mpm_common.c revision 6064730a083689e37221878698d89ec0bdb8df38
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2000-2001 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
*
* Portions of this software are based upon public domain software
* originally written at the National Center for Supercomputing Applications,
* University of Illinois, Urbana-Champaign.
*/
/* The purpose of this file is to store the code that MOST mpm's will need
* this does not mean a function only goes into this file if every MPM needs
* it. It means that if a function is needed by more than one MPM, and
* future maintenance would be served by making the code common, then the
* function belongs here.
*
* specific to multi-process servers, but NOT to Unix. Which is why it
*/
#include "apr.h"
#include "apr_thread_proc.h"
#include "apr_signal.h"
#include "apr_strings.h"
#include "apr_lock.h"
#define APR_WANT_STRFUNC
#include "apr_want.h"
#include "httpd.h"
#include "http_config.h"
#include "http_log.h"
#include "http_main.h"
#include "mpm.h"
#include "mpm_common.h"
#include "ap_mpm.h"
#include "ap_listen.h"
#include "mpm_default.h"
#ifdef AP_MPM_WANT_SET_SCOREBOARD
#include "scoreboard.h"
#endif
#ifdef HAVE_PWD_H
#include <pwd.h>
#endif
#ifdef HAVE_GRP_H
#include <grp.h>
#endif
void ap_reclaim_child_processes(int terminate)
{
int i;
int tries;
int not_dead_yet;
int max_daemons;
/* don't want to hold up progress any more than
* necessary, but we need to allow children a few moments to exit.
* Set delay with an exponential backoff.
*/
/* now see who is done */
not_dead_yet = 0;
for (i = 0; i < max_daemons; ++i) {
if (pid == 0)
continue;
if (waitret != APR_CHILD_NOTDONE) {
continue;
}
++not_dead_yet;
switch (tries) {
case 1: /* 16ms */
case 2: /* 82ms */
case 3: /* 344ms */
case 4: /* 16ms */
break;
case 5: /* 82ms */
case 6: /* 344ms */
case 7: /* 1.4sec */
/* ok, now it's being annoying */
0, ap_server_conf,
"child process %ld still did not exit, "
"sending a SIGTERM",
(long)pid);
break;
case 8: /* 6 sec */
/* die child scum */
0, ap_server_conf,
"child process %ld still did not exit, "
"sending a SIGKILL",
(long)pid);
#ifndef BEOS
#else
/* sending a SIGKILL kills the entire team on BeOS, and as
* httpd thread is part of that team it removes any chance
* of ever doing a restart. To counter this I'm changing to
* use a kinder, gentler way of killing a specific thread
* that is just as effective.
*/
#endif
break;
case 9: /* 14 sec */
/* gave it our best shot, but alas... If this really
* is a child we are trying to kill and it really hasn't
* exited, we will likely fail to bind to the port
* after the restart.
*/
0, ap_server_conf,
"could not make child process %ld exit, "
"attempting to continue anyway",
(long)pid);
break;
}
}
#endif
if (!not_dead_yet) {
/* nothing left to wait for */
break;
}
}
}
#endif /* AP_MPM_WANT_RECLAIM_CHILD_PROCESSES */
#ifdef AP_MPM_WANT_WAIT_OR_TIMEOUT
/* number of calls to wait_or_timeout between writable probes */
#ifndef INTERVAL_OF_WRITABLE_PROBES
#define INTERVAL_OF_WRITABLE_PROBES 10
#endif
static int wait_or_timeout_counter;
apr_pool_t *p)
{
}
if (APR_STATUS_IS_EINTR(rv)) {
return;
}
if (APR_STATUS_IS_CHILD_DONE(rv)) {
return;
}
#ifdef NEED_WAITPID
return;
}
#endif
return;
}
#endif /* AP_MPM_WANT_WAIT_OR_TIMEOUT */
{
/* Child died... if it died due to a fatal error,
* we should simply bail out. The caller needs to
* check for bad rc from us and exit, running any
* appropriate cleanups.
*
* If the child died due to a resource shortage,
* the parent should limit the rate of forking
*/
if (APR_PROC_CHECK_EXIT(why)) {
if (status == APEXIT_CHILDSICK) {
return status;
}
if (status == APEXIT_CHILDFATAL) {
0, ap_server_conf,
"Child %" APR_OS_PROC_T_FMT
" returned a Fatal error..." APR_EOL_STR
"Apache is exiting!",
return APEXIT_CHILDFATAL;
}
return 0;
}
if (APR_PROC_CHECK_SIGNALED(why)) {
switch (signum) {
case SIGTERM:
case SIGHUP:
case AP_SIG_GRACEFUL:
case SIGKILL:
break;
default:
if (APR_PROC_CHECK_CORE_DUMP(why)) {
0, ap_server_conf,
"child pid %ld exit signal %s (%d), "
"possible coredump in %s",
}
else {
0, ap_server_conf,
"child pid %ld exit signal %s (%d)",
}
}
}
return 0;
}
#endif /* AP_MPM_WANT_PROCESS_CHILD_STATUS */
void ap_sock_disable_nagle(apr_socket_t *s)
{
/* The Nagle algorithm says that we should delay sending partial
* packets in hopes of getting more data. We don't want to do
* this; we are not telnet. There are bad interactions between
* persistent connections and Nagle's algorithm that have very severe
* performance penalties. (Failing to disable Nagle is not much of a
* problem with simple HTTP.)
*
* In spite of these problems, failure here is not a shooting offense.
*/
if (status != APR_SUCCESS) {
"setsockopt: (TCP_NODELAY)");
}
}
#endif
#ifdef HAVE_GETPWNAM
{
if (name[0] == '#')
exit(1);
}
}
#endif
#ifdef HAVE_GETGRNAM
{
if (name[0] == '#')
exit(1);
}
}
#endif
#ifndef HAVE_INITGROUPS
{
#if defined(QNX) || defined(MPE) || defined(BEOS) || defined(_OSD_POSIX) || defined(TPF) || defined(__TANDEM) || defined(OS2) || defined(WIN32) || defined(NETWARE)
/* QNX, MPE and BeOS do not appear to support supplementary groups. */
return 0;
#else /* ndef QNX */
struct group *g;
int index = 0;
setgrent();
char **names;
}
}
}
endgrent();
#endif /* def QNX */
}
#endif /* def NEED_INITGROUPS */
#ifdef AP_MPM_USES_POD
{
if (rv != APR_SUCCESS) {
return rv;
}
(*pod)->p = p;
return APR_SUCCESS;
}
{
char c;
return APR_SUCCESS;
}
if (rv != APR_SUCCESS) {
return rv;
}
return AP_NORESTART;
}
{
if (rv != APR_SUCCESS) {
return rv;
}
if (rv != APR_SUCCESS) {
return rv;
}
return APR_SUCCESS;
}
{
char char_of_death = '!';
do {
} while (APR_STATUS_IS_EINTR(rv));
if (rv != APR_SUCCESS) {
"write pipe_of_death");
}
return rv;
}
/* This function connects to the server, then immediately closes the connection.
* This permits the MPM to skip the poll when there is only one listening
* socket, because it provides a alternate way to unblock an accept() when
* the pod is used.
*/
{
apr_pool_t *p;
/* create a temporary pool for the socket. pconf stays around too long */
if (rv != APR_SUCCESS) {
return rv;
}
if (rv != APR_SUCCESS) {
"get socket to connect to listener");
return rv;
}
/* on some platforms (e.g., FreeBSD), the kernel won't accept many
* queued connections before it starts blocking local connects...
* we need to keep from blocking too long and instead return an error,
* because the MPM won't want to hold up a graceful restart for a
* long time
*/
if (rv != APR_SUCCESS) {
"set timeout on socket to connect to listener");
return rv;
}
if (rv != APR_SUCCESS) {
int log_level = APLOG_WARNING;
if (APR_STATUS_IS_TIMEUP(rv)) {
/* probably some server processes bailed out already and there
* is nobody around to call accept and clear out the kernel
* connection queue; usually this is not worth logging
*/
}
"connect to listener");
}
apr_pool_destroy(p);
return rv;
}
{
if (rv != APR_SUCCESS) {
return rv;
}
return dummy_connection(pod);
}
{
int i;
}
if (rv == APR_SUCCESS) {
}
}
}
#endif /* #ifdef AP_MPM_USES_POD */
/* standard mpm configuration handling */
#ifdef AP_MPM_WANT_SET_PIDFILE
const char *ap_pid_fname = NULL;
const char *arg)
{
return err;
}
return "PidFile directive not allowed in <VirtualHost>";
}
ap_pid_fname = arg;
return NULL;
}
#endif
#ifdef AP_MPM_WANT_SET_SCOREBOARD
const char *arg)
{
return err;
}
return NULL;
}
#endif
#ifdef AP_MPM_WANT_SET_LOCKFILE
const char *ap_lock_fname = NULL;
const char *arg)
{
return err;
}
ap_lock_fname = arg;
return NULL;
}
#endif
#ifdef AP_MPM_WANT_SET_MAX_REQUESTS
int ap_max_requests_per_child = 0;
const char *arg)
{
return err;
}
return NULL;
}
#endif
#ifdef AP_MPM_WANT_SET_COREDUMPDIR
char ap_coredump_dir[MAX_STRING_LEN];
const char *arg)
{
const char *fname;
return err;
}
" does not exist or is not a directory", NULL);
}
return NULL;
}
#endif
void *dummy,
const char *arg)
{
return err;
}
}
}
#endif
}
#endif
/* perchild can't use SysV sems because the permissions on the accept
* mutex can't be set to allow all processes to use the mutex and
* at the same time keep all users from being able to dink with the
* mutex
*/
#if APR_HAS_SYSVSEM_SERIALIZE && !defined(PERCHILD_MPM)
}
#endif
}
#endif
else {
"valid ones for this platform and MPM are: default"
", flock"
#endif
", fcntl"
#endif
#if APR_HAS_SYSVSEM_SERIALIZE && !defined(PERCHILD_MPM)
", sysvsem"
#endif
", pthread"
#endif
, NULL);
}
return NULL;
}
#endif