tmp);
}
return (status);
}
/*
* Parse the supplied mib2 information to get the size of routing table
* entries. This is needed when running in a branded zone where the
* Solaris application environment and the Solaris kernel may not be the
* the same release version.
*/
static void
mib_get_constants(mib_item_t *item)
{
mib2_ip_t *ipv4;
mib2_ipv6IfStatsEntry_t *ipv6;
for (; item != NULL; item = item->mi_next) {
if (item->mi_opthdr.name != 0)
continue;
if (item->mi_opthdr.level == MIB2_IP) {
ipv4 = (mib2_ip_t *)item->mi_valp;
ipRouteEntrySize = ipv4->ipRouteEntrySize;
} else if (item->mi_opthdr.level == MIB2_IP6) {
ipv6 = (mib2_ipv6IfStatsEntry_t *)item->mi_valp;
ipv6RouteEntrySize = ipv6->ipv6RouteEntrySize;
}
}
}