ioat_chan.c revision c6c65e5445ba6bc005f3da488bddd36494d26e65
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/ddi.h>
#include <sys/stat.h>
#include <sys/sunddi.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/modctl.h>
#include <sys/ddi_impldefs.h>
#include <sys/sysmacros.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <sys/mach_mmu.h>
#ifdef __xpv
#include <sys/hypervisor.h>
#endif
#include <sys/ioat.h>
extern ddi_device_acc_attr_t ioat_acc_attr;
/* dma attr for the descriptor rings */
ddi_dma_attr_t ioat_desc_dma_attr = {
DMA_ATTR_V0, /* dma_attr_version */
0x0, /* dma_attr_addr_lo */
0xffffffffffffffff, /* dma_attr_addr_hi */
0xffffffff, /* dma_attr_count_max */
0x1000, /* dma_attr_align */
0x1, /* dma_attr_burstsizes */
0x1, /* dma_attr_minxfer */
0xffffffff, /* dma_attr_maxxfer */
0xffffffff, /* dma_attr_seg */
0x1, /* dma_attr_sgllen */
0x1, /* dma_attr_granular */
0x0, /* dma_attr_flags */
};
/* dma attr for the completion buffers */
ddi_dma_attr_t ioat_cmpl_dma_attr = {
DMA_ATTR_V0, /* dma_attr_version */
0x0, /* dma_attr_addr_lo */
0xffffffffffffffff, /* dma_attr_addr_hi */
0xffffffff, /* dma_attr_count_max */
0x40, /* dma_attr_align */
0x1, /* dma_attr_burstsizes */
0x1, /* dma_attr_minxfer */
0xffffffff, /* dma_attr_maxxfer */
0xffffffff, /* dma_attr_seg */
0x1, /* dma_attr_sgllen */
0x1, /* dma_attr_granular */
0x0, /* dma_attr_flags */
};
static int ioat_completion_alloc(ioat_channel_t channel);
static void ioat_completion_free(ioat_channel_t channel);
static void ioat_channel_start(ioat_channel_t channel);
static void ioat_channel_reset(ioat_channel_t channel);
int ioat_ring_alloc(ioat_channel_t channel, uint_t desc_cnt);
void ioat_ring_free(ioat_channel_t channel);
void ioat_ring_seed(ioat_channel_t channel, ioat_chan_dma_desc_t *desc);
int ioat_ring_reserve(ioat_channel_t channel, ioat_channel_ring_t *ring,
dcopy_cmd_t cmd);
static void ioat_cmd_post_copy(ioat_channel_ring_t *ring, uint64_t src_addr,
uint64_t dest_addr, uint32_t size, uint32_t ctrl);
static void ioat_cmd_post_dca(ioat_channel_ring_t *ring, uint32_t dca_id);
/*
* ioat_channel_init()
*/
int
ioat_channel_init(ioat_state_t *state)
{
int i;
/*
* initialize each dma channel's state which doesn't change across
* channel alloc/free.
*/
state->is_chansize = sizeof (struct ioat_channel_s) *
state->is_num_channels;
state->is_channel = kmem_zalloc(state->is_chansize, KM_SLEEP);
for (i = 0; i < state->is_num_channels; i++) {
state->is_channel[i].ic_state = state;
state->is_channel[i].ic_regs = (uint8_t *)
((uintptr_t)state->is_genregs +
(uintptr_t)(IOAT_CHANNELREG_OFFSET * (i + 1)));
}
/* initial the allocator (from 0 to state->is_num_channels) */
ioat_rs_init(state, 0, state->is_num_channels, &state->is_channel_rs);
return (DDI_SUCCESS);
}
/*
* ioat_channel_fini()
*/
void
ioat_channel_fini(ioat_state_t *state)
{
ioat_rs_fini(&state->is_channel_rs);
kmem_free(state->is_channel, state->is_chansize);
}
/*
* ioat_channel_alloc()
* NOTE: We intentionaly don't handle DCOPY_SLEEP (if no channels are
* available)
*/
/*ARGSUSED*/
int
ioat_channel_alloc(void *device_private, dcopy_handle_t handle, int flags,
uint_t size, dcopy_query_channel_t *info, void *channel_private)
{
#define CHANSTRSIZE 20
struct ioat_channel_s *channel;
char chanstr[CHANSTRSIZE];
ioat_channel_t *chan;
ioat_state_t *state;
size_t cmd_size;
uint_t chan_num;
uint32_t estat;
int e;
state = (ioat_state_t *)device_private;
chan = (ioat_channel_t *)channel_private;
/* allocate a H/W channel */
e = ioat_rs_alloc(state->is_channel_rs, &chan_num);
if (e != DDI_SUCCESS) {
return (DCOPY_NORESOURCES);
}
channel = &state->is_channel[chan_num];
channel->ic_inuse = B_TRUE;
channel->ic_chan_num = chan_num;
channel->ic_ver = state->is_ver;
channel->ic_dca_active = B_FALSE;
channel->ic_channel_state = IOAT_CHANNEL_OK;
channel->ic_dcopy_handle = handle;
#ifdef DEBUG
{
/* if we're cbv2, verify that the V2 compatibility bit is set */
uint16_t reg;
if (channel->ic_ver == IOAT_CBv2) {
reg = ddi_get16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_CHAN_COMP]);
ASSERT(reg & 0x2);
}
}
#endif
/*
* Configure DMA channel
* Channel In Use
* Error Interrupt Enable
* Any Error Abort Enable
* Error Completion Enable
*/
ddi_put16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_CHAN_CTL], 0x011C);
/* check channel error register, clear any errors */
estat = ddi_get32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_ERR]);
if (estat != 0) {
#ifdef DEBUG
cmn_err(CE_CONT, "cleared errors (0x%x) before channel (%d) "
"enable\n", estat, channel->ic_chan_num);
#endif
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_ERR], estat);
}
/* allocate and initialize the descriptor buf */
e = ioat_ring_alloc(channel, size);
if (e != DDI_SUCCESS) {
goto chinitfail_desc_alloc;
}
/* allocate and initialize the completion space */
e = ioat_completion_alloc(channel);
if (e != DDI_SUCCESS) {
goto chinitfail_completion_alloc;
}
/* setup kmem_cache for commands */
cmd_size = sizeof (struct dcopy_cmd_s) +
sizeof (struct dcopy_cmd_priv_s) +
sizeof (struct ioat_cmd_private_s);
(void) snprintf(chanstr, CHANSTRSIZE, "ioat%dchan%dcmd",
state->is_instance, channel->ic_chan_num);
channel->ic_cmd_cache = kmem_cache_create(chanstr, cmd_size, 64,
NULL, NULL, NULL, NULL, NULL, 0);
if (channel->ic_cmd_cache == NULL) {
goto chinitfail_kmem_cache;
}
/* start-up the channel */
ioat_channel_start(channel);
/* fill in the channel info returned to dcopy */
info->qc_version = DCOPY_QUERY_CHANNEL_V0;
info->qc_id = state->is_deviceinfo.di_id;
info->qc_capabilities = (uint64_t)state->is_capabilities;
info->qc_channel_size = (uint64_t)size;
info->qc_chan_num = (uint64_t)channel->ic_chan_num;
if (channel->ic_ver == IOAT_CBv1) {
info->qc_dca_supported = B_FALSE;
} else {
if (info->qc_capabilities & IOAT_DMACAP_DCA) {
info->qc_dca_supported = B_TRUE;
} else {
info->qc_dca_supported = B_FALSE;
}
}
*chan = channel;
return (DCOPY_SUCCESS);
chinitfail_kmem_cache:
ioat_completion_free(channel);
chinitfail_completion_alloc:
ioat_ring_free(channel);
chinitfail_desc_alloc:
return (DCOPY_FAILURE);
}
/*
* ioat_channel_suspend()
*/
/*ARGSUSED*/
void
ioat_channel_suspend(ioat_state_t *state)
{
/*
* normally you would disable interrupts and reset the H/W here. But
* since the suspend framework doesn't know who is using us, it may
* not suspend their I/O before us. Since we won't actively be doing
* any DMA or interrupts unless someone asks us to, it's safe to not
* do anything here.
*/
}
/*
* ioat_channel_resume()
*/
int
ioat_channel_resume(ioat_state_t *state)
{
ioat_channel_ring_t *ring;
ioat_channel_t channel;
uint32_t estat;
int i;
for (i = 0; i < state->is_num_channels; i++) {
channel = &state->is_channel[i];
ring = channel->ic_ring;
if (!channel->ic_inuse) {
continue;
}
/*
* Configure DMA channel
* Channel In Use
* Error Interrupt Enable
* Any Error Abort Enable
* Error Completion Enable
*/
ddi_put16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_CHAN_CTL], 0x011C);
/* check channel error register, clear any errors */
estat = ddi_get32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_ERR]);
if (estat != 0) {
#ifdef DEBUG
cmn_err(CE_CONT, "cleared errors (0x%x) before channel"
" (%d) enable\n", estat, channel->ic_chan_num);
#endif
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_ERR],
estat);
}
/* Re-initialize the ring */
bzero(ring->cr_desc, channel->ic_desc_alloc_size);
/* write the physical address into the chain address register */
if (channel->ic_ver == IOAT_CBv1) {
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V1_CHAN_ADDR_LO],
(uint32_t)(ring->cr_phys_desc & 0xffffffff));
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V1_CHAN_ADDR_HI],
(uint32_t)(ring->cr_phys_desc >> 32));
} else {
ASSERT(channel->ic_ver == IOAT_CBv2);
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V2_CHAN_ADDR_LO],
(uint32_t)(ring->cr_phys_desc & 0xffffffff));
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V2_CHAN_ADDR_HI],
(uint32_t)(ring->cr_phys_desc >> 32));
}
/* re-initialize the completion buffer */
bzero((void *)channel->ic_cmpl, channel->ic_cmpl_alloc_size);
/* write the phys addr into the completion address register */
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_CMPL_LO],
(uint32_t)(channel->ic_phys_cmpl & 0xffffffff));
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_CMPL_HI],
(uint32_t)(channel->ic_phys_cmpl >> 32));
/* start-up the channel */
ioat_channel_start(channel);
}
return (DDI_SUCCESS);
}
/*
* ioat_channel_free()
*/
void
ioat_channel_free(void *channel_private)
{
struct ioat_channel_s *channel;
ioat_channel_t *chan;
ioat_state_t *state;
uint_t chan_num;
chan = (ioat_channel_t *)channel_private;
channel = *chan;
state = channel->ic_state;
chan_num = channel->ic_chan_num;
/* disable the interrupts */
ddi_put16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_CHAN_CTL], 0x0);
ioat_channel_reset(channel);
/* cleanup command cache */
kmem_cache_destroy(channel->ic_cmd_cache);
/* clean-up/free-up the completion space and descriptors */
ioat_completion_free(channel);
ioat_ring_free(channel);
channel->ic_inuse = B_FALSE;
/* free the H/W DMA engine */
ioat_rs_free(state->is_channel_rs, chan_num);
*chan = NULL;
}
/*
* ioat_channel_intr()
*/
void
ioat_channel_intr(ioat_channel_t channel)
{
ioat_state_t *state;
uint16_t chanctrl;
uint32_t chanerr;
uint32_t status;
state = channel->ic_state;
if (channel->ic_ver == IOAT_CBv1) {
status = ddi_get32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V1_CHAN_STS_LO]);
} else {
ASSERT(channel->ic_ver == IOAT_CBv2);
status = ddi_get32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V2_CHAN_STS_LO]);
}
/* if that status isn't ACTIVE or IDLE, the channel has failed */
if (status & IOAT_CHAN_STS_FAIL_MASK) {
chanerr = ddi_get32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_ERR]);
cmn_err(CE_WARN, "channel(%d) fatal failure! "
"chanstat_lo=0x%X; chanerr=0x%X\n",
channel->ic_chan_num, status, chanerr);
channel->ic_channel_state = IOAT_CHANNEL_IN_FAILURE;
ioat_channel_reset(channel);
return;
}
/*
* clear interrupt disable bit if set (it's a RW1C). Read it back to
* ensure the write completes.
*/
chanctrl = ddi_get16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_CHAN_CTL]);
ddi_put16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_CHAN_CTL], chanctrl);
(void) ddi_get16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_CHAN_CTL]);
/* tell dcopy we have seen a completion on this channel */
dcopy_device_channel_notify(channel->ic_dcopy_handle, DCOPY_COMPLETION);
}
/*
* ioat_channel_start()
*/
void
ioat_channel_start(ioat_channel_t channel)
{
ioat_chan_dma_desc_t desc;
/* set the first descriptor up as a NULL descriptor */
bzero(&desc, sizeof (desc));
desc.dd_size = 0;
desc.dd_ctrl = IOAT_DESC_CTRL_OP_DMA | IOAT_DESC_DMACTRL_NULL |
IOAT_DESC_CTRL_CMPL;
desc.dd_next_desc = 0x0;
/* setup the very first descriptor */
ioat_ring_seed(channel, &desc);
}
/*
* ioat_channel_reset()
*/
void
ioat_channel_reset(ioat_channel_t channel)
{
ioat_state_t *state;
state = channel->ic_state;
/* hit the reset bit */
if (channel->ic_ver == IOAT_CBv1) {
ddi_put8(state->is_reg_handle,
&channel->ic_regs[IOAT_V1_CHAN_CMD], 0x20);
} else {
ASSERT(channel->ic_ver == IOAT_CBv2);
ddi_put8(state->is_reg_handle,
&channel->ic_regs[IOAT_V2_CHAN_CMD], 0x20);
}
}
/*
* ioat_completion_alloc()
*/
int
ioat_completion_alloc(ioat_channel_t channel)
{
ioat_state_t *state;
size_t real_length;
uint_t cookie_cnt;
int e;
state = channel->ic_state;
/*
* allocate memory for the completion status, zero it out, and get
* the paddr. We'll allocate a physically contiguous cache line.
*/
e = ddi_dma_alloc_handle(state->is_dip, &ioat_cmpl_dma_attr,
DDI_DMA_SLEEP, NULL, &channel->ic_cmpl_dma_handle);
if (e != DDI_SUCCESS) {
goto cmplallocfail_alloc_handle;
}
channel->ic_cmpl_alloc_size = 64;
e = ddi_dma_mem_alloc(channel->ic_cmpl_dma_handle,
channel->ic_cmpl_alloc_size, &ioat_acc_attr,
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
(caddr_t *)&channel->ic_cmpl, &real_length,
&channel->ic_cmpl_handle);
if (e != DDI_SUCCESS) {
goto cmplallocfail_mem_alloc;
}
bzero((void *)channel->ic_cmpl, channel->ic_cmpl_alloc_size);
e = ddi_dma_addr_bind_handle(channel->ic_cmpl_dma_handle, NULL,
(caddr_t)channel->ic_cmpl, channel->ic_cmpl_alloc_size,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
&channel->ic_cmpl_cookie, &cookie_cnt);
if (e != DDI_SUCCESS) {
goto cmplallocfail_addr_bind;
}
ASSERT(cookie_cnt == 1);
ASSERT(channel->ic_cmpl_cookie.dmac_size ==
channel->ic_cmpl_alloc_size);
channel->ic_phys_cmpl = channel->ic_cmpl_cookie.dmac_laddress;
/* write the physical address into the completion address register */
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_CMPL_LO],
(uint32_t)(channel->ic_phys_cmpl & 0xffffffff));
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_CMPL_HI],
(uint32_t)(channel->ic_phys_cmpl >> 32));
return (DDI_SUCCESS);
cmplallocfail_addr_bind:
ddi_dma_mem_free(&channel->ic_desc_handle);
cmplallocfail_mem_alloc:
ddi_dma_free_handle(&channel->ic_desc_dma_handle);
cmplallocfail_alloc_handle:
return (DDI_FAILURE);
}
/*
* ioat_completion_free()
*/
void
ioat_completion_free(ioat_channel_t channel)
{
ioat_state_t *state;
state = channel->ic_state;
/* reset the completion address register */
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_CMPL_LO], 0x0);
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_CHAN_CMPL_HI], 0x0);
/* unbind, then free up the memory, dma handle */
(void) ddi_dma_unbind_handle(channel->ic_cmpl_dma_handle);
ddi_dma_mem_free(&channel->ic_cmpl_handle);
ddi_dma_free_handle(&channel->ic_cmpl_dma_handle);
}
/*
* ioat_ring_alloc()
*/
int
ioat_ring_alloc(ioat_channel_t channel, uint_t desc_cnt)
{
ioat_channel_ring_t *ring;
ioat_state_t *state;
size_t real_length;
uint_t cookie_cnt;
int e;
state = channel->ic_state;
ring = kmem_zalloc(sizeof (ioat_channel_ring_t), KM_SLEEP);
channel->ic_ring = ring;
ring->cr_chan = channel;
ring->cr_post_cnt = 0;
mutex_init(&ring->cr_cmpl_mutex, NULL, MUTEX_DRIVER,
channel->ic_state->is_iblock_cookie);
mutex_init(&ring->cr_desc_mutex, NULL, MUTEX_DRIVER,
channel->ic_state->is_iblock_cookie);
/*
* allocate memory for the ring, zero it out, and get the paddr.
* We'll allocate a physically contiguous chunck of memory which
* simplifies the completion logic.
*/
e = ddi_dma_alloc_handle(state->is_dip, &ioat_desc_dma_attr,
DDI_DMA_SLEEP, NULL, &channel->ic_desc_dma_handle);
if (e != DDI_SUCCESS) {
goto ringallocfail_alloc_handle;
}
/*
* allocate one extra descriptor so we can simplify the empty/full
* logic. Then round that number up to a whole multiple of 4.
*/
channel->ic_chan_desc_cnt = ((desc_cnt + 1) + 3) & ~0x3;
ring->cr_desc_last = channel->ic_chan_desc_cnt - 1;
channel->ic_desc_alloc_size = channel->ic_chan_desc_cnt *
sizeof (ioat_chan_desc_t);
e = ddi_dma_mem_alloc(channel->ic_desc_dma_handle,
channel->ic_desc_alloc_size, &ioat_acc_attr,
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
(caddr_t *)&ring->cr_desc, &real_length, &channel->ic_desc_handle);
if (e != DDI_SUCCESS) {
goto ringallocfail_mem_alloc;
}
bzero(ring->cr_desc, channel->ic_desc_alloc_size);
e = ddi_dma_addr_bind_handle(channel->ic_desc_dma_handle, NULL,
(caddr_t)ring->cr_desc, channel->ic_desc_alloc_size,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
&channel->ic_desc_cookies, &cookie_cnt);
if (e != DDI_SUCCESS) {
goto ringallocfail_addr_bind;
}
ASSERT(cookie_cnt == 1);
ASSERT(channel->ic_desc_cookies.dmac_size ==
channel->ic_desc_alloc_size);
ring->cr_phys_desc = channel->ic_desc_cookies.dmac_laddress;
/* write the physical address into the chain address register */
if (channel->ic_ver == IOAT_CBv1) {
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V1_CHAN_ADDR_LO],
(uint32_t)(ring->cr_phys_desc & 0xffffffff));
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V1_CHAN_ADDR_HI],
(uint32_t)(ring->cr_phys_desc >> 32));
} else {
ASSERT(channel->ic_ver == IOAT_CBv2);
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V2_CHAN_ADDR_LO],
(uint32_t)(ring->cr_phys_desc & 0xffffffff));
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V2_CHAN_ADDR_HI],
(uint32_t)(ring->cr_phys_desc >> 32));
}
return (DCOPY_SUCCESS);
ringallocfail_addr_bind:
ddi_dma_mem_free(&channel->ic_desc_handle);
ringallocfail_mem_alloc:
ddi_dma_free_handle(&channel->ic_desc_dma_handle);
ringallocfail_alloc_handle:
mutex_destroy(&ring->cr_desc_mutex);
mutex_destroy(&ring->cr_cmpl_mutex);
kmem_free(channel->ic_ring, sizeof (ioat_channel_ring_t));
return (DCOPY_FAILURE);
}
/*
* ioat_ring_free()
*/
void
ioat_ring_free(ioat_channel_t channel)
{
ioat_state_t *state;
state = channel->ic_state;
/* reset the chain address register */
if (channel->ic_ver == IOAT_CBv1) {
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V1_CHAN_ADDR_LO], 0x0);
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V1_CHAN_ADDR_HI], 0x0);
} else {
ASSERT(channel->ic_ver == IOAT_CBv2);
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V2_CHAN_ADDR_LO], 0x0);
ddi_put32(state->is_reg_handle,
(uint32_t *)&channel->ic_regs[IOAT_V2_CHAN_ADDR_HI], 0x0);
}
/* unbind, then free up the memory, dma handle */
(void) ddi_dma_unbind_handle(channel->ic_desc_dma_handle);
ddi_dma_mem_free(&channel->ic_desc_handle);
ddi_dma_free_handle(&channel->ic_desc_dma_handle);
mutex_destroy(&channel->ic_ring->cr_desc_mutex);
mutex_destroy(&channel->ic_ring->cr_cmpl_mutex);
kmem_free(channel->ic_ring, sizeof (ioat_channel_ring_t));
}
/*
* ioat_ring_seed()
* write the first descriptor in the ring.
*/
void
ioat_ring_seed(ioat_channel_t channel, ioat_chan_dma_desc_t *in_desc)
{
ioat_channel_ring_t *ring;
ioat_chan_dma_desc_t *desc;
ioat_chan_dma_desc_t *prev;
ioat_state_t *state;
state = channel->ic_state;
ring = channel->ic_ring;
/* init the completion state */
ring->cr_cmpl_gen = 0x0;
ring->cr_cmpl_last = 0x0;
/* write in the descriptor and init the descriptor state */
ring->cr_post_cnt++;
channel->ic_ring->cr_desc[0] = *(ioat_chan_desc_t *)in_desc;
ring->cr_desc_gen = 0;
ring->cr_desc_prev = 0;
ring->cr_desc_next = 1;
if (channel->ic_ver == IOAT_CBv1) {
/* hit the start bit */
ddi_put8(state->is_reg_handle,
&channel->ic_regs[IOAT_V1_CHAN_CMD], 0x1);
} else {
/*
* if this is CBv2, link the descriptor to an empty
* descriptor
*/
ASSERT(ring->cr_chan->ic_ver == IOAT_CBv2);
desc = (ioat_chan_dma_desc_t *)
&ring->cr_desc[ring->cr_desc_next];
prev = (ioat_chan_dma_desc_t *)
&ring->cr_desc[ring->cr_desc_prev];
desc->dd_ctrl = 0;
desc->dd_next_desc = 0x0;
prev->dd_next_desc = ring->cr_phys_desc +
(ring->cr_desc_next << 6);
ddi_put16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_V2_CHAN_CNT],
(uint16_t)1);
}
}
/*
* ioat_cmd_alloc()
*/
int
ioat_cmd_alloc(void *private, int flags, dcopy_cmd_t *cmd)
{
ioat_cmd_private_t *priv;
ioat_channel_t channel;
dcopy_cmd_t oldcmd;
int kmflag;
channel = (ioat_channel_t)private;
if (flags & DCOPY_NOSLEEP) {
kmflag = KM_NOSLEEP;
} else {
kmflag = KM_SLEEP;
}
/* save the command passed incase DCOPY_ALLOC_LINK is set */
oldcmd = *cmd;
*cmd = kmem_cache_alloc(channel->ic_cmd_cache, kmflag);
if (*cmd == NULL) {
return (DCOPY_NORESOURCES);
}
/* setup the dcopy and ioat private state pointers */
(*cmd)->dp_version = DCOPY_CMD_V0;
(*cmd)->dp_cmd = 0;
(*cmd)->dp_private = (struct dcopy_cmd_priv_s *)
((uintptr_t)(*cmd) + sizeof (struct dcopy_cmd_s));
(*cmd)->dp_private->pr_device_cmd_private =
(struct ioat_cmd_private_s *)((uintptr_t)(*cmd)->dp_private +
sizeof (struct dcopy_cmd_priv_s));
/*
* if DCOPY_ALLOC_LINK is set, link the old command to the new one
* just allocated.
*/
priv = (*cmd)->dp_private->pr_device_cmd_private;
if (flags & DCOPY_ALLOC_LINK) {
priv->ip_next = oldcmd;
} else {
priv->ip_next = NULL;
}
return (DCOPY_SUCCESS);
}
/*
* ioat_cmd_free()
*/
void
ioat_cmd_free(void *private, dcopy_cmd_t *cmdp)
{
ioat_cmd_private_t *priv;
ioat_channel_t channel;
dcopy_cmd_t next;
dcopy_cmd_t cmd;
channel = (ioat_channel_t)private;
cmd = *(cmdp);
/*
* free all the commands in the chain (see DCOPY_ALLOC_LINK in
* ioat_cmd_alloc() for more info).
*/
while (cmd != NULL) {
priv = cmd->dp_private->pr_device_cmd_private;
next = priv->ip_next;
kmem_cache_free(channel->ic_cmd_cache, cmd);
cmd = next;
}
*cmdp = NULL;
}
/*
* ioat_cmd_post()
*/
int
ioat_cmd_post(void *private, dcopy_cmd_t cmd)
{
ioat_channel_ring_t *ring;
ioat_cmd_private_t *priv;
ioat_channel_t channel;
ioat_state_t *state;
uint64_t dest_paddr;
uint64_t src_paddr;
uint64_t dest_addr;
uint32_t dest_size;
uint64_t src_addr;
uint32_t src_size;
size_t xfer_size;
uint32_t ctrl;
size_t size;
int e;
channel = (ioat_channel_t)private;
priv = cmd->dp_private->pr_device_cmd_private;
state = channel->ic_state;
ring = channel->ic_ring;
mutex_enter(&ring->cr_desc_mutex);
/* if the channel has had a fatal failure, return failure */
if (channel->ic_channel_state == IOAT_CHANNEL_IN_FAILURE) {
mutex_exit(&ring->cr_cmpl_mutex);
return (DCOPY_FAILURE);
}
/* make sure we have space for the descriptors */
e = ioat_ring_reserve(channel, ring, cmd);
if (e != DCOPY_SUCCESS) {
mutex_exit(&ring->cr_cmpl_mutex);
return (DCOPY_NORESOURCES);
}
/* if we support DCA, and the DCA flag is set, post a DCA desc */
if ((channel->ic_ver == IOAT_CBv2) &&
(cmd->dp_flags & DCOPY_CMD_DCA)) {
ioat_cmd_post_dca(ring, cmd->dp_dca_id);
}
/*
* the dma copy may have to be broken up into multiple descriptors
* since we can't cross a page boundary.
*/
ASSERT(cmd->dp_version == DCOPY_CMD_V0);
ASSERT(cmd->dp_cmd == DCOPY_CMD_COPY);
src_addr = cmd->dp.copy.cc_source;
dest_addr = cmd->dp.copy.cc_dest;
size = cmd->dp.copy.cc_size;
while (size > 0) {
src_paddr = pa_to_ma(src_addr);
dest_paddr = pa_to_ma(dest_addr);
/* adjust for any offset into the page */
if ((src_addr & PAGEOFFSET) == 0) {
src_size = PAGESIZE;
} else {
src_size = PAGESIZE - (src_addr & PAGEOFFSET);
}
if ((dest_addr & PAGEOFFSET) == 0) {
dest_size = PAGESIZE;
} else {
dest_size = PAGESIZE - (dest_addr & PAGEOFFSET);
}
/* take the smallest of the three */
xfer_size = MIN(src_size, dest_size);
xfer_size = MIN(xfer_size, size);
/*
* if this is the last descriptor, and we are supposed to
* generate a completion, generate a completion. same logic
* for interrupt.
*/
ctrl = 0;
if (xfer_size == size) {
if (!(cmd->dp_flags & DCOPY_CMD_NOSTAT)) {
ctrl |= IOAT_DESC_CTRL_CMPL;
}
if ((cmd->dp_flags & DCOPY_CMD_INTR)) {
ctrl |= IOAT_DESC_CTRL_INTR;
}
}
ioat_cmd_post_copy(ring, src_paddr, dest_paddr, xfer_size,
ctrl);
/* go to the next page */
src_addr += xfer_size;
dest_addr += xfer_size;
size -= xfer_size;
}
/*
* if we are going to create a completion, save away the state so we
* can poll on it.
*/
if (!(cmd->dp_flags & DCOPY_CMD_NOSTAT)) {
priv->ip_generation = ring->cr_desc_gen_prev;
priv->ip_index = ring->cr_desc_prev;
}
/* if queue not defined, tell the DMA engine about it */
if (!(cmd->dp_flags & DCOPY_CMD_QUEUE)) {
if (channel->ic_ver == IOAT_CBv1) {
ddi_put8(state->is_reg_handle,
(uint8_t *)&channel->ic_regs[IOAT_V1_CHAN_CMD],
0x2);
} else {
ASSERT(channel->ic_ver == IOAT_CBv2);
ddi_put16(state->is_reg_handle,
(uint16_t *)&channel->ic_regs[IOAT_V2_CHAN_CNT],
(uint16_t)(ring->cr_post_cnt & 0xFFFF));
}
}
mutex_exit(&ring->cr_desc_mutex);
return (DCOPY_SUCCESS);
}
/*
* ioat_cmd_post_dca()
*/
static void
ioat_cmd_post_dca(ioat_channel_ring_t *ring, uint32_t dca_id)
{
ioat_chan_dca_desc_t *desc;
ioat_chan_dca_desc_t *prev;
ioat_channel_t channel;
channel = ring->cr_chan;
desc = (ioat_chan_dca_desc_t *)&ring->cr_desc[ring->cr_desc_next];
prev = (ioat_chan_dca_desc_t *)&ring->cr_desc[ring->cr_desc_prev];
/* keep track of the number of descs posted for cbv2 */
ring->cr_post_cnt++;
/*
* post a context change desriptor. If dca has never been used on
* this channel, or if the id doesn't match the last id used on this
* channel, set CONTEXT_CHANGE bit and dca id, set dca state to active,
* and save away the id we're using.
*/
desc->dd_ctrl = IOAT_DESC_CTRL_OP_CNTX;
desc->dd_next_desc = 0x0;
if (!channel->ic_dca_active || (channel->ic_dca_current != dca_id)) {
channel->ic_dca_active = B_TRUE;
channel->ic_dca_current = dca_id;
desc->dd_ctrl |= IOAT_DESC_CTRL_CNTX_CHNG;
desc->dd_cntx = dca_id;
}
/* Put the descriptors physical address in the previous descriptor */
/*LINTED:E_TRUE_LOGICAL_EXPR*/
ASSERT(sizeof (ioat_chan_dca_desc_t) == 64);
/* sync the current desc */
(void) ddi_dma_sync(channel->ic_desc_dma_handle,
ring->cr_desc_next << 6, 64, DDI_DMA_SYNC_FORDEV);
/* update the previous desc and sync it too */
prev->dd_next_desc = ring->cr_phys_desc +
(ring->cr_desc_next << 6);
(void) ddi_dma_sync(channel->ic_desc_dma_handle,
ring->cr_desc_prev << 6, 64, DDI_DMA_SYNC_FORDEV);
/* save the current desc_next and desc_last for the completion */
ring->cr_desc_prev = ring->cr_desc_next;
ring->cr_desc_gen_prev = ring->cr_desc_gen;
/* increment next/gen so it points to the next free desc */
ring->cr_desc_next++;
if (ring->cr_desc_next > ring->cr_desc_last) {
ring->cr_desc_next = 0;
ring->cr_desc_gen++;
}
/*
* if this is CBv2, link the descriptor to an empty descriptor. Since
* we always leave on desc empty to detect full, this works out.
*/
if (ring->cr_chan->ic_ver == IOAT_CBv2) {
desc = (ioat_chan_dca_desc_t *)
&ring->cr_desc[ring->cr_desc_next];
prev = (ioat_chan_dca_desc_t *)
&ring->cr_desc[ring->cr_desc_prev];
desc->dd_ctrl = 0;
desc->dd_next_desc = 0x0;
prev->dd_next_desc = ring->cr_phys_desc +
(ring->cr_desc_next << 6);
}
}
/*
* ioat_cmd_post_copy()
*
*/
static void
ioat_cmd_post_copy(ioat_channel_ring_t *ring, uint64_t src_addr,
uint64_t dest_addr, uint32_t size, uint32_t ctrl)
{
ioat_chan_dma_desc_t *desc;
ioat_chan_dma_desc_t *prev;
ioat_channel_t channel;
channel = ring->cr_chan;
desc = (ioat_chan_dma_desc_t *)&ring->cr_desc[ring->cr_desc_next];
prev = (ioat_chan_dma_desc_t *)&ring->cr_desc[ring->cr_desc_prev];
/* keep track of the number of descs posted for cbv2 */
ring->cr_post_cnt++;
/* write in the DMA desc */
desc->dd_ctrl = IOAT_DESC_CTRL_OP_DMA | ctrl;
desc->dd_size = size;
desc->dd_src_paddr = src_addr;
desc->dd_dest_paddr = dest_addr;
desc->dd_next_desc = 0x0;
/* Put the descriptors physical address in the previous descriptor */
/*LINTED:E_TRUE_LOGICAL_EXPR*/
ASSERT(sizeof (ioat_chan_dma_desc_t) == 64);
/* sync the current desc */
(void) ddi_dma_sync(channel->ic_desc_dma_handle,
ring->cr_desc_next << 6, 64, DDI_DMA_SYNC_FORDEV);
/* update the previous desc and sync it too */
prev->dd_next_desc = ring->cr_phys_desc +
(ring->cr_desc_next << 6);
(void) ddi_dma_sync(channel->ic_desc_dma_handle,
ring->cr_desc_prev << 6, 64, DDI_DMA_SYNC_FORDEV);
/* increment next/gen so it points to the next free desc */
ring->cr_desc_prev = ring->cr_desc_next;
ring->cr_desc_gen_prev = ring->cr_desc_gen;
/* increment next/gen so it points to the next free desc */
ring->cr_desc_next++;
if (ring->cr_desc_next > ring->cr_desc_last) {
ring->cr_desc_next = 0;
ring->cr_desc_gen++;
}
/*
* if this is CBv2, link the descriptor to an empty descriptor. Since
* we always leave on desc empty to detect full, this works out.
*/
if (ring->cr_chan->ic_ver == IOAT_CBv2) {
desc = (ioat_chan_dma_desc_t *)
&ring->cr_desc[ring->cr_desc_next];
prev = (ioat_chan_dma_desc_t *)
&ring->cr_desc[ring->cr_desc_prev];
desc->dd_size = 0;
desc->dd_ctrl = 0;
desc->dd_next_desc = 0x0;
prev->dd_next_desc = ring->cr_phys_desc +
(ring->cr_desc_next << 6);
}
}
/*
* ioat_cmd_poll()
*/
int
ioat_cmd_poll(void *private, dcopy_cmd_t cmd)
{
ioat_channel_ring_t *ring;
ioat_cmd_private_t *priv;
ioat_channel_t channel;
uint64_t generation;
uint64_t last_cmpl;
channel = (ioat_channel_t)private;
priv = cmd->dp_private->pr_device_cmd_private;
ring = channel->ic_ring;
ASSERT(ring != NULL);
mutex_enter(&ring->cr_cmpl_mutex);
/* if the channel had a fatal failure, fail all polls */
if ((channel->ic_channel_state == IOAT_CHANNEL_IN_FAILURE) ||
IOAT_CMPL_FAILED(channel)) {
mutex_exit(&ring->cr_cmpl_mutex);
return (DCOPY_FAILURE);
}
/*
* if the current completion is the same as the last time we read one,
* post is still pending, nothing further to do. We track completions
* as indexes into the ring since post uses VAs and the H/W returns
* PAs. We grab a snapshot of generation and last_cmpl in the mutex.
*/
(void) ddi_dma_sync(channel->ic_cmpl_dma_handle, 0, 0,
DDI_DMA_SYNC_FORCPU);
last_cmpl = IOAT_CMPL_INDEX(channel);
if (last_cmpl != ring->cr_cmpl_last) {
/*
* if we wrapped the ring, increment the generation. Store
* the last cmpl. This logic assumes a physically contiguous
* ring.
*/
if (last_cmpl < ring->cr_cmpl_last) {
ring->cr_cmpl_gen++;
}
ring->cr_cmpl_last = last_cmpl;
generation = ring->cr_cmpl_gen;
} else {
generation = ring->cr_cmpl_gen;
}
mutex_exit(&ring->cr_cmpl_mutex);
/*
* if cmd isn't passed in, well return. Useful for updating the
* consumer pointer (ring->cr_cmpl_last).
*/
if (cmd == NULL) {
return (DCOPY_PENDING);
}
/*
* if the post's generation is old, this post has completed. No reason
* to go check the last completion. if the generation is the same
* and if the post is before or = to the last completion processed,
* the post has completed.
*/
if (priv->ip_generation < generation) {
return (DCOPY_COMPLETED);
} else if ((priv->ip_generation == generation) &&
(priv->ip_index <= last_cmpl)) {
return (DCOPY_COMPLETED);
}
return (DCOPY_PENDING);
}
/*
* ioat_ring_reserve()
*/
int
ioat_ring_reserve(ioat_channel_t channel, ioat_channel_ring_t *ring,
dcopy_cmd_t cmd)
{
uint64_t dest_addr;
uint32_t dest_size;
uint64_t src_addr;
uint32_t src_size;
size_t xfer_size;
uint64_t desc;
int num_desc;
size_t size;
int i;
/*
* figure out how many descriptors we need. This can include a dca
* desc and multiple desc for a dma copy.
*/
num_desc = 0;
if ((channel->ic_ver == IOAT_CBv2) &&
(cmd->dp_flags & DCOPY_CMD_DCA)) {
num_desc++;
}
src_addr = cmd->dp.copy.cc_source;
dest_addr = cmd->dp.copy.cc_dest;
size = cmd->dp.copy.cc_size;
while (size > 0) {
num_desc++;
/* adjust for any offset into the page */
if ((src_addr & PAGEOFFSET) == 0) {
src_size = PAGESIZE;
} else {
src_size = PAGESIZE - (src_addr & PAGEOFFSET);
}
if ((dest_addr & PAGEOFFSET) == 0) {
dest_size = PAGESIZE;
} else {
dest_size = PAGESIZE - (dest_addr & PAGEOFFSET);
}
/* take the smallest of the three */
xfer_size = MIN(src_size, dest_size);
xfer_size = MIN(xfer_size, size);
/* go to the next page */
src_addr += xfer_size;
dest_addr += xfer_size;
size -= xfer_size;
}
/* Make sure we have space for these descriptors */
desc = ring->cr_desc_next;
for (i = 0; i < num_desc; i++) {
/*
* if this is the last descriptor in the ring, see if the
* last completed descriptor is #0.
*/
if (desc == ring->cr_desc_last) {
if (ring->cr_cmpl_last == 0) {
/*
* if we think the ring is full, update where
* the H/W really is and check for full again.
*/
(void) ioat_cmd_poll(channel, NULL);
if (ring->cr_cmpl_last == 0) {
return (DCOPY_NORESOURCES);
}
}
/*
* go to the next descriptor which is zero in this
* case.
*/
desc = 0;
/*
* if this is not the last descriptor in the ring, see if
* the last completion we saw was the next descriptor.
*/
} else {
if ((desc + 1) == ring->cr_cmpl_last) {
/*
* if we think the ring is full, update where
* the H/W really is and check for full again.
*/
(void) ioat_cmd_poll(channel, NULL);
if ((desc + 1) == ring->cr_cmpl_last) {
return (DCOPY_NORESOURCES);
}
}
/* go to the next descriptor */
desc++;
}
}
return (DCOPY_SUCCESS);
}