event.c revision 4bd465052c4a0c8d41e573ee7a90c312d980355f
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* This MPM tries to fix the 'keep alive problem' in HTTP.
*
* After a client completes the first request, the client can keep the
* connection open to send more requests with the same socket. This can save
* signifigant overhead in creating TCP connections. However, the major
* disadvantage is that Apache traditionally keeps an entire child
* process/thread waiting for data from the client. To solve this problem,
* this MPM has a dedicated thread for handling both the Listenting sockets,
* and all sockets that are in a Keep Alive status.
*
* The MPM assumes the underlying apr_pollset implmentation is somewhat
* threadsafe. This currently is only compatible with KQueue and EPoll. This
* enables the MPM to avoid extra high level locking or having to wake up the
* listener thread when a keep-alive socket needs to be sent to it.
*
* This MPM not preform well on older platforms that do not have very good
* threading, like Linux with a 2.4 kernel, but this does not matter, since we
* require EPoll or KQueue.
*
* For FreeBSD, use 5.3. It is possible to run this MPM on FreeBSD 5.2.1, if
* you use libkse (see `man libmap.conf`).
*
* For NetBSD, use at least 2.0.
*
* For Linux, you should use a 2.6 kernel, and make sure your glibc has epoll
* support compiled in.
*
*/
#include "apr.h"
#include "apr_portable.h"
#include "apr_strings.h"
#include "apr_file_io.h"
#include "apr_thread_proc.h"
#include "apr_signal.h"
#include "apr_thread_mutex.h"
#include "apr_proc_mutex.h"
#include "apr_poll.h"
#include "apr_ring.h"
#include "apr_queue.h"
#define APR_WANT_STRFUNC
#include "apr_want.h"
#if APR_HAVE_UNISTD_H
#include <unistd.h>
#endif
#if APR_HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#if APR_HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#ifdef HAVE_SYS_PROCESSOR_H
#include <sys/processor.h> /* for bindprocessor() */
#endif
#if !APR_HAS_THREADS
#error The Event MPM requires APR threads, but they are unavailable.
#endif
#define CORE_PRIVATE
#include "ap_config.h"
#include "httpd.h"
#include "http_main.h"
#include "http_log.h"
#include "http_config.h" /* for read_config */
#include "http_core.h" /* for get_remote_host */
#include "http_connection.h"
#include "ap_mpm.h"
#include "pod.h"
#include "mpm_common.h"
#include "ap_listen.h"
#include "scoreboard.h"
#include "fdqueue.h"
#include "mpm_default.h"
#include "http_vhost.h"
#include <signal.h>
#include <limits.h> /* for INT_MAX */
/* Limit on the total --- clients will be locked out if more servers than
* this are needed. It is intended solely to keep the server from crashing
* when things get out of hand.
*
* We keep a hard maximum number of servers, for two reasons --- first off,
* in case something goes seriously wrong, we want to stop the fork bomb
* short of actually crashing the machine we're running on by filling some
* kernel table. Secondly, it keeps the size of the scoreboard file small
* enough that we can read the whole thing without worrying too much about
* the overhead.
*/
#ifndef DEFAULT_SERVER_LIMIT
#define DEFAULT_SERVER_LIMIT 16
#endif
/* Admin can't tune ServerLimit beyond MAX_SERVER_LIMIT. We want
* some sort of compile-time limit to help catch typos.
*/
#ifndef MAX_SERVER_LIMIT
#define MAX_SERVER_LIMIT 20000
#endif
/* Limit on the threads per process. Clients will be locked out if more than
* this are needed.
*
* We keep this for one reason it keeps the size of the scoreboard file small
* enough that we can read the whole thing without worrying too much about
* the overhead.
*/
#ifndef DEFAULT_THREAD_LIMIT
#define DEFAULT_THREAD_LIMIT 64
#endif
/* Admin can't tune ThreadLimit beyond MAX_THREAD_LIMIT. We want
* some sort of compile-time limit to help catch typos.
*/
#ifndef MAX_THREAD_LIMIT
#define MAX_THREAD_LIMIT 100000
#endif
/*
* Actual definitions of config globals
*/
int ap_threads_per_child = 0; /* Worker threads per child */
static int ap_daemons_to_start = 0;
static int min_spare_threads = 0;
static int max_spare_threads = 0;
static int ap_daemons_limit = 0;
static int max_clients = 0;
static int server_limit = 0;
static int first_server_limit = 0;
static int thread_limit = 0;
static int first_thread_limit = 0;
static int dying = 0;
static int workers_may_exit = 0;
static int start_thread_may_exit = 0;
static int listener_may_exit = 0;
static int requests_this_child;
static int num_listensocks = 0;
static int resource_shortage = 0;
static fd_queue_t *worker_queue;
static fd_queue_info_t *worker_queue_info;
static int mpm_state = AP_MPMQ_STARTING;
static int sick_child_detected;
apr_thread_mutex_t *timeout_mutex;
APR_RING_HEAD(timeout_head_t, conn_state_t);
static struct timeout_head_t timeout_head, keepalive_timeout_head;
static apr_pollset_t *event_pollset;
/* The structure used to pass unique initialization info to each thread */
typedef struct
{
int pid;
int tid;
int sd;
} proc_info;
/* Structure used to pass information to the thread responsible for
* creating the rest of the threads.
*/
typedef struct
{
apr_thread_t **threads;
apr_thread_t *listener;
int child_num_arg;
apr_threadattr_t *threadattr;
} thread_starter;
typedef enum
{
PT_CSD,
PT_ACCEPT
} poll_type_e;
typedef struct
{
poll_type_e type;
int status; /*XXX what is this for? 0 and 1 don't make it clear */
void *baton;
} listener_poll_type;
#define ID_FROM_CHILD_THREAD(c, t) ((c * thread_limit) + t)
/*
* The max child slot ever assigned, preserved across restarts. Necessary
* to deal with MaxClients changes across AP_SIG_GRACEFUL restarts. We
* use this value to optimize routines that have to scan the entire
* scoreboard.
*/
int ap_max_daemons_limit = -1;
static ap_pod_t *pod;
/* *Non*-shared http_main globals... */
server_rec *ap_server_conf;
/* The worker MPM respects a couple of runtime flags that can aid
* in debugging. Setting the -DNO_DETACH flag will prevent the root process
* from detaching from its controlling terminal. Additionally, setting
* the -DONE_PROCESS flag (which implies -DNO_DETACH) will get you the
* child_main loop running in the process which originally started up.
* This gives you a pretty nice debugging environment. (You'll get a SIGHUP
* early in standalone_main; just continue through. This is the server
* trying to kill off any child processes which it might have lying
* around --- Apache doesn't keep track of their pids, it just sends
* SIGHUP to the process group, ignoring it in the root process.
* Continue through and you'll be fine.).
*/
static int one_process = 0;
#ifdef DEBUG_SIGSTOP
int raise_sigstop_flags;
#endif
static apr_pool_t *pconf; /* Pool for config stuff */
static apr_pool_t *pchild; /* Pool for httpd child stuff */
static pid_t ap_my_pid; /* Linux getpid() doesn't work except in main
thread. Use this instead */
static pid_t parent_pid;
static apr_os_thread_t *listener_os_thread;
/* The LISTENER_SIGNAL signal will be sent from the main thread to the
* listener thread to wake it up for graceful termination (what a child
* process from an old generation does when the admin does "apachectl
* graceful"). This signal will be blocked in all threads of a child
* process except for the listener thread.
*/
#define LISTENER_SIGNAL SIGHUP
/* An array of socket descriptors in use by each thread used to
* perform a non-graceful (forced) shutdown of the server.
*/
static apr_socket_t **worker_sockets;
static void close_worker_sockets(void)
{
int i;
for (i = 0; i < ap_threads_per_child; i++) {
if (worker_sockets[i]) {
apr_socket_close(worker_sockets[i]);
worker_sockets[i] = NULL;
}
}
}
static void wakeup_listener(void)
{
listener_may_exit = 1;
if (!listener_os_thread) {
/* XXX there is an obscure path that this doesn't handle perfectly:
* right after listener thread is created but before
* listener_os_thread is set, the first worker thread hits an
* error and starts graceful termination
*/
return;
}
/*
* we should just be able to "kill(ap_my_pid, LISTENER_SIGNAL)" on all
* platforms and wake up the listener thread since it is the only thread
* with SIGHUP unblocked, but that doesn't work on Linux
*/
#ifdef HAVE_PTHREAD_KILL
pthread_kill(*listener_os_thread, LISTENER_SIGNAL);
#else
kill(ap_my_pid, LISTENER_SIGNAL);
#endif
}
#define ST_INIT 0
#define ST_GRACEFUL 1
#define ST_UNGRACEFUL 2
static int terminate_mode = ST_INIT;
static void signal_threads(int mode)
{
if (terminate_mode == mode) {
return;
}
terminate_mode = mode;
mpm_state = AP_MPMQ_STOPPING;
/* in case we weren't called from the listener thread, wake up the
* listener thread
*/
wakeup_listener();
/* for ungraceful termination, let the workers exit now;
* for graceful termination, the listener thread will notify the
* workers to exit once it has stopped accepting new connections
*/
if (mode == ST_UNGRACEFUL) {
workers_may_exit = 1;
ap_queue_interrupt_all(worker_queue);
ap_queue_info_term(worker_queue_info);
close_worker_sockets(); /* forcefully kill all current connections */
}
}
AP_DECLARE(apr_status_t) ap_mpm_query(int query_code, int *result)
{
switch (query_code) {
case AP_MPMQ_MAX_DAEMON_USED:
*result = ap_max_daemons_limit;
return APR_SUCCESS;
case AP_MPMQ_IS_THREADED:
*result = AP_MPMQ_STATIC;
return APR_SUCCESS;
case AP_MPMQ_IS_FORKED:
*result = AP_MPMQ_DYNAMIC;
return APR_SUCCESS;
case AP_MPMQ_IS_ASYNC:
*result = 1;
return APR_SUCCESS;
case AP_MPMQ_HARD_LIMIT_DAEMONS:
*result = server_limit;
return APR_SUCCESS;
case AP_MPMQ_HARD_LIMIT_THREADS:
*result = thread_limit;
return APR_SUCCESS;
case AP_MPMQ_MAX_THREADS:
*result = ap_threads_per_child;
return APR_SUCCESS;
case AP_MPMQ_MIN_SPARE_DAEMONS:
*result = 0;
return APR_SUCCESS;
case AP_MPMQ_MIN_SPARE_THREADS:
*result = min_spare_threads;
return APR_SUCCESS;
case AP_MPMQ_MAX_SPARE_DAEMONS:
*result = 0;
return APR_SUCCESS;
case AP_MPMQ_MAX_SPARE_THREADS:
*result = max_spare_threads;
return APR_SUCCESS;
case AP_MPMQ_MAX_REQUESTS_DAEMON:
*result = ap_max_requests_per_child;
return APR_SUCCESS;
case AP_MPMQ_MAX_DAEMONS:
*result = ap_daemons_limit;
return APR_SUCCESS;
case AP_MPMQ_MPM_STATE:
*result = mpm_state;
return APR_SUCCESS;
}
return APR_ENOTIMPL;
}
/* a clean exit from a child with proper cleanup */
static void clean_child_exit(int code) __attribute__ ((noreturn));
static void clean_child_exit(int code)
{
mpm_state = AP_MPMQ_STOPPING;
if (pchild) {
apr_pool_destroy(pchild);
}
exit(code);
}
static void just_die(int sig)
{
clean_child_exit(0);
}
/*****************************************************************
* Connection structures and accounting...
*/
/* volatile just in case */
static int volatile shutdown_pending;
static int volatile restart_pending;
static int volatile is_graceful;
static volatile int child_fatal;
ap_generation_t volatile ap_my_generation = 0;
/*
* ap_start_shutdown() and ap_start_restart(), below, are a first stab at
* functions to initiate shutdown or restart without relying on signals.
* Previously this was initiated in sig_term() and restart() signal handlers,
* but we want to be able to start a shutdown/restart from other sources --
* e.g. on Win32, from the service manager. Now the service manager can
* call ap_start_shutdown() or ap_start_restart() as appropiate. Note that
* these functions can also be called by the child processes, since global
* variables are no longer used to pass on the required action to the parent.
*
* These should only be called from the parent process itself, since the
* parent process will use the shutdown_pending and restart_pending variables
* to determine whether to shutdown or restart. The child process should
* call signal_parent() directly to tell the parent to die -- this will
* cause neither of those variable to be set, which the parent will
* assume means something serious is wrong (which it will be, for the
* child to force an exit) and so do an exit anyway.
*/
static void ap_start_shutdown(int graceful)
{
mpm_state = AP_MPMQ_STOPPING;
if (shutdown_pending == 1) {
/* Um, is this _probably_ not an error, if the user has
* tried to do a shutdown twice quickly, so we won't
* worry about reporting it.
*/
return;
}
shutdown_pending = 1;
is_graceful = graceful;
}
/* do a graceful restart if graceful == 1 */
static void ap_start_restart(int graceful)
{
mpm_state = AP_MPMQ_STOPPING;
if (restart_pending == 1) {
/* Probably not an error - don't bother reporting it */
return;
}
restart_pending = 1;
is_graceful = graceful;
}
static void sig_term(int sig)
{
ap_start_shutdown(sig == AP_SIG_GRACEFUL_STOP);
}
static void restart(int sig)
{
ap_start_restart(sig == AP_SIG_GRACEFUL);
}
static void set_signals(void)
{
#ifndef NO_USE_SIGACTION
struct sigaction sa;
#endif
if (!one_process) {
ap_fatal_signal_setup(ap_server_conf, pconf);
}
#ifndef NO_USE_SIGACTION
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = sig_term;
if (sigaction(SIGTERM, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(SIGTERM)");
#ifdef AP_SIG_GRACEFUL_STOP
if (sigaction(AP_SIG_GRACEFUL_STOP, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(" AP_SIG_GRACEFUL_STOP_STRING ")");
#endif
#ifdef SIGINT
if (sigaction(SIGINT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(SIGINT)");
#endif
#ifdef SIGXCPU
sa.sa_handler = SIG_DFL;
if (sigaction(SIGXCPU, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(SIGXCPU)");
#endif
#ifdef SIGXFSZ
sa.sa_handler = SIG_DFL;
if (sigaction(SIGXFSZ, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(SIGXFSZ)");
#endif
#ifdef SIGPIPE
sa.sa_handler = SIG_IGN;
if (sigaction(SIGPIPE, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(SIGPIPE)");
#endif
/* we want to ignore HUPs and AP_SIG_GRACEFUL while we're busy
* processing one */
sigaddset(&sa.sa_mask, SIGHUP);
sigaddset(&sa.sa_mask, AP_SIG_GRACEFUL);
sa.sa_handler = restart;
if (sigaction(SIGHUP, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(SIGHUP)");
if (sigaction(AP_SIG_GRACEFUL, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"sigaction(" AP_SIG_GRACEFUL_STRING ")");
#else
if (!one_process) {
#ifdef SIGXCPU
apr_signal(SIGXCPU, SIG_DFL);
#endif /* SIGXCPU */
#ifdef SIGXFSZ
apr_signal(SIGXFSZ, SIG_DFL);
#endif /* SIGXFSZ */
}
apr_signal(SIGTERM, sig_term);
#ifdef SIGHUP
apr_signal(SIGHUP, restart);
#endif /* SIGHUP */
#ifdef AP_SIG_GRACEFUL
apr_signal(AP_SIG_GRACEFUL, restart);
#endif /* AP_SIG_GRACEFUL */
#ifdef AP_SIG_GRACEFUL_STOP
apr_signal(AP_SIG_GRACEFUL_STOP, sig_term);
#endif /* AP_SIG_GRACEFUL_STOP */
#ifdef SIGPIPE
apr_signal(SIGPIPE, SIG_IGN);
#endif /* SIGPIPE */
#endif
}
/*****************************************************************
* Here follows a long bunch of generic server bookkeeping stuff...
*/
int ap_graceful_stop_signalled(void)
/* XXX this is really a bad confusing obsolete name
* maybe it should be ap_mpm_process_exiting?
*/
{
/* note: for a graceful termination, listener_may_exit will be set before
* workers_may_exit, so check listener_may_exit
*/
return listener_may_exit;
}
/*****************************************************************
* Child process main loop.
*/
static int process_socket(apr_pool_t * p, apr_socket_t * sock,
conn_state_t * cs, int my_child_num,
int my_thread_num)
{
conn_rec *c;
listener_poll_type *pt;
long conn_id = ID_FROM_CHILD_THREAD(my_child_num, my_thread_num);
int csd;
int rc;
ap_sb_handle_t *sbh;
ap_create_sb_handle(&sbh, p, my_child_num, my_thread_num);
apr_os_sock_get(&csd, sock);
if (cs == NULL) { /* This is a new connection */
cs = apr_pcalloc(p, sizeof(conn_state_t));
pt = apr_pcalloc(p, sizeof(*pt));
cs->bucket_alloc = apr_bucket_alloc_create(p);
c = ap_run_create_connection(p, ap_server_conf, sock,
conn_id, sbh, cs->bucket_alloc);
cs->c = c;
c->cs = cs;
cs->p = p;
cs->pfd.desc_type = APR_POLL_SOCKET;
cs->pfd.reqevents = APR_POLLIN;
cs->pfd.desc.s = sock;
pt->type = PT_CSD;
pt->status = 1;
pt->baton = cs;
cs->pfd.client_data = pt;
APR_RING_ELEM_INIT(cs, timeout_list);
ap_update_vhost_given_ip(c);
rc = ap_run_pre_connection(c, sock);
if (rc != OK && rc != DONE) {
ap_log_error(APLOG_MARK, APLOG_DEBUG, 0, ap_server_conf,
"process_socket: connection aborted");
c->aborted = 1;
}
/**
* XXX If the platform does not have a usable way of bundling
* accept() with a socket readability check, like Win32,
* and there are measurable delays before the
* socket is readable due to the first data packet arriving,
* it might be better to create the cs on the listener thread
* with the state set to CONN_STATE_CHECK_REQUEST_LINE_READABLE
*
* FreeBSD users will want to enable the HTTP accept filter
* module in their kernel for the highest performance
* When the accept filter is active, sockets are kept in the
* kernel until a HTTP request is received.
*/
cs->state = CONN_STATE_READ_REQUEST_LINE;
}
else {
c = cs->c;
c->sbh = sbh;
pt = cs->pfd.client_data;
}
read_request:
if (cs->state == CONN_STATE_READ_REQUEST_LINE) {
if (!c->aborted) {
ap_run_process_connection(c);
/* state will be updated upon return
* fall thru to either wait for readability/timeout or
* do lingering close
*/
}
else {
cs->state = CONN_STATE_LINGER;
}
}
if (cs->state == CONN_STATE_WRITE_COMPLETION) {
ap_filter_t *output_filter = c->output_filters;
apr_status_t rv;
while (output_filter->next != NULL) {
output_filter = output_filter->next;
}
rv = output_filter->frec->filter_func.out_func(output_filter, NULL);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf,
"network write failure in core output filter");
cs->state = CONN_STATE_LINGER;
}
else if (c->data_in_output_filters) {
/* Still in WRITE_COMPLETION_STATE:
* Set a write timeout for this connection, and let the
* event thread poll for writeability.
*/
cs->expiration_time = ap_server_conf->timeout + apr_time_now();
apr_thread_mutex_lock(timeout_mutex);
APR_RING_INSERT_TAIL(&timeout_head, cs, conn_state_t, timeout_list);
apr_thread_mutex_unlock(timeout_mutex);
pt->status = 0;
cs->pfd.reqevents = APR_POLLOUT | APR_POLLHUP | APR_POLLERR;
rc = apr_pollset_add(event_pollset, &cs->pfd);
return 1;
}
else if (c->keepalive != AP_CONN_KEEPALIVE || c->aborted ||
ap_graceful_stop_signalled()) {
c->cs->state = CONN_STATE_LINGER;
}
else if (c->data_in_input_filters) {
cs->state = CONN_STATE_READ_REQUEST_LINE;
goto read_request;
}
else {
cs->state = CONN_STATE_CHECK_REQUEST_LINE_READABLE;
}
}
if (cs->state == CONN_STATE_LINGER) {
ap_lingering_close(c);
apr_pool_clear(p);
ap_push_pool(worker_queue_info, p);
return 1;
}
else if (cs->state == CONN_STATE_CHECK_REQUEST_LINE_READABLE) {
apr_status_t rc;
listener_poll_type *pt = (listener_poll_type *) cs->pfd.client_data;
/* It greatly simplifies the logic to use a single timeout value here
* because the new element can just be added to the end of the list and
* it will stay sorted in expiration time sequence. If brand new
* sockets are sent to the event thread for a readability check, this
* will be a slight behavior change - they use the non-keepalive
* timeout today. With a normal client, the socket will be readable in
* a few milliseconds anyway.
*/
cs->expiration_time = ap_server_conf->keep_alive_timeout +
apr_time_now();
apr_thread_mutex_lock(timeout_mutex);
APR_RING_INSERT_TAIL(&keepalive_timeout_head, cs, conn_state_t, timeout_list);
apr_thread_mutex_unlock(timeout_mutex);
pt->status = 0;
/* Add work to pollset. */
cs->pfd.reqevents = APR_POLLIN;
rc = apr_pollset_add(event_pollset, &cs->pfd);
if (rc != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ERR, rc, ap_server_conf,
"process_socket: apr_pollset_add failure");
AP_DEBUG_ASSERT(rc == APR_SUCCESS);
}
}
return 0;
}
/* requests_this_child has gone to zero or below. See if the admin coded
"MaxRequestsPerChild 0", and keep going in that case. Doing it this way
simplifies the hot path in worker_thread */
static void check_infinite_requests(void)
{
if (ap_max_requests_per_child) {
signal_threads(ST_GRACEFUL);
}
else {
/* wow! if you're executing this code, you may have set a record.
* either this child process has served over 2 billion requests, or
* you're running a threaded 2.0 on a 16 bit machine.
*
* I'll buy pizza and beers at Apachecon for the first person to do
* the former without cheating (dorking with INT_MAX, or running with
* uncommitted performance patches, for example).
*
* for the latter case, you probably deserve a beer too. Greg Ames
*/
requests_this_child = INT_MAX; /* keep going */
}
}
static void unblock_signal(int sig)
{
sigset_t sig_mask;
sigemptyset(&sig_mask);
sigaddset(&sig_mask, sig);
#if defined(SIGPROCMASK_SETS_THREAD_MASK)
sigprocmask(SIG_UNBLOCK, &sig_mask, NULL);
#else
pthread_sigmask(SIG_UNBLOCK, &sig_mask, NULL);
#endif
}
static void dummy_signal_handler(int sig)
{
/* XXX If specifying SIG_IGN is guaranteed to unblock a syscall,
* then we don't need this goofy function.
*/
}
static apr_status_t init_pollset(apr_pool_t *p)
{
apr_status_t rv;
ap_listen_rec *lr;
listener_poll_type *pt;
rv = apr_thread_mutex_create(&timeout_mutex, APR_THREAD_MUTEX_DEFAULT, p);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ERR, rv, ap_server_conf,
"creation of the timeout mutex failed.");
return rv;
}
APR_RING_INIT(&timeout_head, conn_state_t, timeout_list);
APR_RING_INIT(&keepalive_timeout_head, conn_state_t, timeout_list);
/* Create the main pollset */
rv = apr_pollset_create(&event_pollset,
ap_threads_per_child,
p, APR_POLLSET_THREADSAFE | APR_POLLSET_NOCOPY);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ERR, rv, ap_server_conf,
"apr_pollset_create with Thread Safety failed.");
return rv;
}
for (lr = ap_listeners; lr != NULL; lr = lr->next) {
apr_pollfd_t *pfd = apr_palloc(p, sizeof(*pfd));
pt = apr_pcalloc(p, sizeof(*pt));
pfd->desc_type = APR_POLL_SOCKET;
pfd->desc.s = lr->sd;
pfd->reqevents = APR_POLLIN;
pt->type = PT_ACCEPT;
pt->baton = lr;
pfd->client_data = pt;
apr_socket_opt_set(pfd->desc.s, APR_SO_NONBLOCK, 1);
apr_pollset_add(event_pollset, pfd);
}
return APR_SUCCESS;
}
static apr_status_t push2worker(const apr_pollfd_t * pfd,
apr_pollset_t * pollset)
{
listener_poll_type *pt = (listener_poll_type *) pfd->client_data;
conn_state_t *cs = (conn_state_t *) pt->baton;
apr_status_t rc;
if (pt->status == 1) {
return 0;
}
pt->status = 1;
rc = apr_pollset_remove(pollset, pfd);
/*
* Some of the pollset backends, like KQueue or Epoll
* automagically remove the FD if the socket is closed,
* therefore, we can accept _SUCCESS or _NOTFOUND,
* and we still want to keep going
*/
if (rc != APR_SUCCESS && rc != APR_NOTFOUND) {
cs->state = CONN_STATE_LINGER;
}
rc = ap_queue_push(worker_queue, cs->pfd.desc.s, cs, cs->p);
if (rc != APR_SUCCESS) {
/* trash the connection; we couldn't queue the connected
* socket to a worker
*/
apr_bucket_alloc_destroy(cs->bucket_alloc);
apr_socket_close(cs->pfd.desc.s);
ap_log_error(APLOG_MARK, APLOG_CRIT, rc,
ap_server_conf, "push2worker: ap_queue_push failed");
apr_pool_clear(cs->p);
ap_push_pool(worker_queue_info, cs->p);
}
return APR_SUCCESS;
}
/* get_worker:
* reserve a worker thread, block if all are currently busy.
* this prevents the worker queue from overflowing and lets
* other processes accept new connections in the mean time.
*/
static int get_worker(int *have_idle_worker_p)
{
apr_status_t rc;
if (!*have_idle_worker_p) {
rc = ap_queue_info_wait_for_idler(worker_queue_info);
if (rc == APR_SUCCESS) {
*have_idle_worker_p = 1;
return 1;
}
else {
if (!APR_STATUS_IS_EOF(rc)) {
ap_log_error(APLOG_MARK, APLOG_ERR, rc, ap_server_conf,
"ap_queue_info_wait_for_idler failed. "
"Attempting to shutdown process gracefully");
signal_threads(ST_GRACEFUL);
}
return 0;
}
}
else {
/* already reserved a worker thread - must have hit a
* transient error on a previous pass
*/
return 1;
}
}
static void *listener_thread(apr_thread_t * thd, void *dummy)
{
apr_status_t rc;
proc_info *ti = dummy;
int process_slot = ti->pid;
apr_pool_t *tpool = apr_thread_pool_get(thd);
void *csd = NULL;
apr_pool_t *ptrans; /* Pool for per-transaction stuff */
ap_listen_rec *lr;
int have_idle_worker = 0;
conn_state_t *cs;
const apr_pollfd_t *out_pfd;
apr_int32_t num = 0;
apr_time_t time_now = 0;
apr_interval_time_t timeout_interval;
apr_time_t timeout_time;
listener_poll_type *pt;
free(ti);
/* We set this to force apr_pollset to wakeup if there hasn't been any IO
* on any of its sockets. This allows sockets to have been added
* when no other keepalive operations where going on.
*
* current value is 1 second
*/
timeout_interval = 1000000;
/* the following times out events that are really close in the future
* to prevent extra poll calls
*
* current value is .1 second
*/
#define TIMEOUT_FUDGE_FACTOR 100000
rc = init_pollset(tpool);
if (rc != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ERR, rc, ap_server_conf,
"failed to initialize pollset, "
"attempting to shutdown process gracefully");
signal_threads(ST_GRACEFUL);
return NULL;
}
/* Unblock the signal used to wake this thread up, and set a handler for
* it.
*/
unblock_signal(LISTENER_SIGNAL);
apr_signal(LISTENER_SIGNAL, dummy_signal_handler);
while (!listener_may_exit) {
if (requests_this_child <= 0) {
check_infinite_requests();
}
rc = apr_pollset_poll(event_pollset, timeout_interval, &num,
&out_pfd);
if (rc != APR_SUCCESS) {
if (APR_STATUS_IS_EINTR(rc)) {
continue;
}
if (!APR_STATUS_IS_TIMEUP(rc)) {
ap_log_error(APLOG_MARK, APLOG_ERR, rc, ap_server_conf,
"apr_pollset_poll failed. Attempting to "
"shutdown process gracefully");
signal_threads(ST_GRACEFUL);
}
}
if (listener_may_exit)
break;
while (num && get_worker(&have_idle_worker)) {
pt = (listener_poll_type *) out_pfd->client_data;
if (pt->type == PT_CSD) {
/* one of the sockets is readable */
cs = (conn_state_t *) pt->baton;
switch (cs->state) {
case CONN_STATE_CHECK_REQUEST_LINE_READABLE:
cs->state = CONN_STATE_READ_REQUEST_LINE;
break;
case CONN_STATE_WRITE_COMPLETION:
break;
default:
ap_log_error(APLOG_MARK, APLOG_ERR, rc,
ap_server_conf,
"event_loop: unexpected state %d",
cs->state);
AP_DEBUG_ASSERT(0);
}
apr_thread_mutex_lock(timeout_mutex);
APR_RING_REMOVE(cs, timeout_list);
apr_thread_mutex_unlock(timeout_mutex);
APR_RING_ELEM_INIT(cs, timeout_list);
rc = push2worker(out_pfd, event_pollset);
if (rc != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rc,
ap_server_conf, "push2worker failed");
}
else {
have_idle_worker = 0;
}
}
else {
/* A Listener Socket is ready for an accept() */
lr = (ap_listen_rec *) pt->baton;
ap_pop_pool(&ptrans, worker_queue_info);
if (ptrans == NULL) {
/* create a new transaction pool for each accepted socket */
apr_allocator_t *allocator;
apr_allocator_create(&allocator);
apr_allocator_max_free_set(allocator,
ap_max_mem_free);
apr_pool_create_ex(&ptrans, pconf, NULL, allocator);
apr_allocator_owner_set(allocator, ptrans);
if (ptrans == NULL) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rc,
ap_server_conf,
"Failed to create transaction pool");
signal_threads(ST_GRACEFUL);
return NULL;
}
}
apr_pool_tag(ptrans, "transaction");
rc = lr->accept_func(&csd, lr, ptrans);
/* later we trash rv and rely on csd to indicate
* success/failure
*/
AP_DEBUG_ASSERT(rc == APR_SUCCESS || !csd);
if (rc == APR_EGENERAL) {
/* E[NM]FILE, ENOMEM, etc */
resource_shortage = 1;
signal_threads(ST_GRACEFUL);
}
if (csd != NULL) {
rc = ap_queue_push(worker_queue, csd, NULL, ptrans);
if (rc != APR_SUCCESS) {
/* trash the connection; we couldn't queue the connected
* socket to a worker
*/
apr_socket_close(csd);
ap_log_error(APLOG_MARK, APLOG_CRIT, rc,
ap_server_conf,
"ap_queue_push failed");
apr_pool_clear(ptrans);
ap_push_pool(worker_queue_info, ptrans);
}
else {
have_idle_worker = 0;
}
}
else {
apr_pool_clear(ptrans);
ap_push_pool(worker_queue_info, ptrans);
}
} /* if:else on pt->type */
out_pfd++;
num--;
} /* while for processing poll */
/* XXX possible optimization: stash the current time for use as
* r->request_time for new requests
*/
time_now = apr_time_now();
/* handle timed out sockets */
apr_thread_mutex_lock(timeout_mutex);
/* Step 1: keepalive timeouts */
cs = APR_RING_FIRST(&keepalive_timeout_head);
timeout_time = time_now + TIMEOUT_FUDGE_FACTOR;
while (!APR_RING_EMPTY(&keepalive_timeout_head, conn_state_t, timeout_list)
&& cs->expiration_time < timeout_time
&& get_worker(&have_idle_worker)) {
cs->state = CONN_STATE_LINGER;
APR_RING_REMOVE(cs, timeout_list);
rc = push2worker(&cs->pfd, event_pollset);
if (rc != APR_SUCCESS) {
return NULL;
/* XXX return NULL looks wrong - not an init failure
* that bypasses all the cleanup outside the main loop
* break seems more like it
* need to evaluate seriousness of push2worker failures
*/
}
have_idle_worker = 0;
cs = APR_RING_FIRST(&keepalive_timeout_head);
}
/* Step 2: write completion timeouts */
cs = APR_RING_FIRST(&timeout_head);
while (!APR_RING_EMPTY(&timeout_head, conn_state_t, timeout_list)
&& cs->expiration_time < timeout_time
&& get_worker(&have_idle_worker)) {
cs->state = CONN_STATE_LINGER;
APR_RING_REMOVE(cs, timeout_list);
rc = push2worker(&cs->pfd, event_pollset);
if (rc != APR_SUCCESS) {
return NULL;
}
have_idle_worker = 0;
cs = APR_RING_FIRST(&timeout_head);
}
apr_thread_mutex_unlock(timeout_mutex);
} /* listener main loop */
ap_close_listeners();
ap_queue_term(worker_queue);
dying = 1;
ap_scoreboard_image->parent[process_slot].quiescing = 1;
/* wake up the main thread */
kill(ap_my_pid, SIGTERM);
apr_thread_exit(thd, APR_SUCCESS);
return NULL;
}
/* XXX For ungraceful termination/restart, we definitely don't want to
* wait for active connections to finish but we may want to wait
* for idle workers to get out of the queue code and release mutexes,
* since those mutexes are cleaned up pretty soon and some systems
* may not react favorably (i.e., segfault) if operations are attempted
* on cleaned-up mutexes.
*/
static void *APR_THREAD_FUNC worker_thread(apr_thread_t * thd, void *dummy)
{
proc_info *ti = dummy;
int process_slot = ti->pid;
int thread_slot = ti->tid;
apr_socket_t *csd = NULL;
conn_state_t *cs;
apr_pool_t *ptrans; /* Pool for per-transaction stuff */
apr_status_t rv;
int is_idle = 0;
free(ti);
ap_scoreboard_image->servers[process_slot][thread_slot].pid = ap_my_pid;
ap_scoreboard_image->servers[process_slot][thread_slot].tid = apr_os_thread_current();
ap_scoreboard_image->servers[process_slot][thread_slot].generation = ap_my_generation;
ap_update_child_status_from_indexes(process_slot, thread_slot,
SERVER_STARTING, NULL);
while (!workers_may_exit) {
if (!is_idle) {
rv = ap_queue_info_set_idle(worker_queue_info, NULL);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_EMERG, rv, ap_server_conf,
"ap_queue_info_set_idle failed. Attempting to "
"shutdown process gracefully.");
signal_threads(ST_GRACEFUL);
break;
}
is_idle = 1;
}
ap_update_child_status_from_indexes(process_slot, thread_slot,
SERVER_READY, NULL);
worker_pop:
if (workers_may_exit) {
break;
}
rv = ap_queue_pop(worker_queue, &csd, &cs, &ptrans);
if (rv != APR_SUCCESS) {
/* We get APR_EOF during a graceful shutdown once all the
* connections accepted by this server process have been handled.
*/
if (APR_STATUS_IS_EOF(rv)) {
break;
}
/* We get APR_EINTR whenever ap_queue_pop() has been interrupted
* from an explicit call to ap_queue_interrupt_all(). This allows
* us to unblock threads stuck in ap_queue_pop() when a shutdown
* is pending.
*
* If workers_may_exit is set and this is ungraceful termination/
* restart, we are bound to get an error on some systems (e.g.,
* AIX, which sanity-checks mutex operations) since the queue
* may have already been cleaned up. Don't log the "error" if
* workers_may_exit is set.
*/
else if (APR_STATUS_IS_EINTR(rv)) {
goto worker_pop;
}
/* We got some other error. */
else if (!workers_may_exit) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rv, ap_server_conf,
"ap_queue_pop failed");
}
continue;
}
is_idle = 0;
worker_sockets[thread_slot] = csd;
rv = process_socket(ptrans, csd, cs, process_slot, thread_slot);
if (!rv) {
requests_this_child--;
}
worker_sockets[thread_slot] = NULL;
}
ap_update_child_status_from_indexes(process_slot, thread_slot,
(dying) ? SERVER_DEAD :
SERVER_GRACEFUL,
(request_rec *) NULL);
apr_thread_exit(thd, APR_SUCCESS);
return NULL;
}
static int check_signal(int signum)
{
switch (signum) {
case SIGTERM:
case SIGINT:
return 1;
}
return 0;
}
static void create_listener_thread(thread_starter * ts)
{
int my_child_num = ts->child_num_arg;
apr_threadattr_t *thread_attr = ts->threadattr;
proc_info *my_info;
apr_status_t rv;
my_info = (proc_info *) malloc(sizeof(proc_info));
my_info->pid = my_child_num;
my_info->tid = -1; /* listener thread doesn't have a thread slot */
my_info->sd = 0;
rv = apr_thread_create(&ts->listener, thread_attr, listener_thread,
my_info, pchild);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf,
"apr_thread_create: unable to create listener thread");
/* let the parent decide how bad this really is */
clean_child_exit(APEXIT_CHILDSICK);
}
apr_os_thread_get(&listener_os_thread, ts->listener);
}
/* XXX under some circumstances not understood, children can get stuck
* in start_threads forever trying to take over slots which will
* never be cleaned up; for now there is an APLOG_DEBUG message issued
* every so often when this condition occurs
*/
static void *APR_THREAD_FUNC start_threads(apr_thread_t * thd, void *dummy)
{
thread_starter *ts = dummy;
apr_thread_t **threads = ts->threads;
apr_threadattr_t *thread_attr = ts->threadattr;
int child_num_arg = ts->child_num_arg;
int my_child_num = child_num_arg;
proc_info *my_info;
apr_status_t rv;
int i;
int threads_created = 0;
int listener_started = 0;
int loops;
int prev_threads_created;
/* We must create the fd queues before we start up the listener
* and worker threads. */
worker_queue = apr_pcalloc(pchild, sizeof(*worker_queue));
rv = ap_queue_init(worker_queue, ap_threads_per_child, pchild);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf,
"ap_queue_init() failed");
clean_child_exit(APEXIT_CHILDFATAL);
}
rv = ap_queue_info_create(&worker_queue_info, pchild,
ap_threads_per_child);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf,
"ap_queue_info_create() failed");
clean_child_exit(APEXIT_CHILDFATAL);
}
worker_sockets = apr_pcalloc(pchild, ap_threads_per_child
* sizeof(apr_socket_t *));
loops = prev_threads_created = 0;
while (1) {
/* ap_threads_per_child does not include the listener thread */
for (i = 0; i < ap_threads_per_child; i++) {
int status =
ap_scoreboard_image->servers[child_num_arg][i].status;
if (status != SERVER_GRACEFUL && status != SERVER_DEAD) {
continue;
}
my_info = (proc_info *) malloc(sizeof(proc_info));
if (my_info == NULL) {
ap_log_error(APLOG_MARK, APLOG_ALERT, errno, ap_server_conf,
"malloc: out of memory");
clean_child_exit(APEXIT_CHILDFATAL);
}
my_info->pid = my_child_num;
my_info->tid = i;
my_info->sd = 0;
/* We are creating threads right now */
ap_update_child_status_from_indexes(my_child_num, i,
SERVER_STARTING, NULL);
/* We let each thread update its own scoreboard entry. This is
* done because it lets us deal with tid better.
*/
rv = apr_thread_create(&threads[i], thread_attr,
worker_thread, my_info, pchild);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf,
"apr_thread_create: unable to create worker thread");
/* let the parent decide how bad this really is */
clean_child_exit(APEXIT_CHILDSICK);
}
threads_created++;
}
/* Start the listener only when there are workers available */
if (!listener_started && threads_created) {
create_listener_thread(ts);
listener_started = 1;
}
if (start_thread_may_exit || threads_created == ap_threads_per_child) {
break;
}
/* wait for previous generation to clean up an entry */
apr_sleep(apr_time_from_sec(1));
++loops;
if (loops % 120 == 0) { /* every couple of minutes */
if (prev_threads_created == threads_created) {
ap_log_error(APLOG_MARK, APLOG_DEBUG, 0, ap_server_conf,
"child %" APR_PID_T_FMT " isn't taking over "
"slots very quickly (%d of %d)",
ap_my_pid, threads_created,
ap_threads_per_child);
}
prev_threads_created = threads_created;
}
}
/* What state should this child_main process be listed as in the
* scoreboard...?
* ap_update_child_status_from_indexes(my_child_num, i, SERVER_STARTING,
* (request_rec *) NULL);
*
* This state should be listed separately in the scoreboard, in some kind
* of process_status, not mixed in with the worker threads' status.
* "life_status" is almost right, but it's in the worker's structure, and
* the name could be clearer. gla
*/
apr_thread_exit(thd, APR_SUCCESS);
return NULL;
}
static void join_workers(apr_thread_t * listener, apr_thread_t ** threads)
{
int i;
apr_status_t rv, thread_rv;
if (listener) {
int iter;
/* deal with a rare timing window which affects waking up the
* listener thread... if the signal sent to the listener thread
* is delivered between the time it verifies that the
* listener_may_exit flag is clear and the time it enters a
* blocking syscall, the signal didn't do any good... work around
* that by sleeping briefly and sending it again
*/
iter = 0;
while (iter < 10 &&
#ifdef HAVE_PTHREAD_KILL
pthread_kill(*listener_os_thread, 0)
#else
kill(ap_my_pid, 0)
#endif
== 0) {
/* listener not dead yet */
apr_sleep(apr_time_make(0, 500000));
wakeup_listener();
++iter;
}
if (iter >= 10) {
ap_log_error(APLOG_MARK, APLOG_DEBUG, 0, ap_server_conf,
"the listener thread didn't exit");
}
else {
rv = apr_thread_join(&thread_rv, listener);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rv, ap_server_conf,
"apr_thread_join: unable to join listener thread");
}
}
}
for (i = 0; i < ap_threads_per_child; i++) {
if (threads[i]) { /* if we ever created this thread */
rv = apr_thread_join(&thread_rv, threads[i]);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rv, ap_server_conf,
"apr_thread_join: unable to join worker "
"thread %d", i);
}
}
}
}
static void join_start_thread(apr_thread_t * start_thread_id)
{
apr_status_t rv, thread_rv;
start_thread_may_exit = 1; /* tell it to give up in case it is still
* trying to take over slots from a
* previous generation
*/
rv = apr_thread_join(&thread_rv, start_thread_id);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rv, ap_server_conf,
"apr_thread_join: unable to join the start " "thread");
}
}
static void child_main(int child_num_arg)
{
apr_thread_t **threads;
apr_status_t rv;
thread_starter *ts;
apr_threadattr_t *thread_attr;
apr_thread_t *start_thread_id;
mpm_state = AP_MPMQ_STARTING; /* for benefit of any hooks that run as this
* child initializes
*/
ap_my_pid = getpid();
ap_fatal_signal_child_setup(ap_server_conf);
apr_pool_create(&pchild, pconf);
/*stuff to do before we switch id's, so we have permissions. */
ap_reopen_scoreboard(pchild, NULL, 0);
if (unixd_setup_child()) {
clean_child_exit(APEXIT_CHILDFATAL);
}
ap_run_child_init(pchild, ap_server_conf);
/* done with init critical section */
/* Just use the standard apr_setup_signal_thread to block all signals
* from being received. The child processes no longer use signals for
* any communication with the parent process.
*/
rv = apr_setup_signal_thread();
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_EMERG, rv, ap_server_conf,
"Couldn't initialize signal thread");
clean_child_exit(APEXIT_CHILDFATAL);
}
if (ap_max_requests_per_child) {
requests_this_child = ap_max_requests_per_child;
}
else {
/* coding a value of zero means infinity */
requests_this_child = INT_MAX;
}
/* Setup worker threads */
/* clear the storage; we may not create all our threads immediately,
* and we want a 0 entry to indicate a thread which was not created
*/
threads = (apr_thread_t **) calloc(1,
sizeof(apr_thread_t *) *
ap_threads_per_child);
if (threads == NULL) {
ap_log_error(APLOG_MARK, APLOG_ALERT, errno, ap_server_conf,
"malloc: out of memory");
clean_child_exit(APEXIT_CHILDFATAL);
}
ts = (thread_starter *) apr_palloc(pchild, sizeof(*ts));
apr_threadattr_create(&thread_attr, pchild);
/* 0 means PTHREAD_CREATE_JOINABLE */
apr_threadattr_detach_set(thread_attr, 0);
if (ap_thread_stacksize != 0) {
apr_threadattr_stacksize_set(thread_attr, ap_thread_stacksize);
}
ts->threads = threads;
ts->listener = NULL;
ts->child_num_arg = child_num_arg;
ts->threadattr = thread_attr;
rv = apr_thread_create(&start_thread_id, thread_attr, start_threads,
ts, pchild);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf,
"apr_thread_create: unable to create worker thread");
/* let the parent decide how bad this really is */
clean_child_exit(APEXIT_CHILDSICK);
}
mpm_state = AP_MPMQ_RUNNING;
/* If we are only running in one_process mode, we will want to
* still handle signals. */
if (one_process) {
/* Block until we get a terminating signal. */
apr_signal_thread(check_signal);
/* make sure the start thread has finished; signal_threads()
* and join_workers() depend on that
*/
/* XXX join_start_thread() won't be awakened if one of our
* threads encounters a critical error and attempts to
* shutdown this child
*/
join_start_thread(start_thread_id);
/* helps us terminate a little more quickly than the dispatch of the
* signal thread; beats the Pipe of Death and the browsers
*/
signal_threads(ST_UNGRACEFUL);
/* A terminating signal was received. Now join each of the
* workers to clean them up.
* If the worker already exited, then the join frees
* their resources and returns.
* If the worker hasn't exited, then this blocks until
* they have (then cleans up).
*/
join_workers(ts->listener, threads);
}
else { /* !one_process */
/* remove SIGTERM from the set of blocked signals... if one of
* the other threads in the process needs to take us down
* (e.g., for MaxRequestsPerChild) it will send us SIGTERM
*/
unblock_signal(SIGTERM);
apr_signal(SIGTERM, dummy_signal_handler);
/* Watch for any messages from the parent over the POD */
while (1) {
rv = ap_mpm_pod_check(pod);
if (rv == AP_NORESTART) {
/* see if termination was triggered while we slept */
switch (terminate_mode) {
case ST_GRACEFUL:
rv = AP_GRACEFUL;
break;
case ST_UNGRACEFUL:
rv = AP_RESTART;
break;
}
}
if (rv == AP_GRACEFUL || rv == AP_RESTART) {
/* make sure the start thread has finished;
* signal_threads() and join_workers depend on that
*/
join_start_thread(start_thread_id);
signal_threads(rv ==
AP_GRACEFUL ? ST_GRACEFUL : ST_UNGRACEFUL);
break;
}
}
/* A terminating signal was received. Now join each of the
* workers to clean them up.
* If the worker already exited, then the join frees
* their resources and returns.
* If the worker hasn't exited, then this blocks until
* they have (then cleans up).
*/
join_workers(ts->listener, threads);
}
free(threads);
clean_child_exit(resource_shortage ? APEXIT_CHILDSICK : 0);
}
static int make_child(server_rec * s, int slot)
{
int pid;
if (slot + 1 > ap_max_daemons_limit) {
ap_max_daemons_limit = slot + 1;
}
if (one_process) {
set_signals();
ap_scoreboard_image->parent[slot].pid = getpid();
child_main(slot);
}
if ((pid = fork()) == -1) {
ap_log_error(APLOG_MARK, APLOG_ERR, errno, s,
"fork: Unable to fork new process");
/* fork didn't succeed. There's no need to touch the scoreboard;
* if we were trying to replace a failed child process, then
* server_main_loop() marked its workers SERVER_DEAD, and if
* we were trying to replace a child process that exited normally,
* its worker_thread()s left SERVER_DEAD or SERVER_GRACEFUL behind.
*/
/* In case system resources are maxxed out, we don't want
Apache running away with the CPU trying to fork over and
over and over again. */
apr_sleep(apr_time_from_sec(10));
return -1;
}
if (!pid) {
#ifdef HAVE_BINDPROCESSOR
/* By default, AIX binds to a single processor. This bit unbinds
* children which will then bind to another CPU.
*/
int status = bindprocessor(BINDPROCESS, (int) getpid(),
PROCESSOR_CLASS_ANY);
if (status != OK)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno,
ap_server_conf,
"processor unbind failed %d", status);
#endif
RAISE_SIGSTOP(MAKE_CHILD);
apr_signal(SIGTERM, just_die);
child_main(slot);
clean_child_exit(0);
}
/* else */
ap_scoreboard_image->parent[slot].quiescing = 0;
ap_scoreboard_image->parent[slot].pid = pid;
return 0;
}
/* start up a bunch of children */
static void startup_children(int number_to_start)
{
int i;
for (i = 0; number_to_start && i < ap_daemons_limit; ++i) {
if (ap_scoreboard_image->parent[i].pid != 0) {
continue;
}
if (make_child(ap_server_conf, i) < 0) {
break;
}
--number_to_start;
}
}
/*
* idle_spawn_rate is the number of children that will be spawned on the
* next maintenance cycle if there aren't enough idle servers. It is
* doubled up to MAX_SPAWN_RATE, and reset only when a cycle goes by
* without the need to spawn.
*/
static int idle_spawn_rate = 1;
#ifndef MAX_SPAWN_RATE
#define MAX_SPAWN_RATE (32)
#endif
static int hold_off_on_exponential_spawning;
static void perform_idle_server_maintenance(void)
{
int i, j;
int idle_thread_count;
worker_score *ws;
process_score *ps;
int free_length;
int totally_free_length = 0;
int free_slots[MAX_SPAWN_RATE];
int last_non_dead;
int total_non_dead;
int active_thread_count = 0;
/* initialize the free_list */
free_length = 0;
idle_thread_count = 0;
last_non_dead = -1;
total_non_dead = 0;
for (i = 0; i < ap_daemons_limit; ++i) {
/* Initialization to satisfy the compiler. It doesn't know
* that ap_threads_per_child is always > 0 */
int status = SERVER_DEAD;
int any_dying_threads = 0;
int any_dead_threads = 0;
int all_dead_threads = 1;
if (i >= ap_max_daemons_limit
&& totally_free_length == idle_spawn_rate)
/* short cut if all active processes have been examined and
* enough empty scoreboard slots have been found
*/
break;
ps = &ap_scoreboard_image->parent[i];
for (j = 0; j < ap_threads_per_child; j++) {
ws = &ap_scoreboard_image->servers[i][j];
status = ws->status;
/* XXX any_dying_threads is probably no longer needed GLA */
any_dying_threads = any_dying_threads ||
(status == SERVER_GRACEFUL);
any_dead_threads = any_dead_threads || (status == SERVER_DEAD);
all_dead_threads = all_dead_threads &&
(status == SERVER_DEAD || status == SERVER_GRACEFUL);
/* We consider a starting server as idle because we started it
* at least a cycle ago, and if it still hasn't finished starting
* then we're just going to swamp things worse by forking more.
* So we hopefully won't need to fork more if we count it.
* This depends on the ordering of SERVER_READY and SERVER_STARTING.
*/
if (ps->pid != 0) { /* XXX just set all_dead_threads in outer
for loop if no pid? not much else matters */
if (status <= SERVER_READY &&
!ps->quiescing && ps->generation == ap_my_generation) {
++idle_thread_count;
}
if (status >= SERVER_READY && status < SERVER_GRACEFUL) {
++active_thread_count;
}
}
}
if (any_dead_threads
&& totally_free_length < idle_spawn_rate
&& free_length < MAX_SPAWN_RATE
&& (!ps->pid /* no process in the slot */
|| ps->quiescing)) { /* or at least one is going away */
if (all_dead_threads) {
/* great! we prefer these, because the new process can
* start more threads sooner. So prioritize this slot
* by putting it ahead of any slots with active threads.
*
* first, make room by moving a slot that's potentially still
* in use to the end of the array
*/
free_slots[free_length] = free_slots[totally_free_length];
free_slots[totally_free_length++] = i;
}
else {
/* slot is still in use - back of the bus
*/
free_slots[free_length] = i;
}
++free_length;
}
/* XXX if (!ps->quiescing) is probably more reliable GLA */
if (!any_dying_threads) {
last_non_dead = i;
++total_non_dead;
}
}
if (sick_child_detected) {
if (active_thread_count > 0) {
/* some child processes appear to be working. don't kill the
* whole server.
*/
sick_child_detected = 0;
}
else {
/* looks like a basket case. give up.
*/
shutdown_pending = 1;
child_fatal = 1;
ap_log_error(APLOG_MARK, APLOG_ALERT, 0,
ap_server_conf,
"No active workers found..."
" Apache is exiting!");
/* the child already logged the failure details */
return;
}
}
ap_max_daemons_limit = last_non_dead + 1;
if (idle_thread_count > max_spare_threads) {
/* Kill off one child */
ap_mpm_pod_signal(pod, TRUE);
idle_spawn_rate = 1;
}
else if (idle_thread_count < min_spare_threads) {
/* terminate the free list */
if (free_length == 0) { /* scoreboard is full, can't fork */
if (active_thread_count >= ap_daemons_limit * ap_threads_per_child) {
static int reported = 0;
if (!reported) {
/* only report this condition once */
ap_log_error(APLOG_MARK, APLOG_ERR, 0,
ap_server_conf,
"server reached MaxClients setting, consider"
" raising the MaxClients setting");
reported = 1;
}
}
else {
ap_log_error(APLOG_MARK, APLOG_ERR, 0,
ap_server_conf,
"scoreboard is full, not at MaxClients");
}
idle_spawn_rate = 1;
}
else {
if (free_length > idle_spawn_rate) {
free_length = idle_spawn_rate;
}
if (idle_spawn_rate >= 8) {
ap_log_error(APLOG_MARK, APLOG_INFO, 0,
ap_server_conf,
"server seems busy, (you may need "
"to increase StartServers, ThreadsPerChild "
"or Min/MaxSpareThreads), "
"spawning %d children, there are around %d idle "
"threads, and %d total children", free_length,
idle_thread_count, total_non_dead);
}
for (i = 0; i < free_length; ++i) {
make_child(ap_server_conf, free_slots[i]);
}
/* the next time around we want to spawn twice as many if this
* wasn't good enough, but not if we've just done a graceful
*/
if (hold_off_on_exponential_spawning) {
--hold_off_on_exponential_spawning;
}
else if (idle_spawn_rate < MAX_SPAWN_RATE) {
idle_spawn_rate *= 2;
}
}
}
else {
idle_spawn_rate = 1;
}
}
static void server_main_loop(int remaining_children_to_start)
{
int child_slot;
apr_exit_why_e exitwhy;
int status, processed_status;
apr_proc_t pid;
int i;
while (!restart_pending && !shutdown_pending) {
ap_wait_or_timeout(&exitwhy, &status, &pid, pconf);
if (pid.pid != -1) {
processed_status = ap_process_child_status(&pid, exitwhy, status);
if (processed_status == APEXIT_CHILDFATAL) {
shutdown_pending = 1;
child_fatal = 1;
return;
}
else if (processed_status == APEXIT_CHILDSICK) {
/* tell perform_idle_server_maintenance to check into this
* on the next timer pop
*/
sick_child_detected = 1;
}
/* non-fatal death... note that it's gone in the scoreboard. */
child_slot = find_child_by_pid(&pid);
if (child_slot >= 0) {
for (i = 0; i < ap_threads_per_child; i++)
ap_update_child_status_from_indexes(child_slot, i,
SERVER_DEAD,
(request_rec *) NULL);
ap_scoreboard_image->parent[child_slot].pid = 0;
ap_scoreboard_image->parent[child_slot].quiescing = 0;
if (processed_status == APEXIT_CHILDSICK) {
/* resource shortage, minimize the fork rate */
idle_spawn_rate = 1;
}
else if (remaining_children_to_start
&& child_slot < ap_daemons_limit) {
/* we're still doing a 1-for-1 replacement of dead
* children with new children
*/
make_child(ap_server_conf, child_slot);
--remaining_children_to_start;
}
#if APR_HAS_OTHER_CHILD
}
else if (apr_proc_other_child_alert(&pid, APR_OC_REASON_DEATH,
status) == 0) {
/* handled */
#endif
}
else if (is_graceful) {
/* Great, we've probably just lost a slot in the
* scoreboard. Somehow we don't know about this child.
*/
ap_log_error(APLOG_MARK, APLOG_WARNING, 0,
ap_server_conf,
"long lost child came home! (pid %ld)",
(long) pid.pid);
}
/* Don't perform idle maintenance when a child dies,
* only do it when there's a timeout. Remember only a
* finite number of children can die, and it's pretty
* pathological for a lot to die suddenly.
*/
continue;
}
else if (remaining_children_to_start) {
/* we hit a 1 second timeout in which none of the previous
* generation of children needed to be reaped... so assume
* they're all done, and pick up the slack if any is left.
*/
startup_children(remaining_children_to_start);
remaining_children_to_start = 0;
/* In any event we really shouldn't do the code below because
* few of the servers we just started are in the IDLE state
* yet, so we'd mistakenly create an extra server.
*/
continue;
}
perform_idle_server_maintenance();
}
}
int ap_mpm_run(apr_pool_t * _pconf, apr_pool_t * plog, server_rec * s)
{
int remaining_children_to_start;
ap_log_pid(pconf, ap_pid_fname);
if (!is_graceful) {
if (ap_run_pre_mpm(s->process->pool, SB_SHARED) != OK) {
mpm_state = AP_MPMQ_STOPPING;
return 1;
}
/* fix the generation number in the global score; we just got a new,
* cleared scoreboard
*/
ap_scoreboard_image->global->running_generation = ap_my_generation;
}
set_signals();
/* Don't thrash... */
if (max_spare_threads < min_spare_threads + ap_threads_per_child)
max_spare_threads = min_spare_threads + ap_threads_per_child;
/* If we're doing a graceful_restart then we're going to see a lot
* of children exiting immediately when we get into the main loop
* below (because we just sent them AP_SIG_GRACEFUL). This happens pretty
* rapidly... and for each one that exits we may start a new one, until
* there are at least min_spare_threads idle threads, counting across
* all children. But we may be permitted to start more children than
* that, so we'll just keep track of how many we're
* supposed to start up without the 1 second penalty between each fork.
*/
remaining_children_to_start = ap_daemons_to_start;
if (remaining_children_to_start > ap_daemons_limit) {
remaining_children_to_start = ap_daemons_limit;
}
if (!is_graceful) {
startup_children(remaining_children_to_start);
remaining_children_to_start = 0;
}
else {
/* give the system some time to recover before kicking into
* exponential mode */
hold_off_on_exponential_spawning = 10;
}
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
"%s configured -- resuming normal operations",
ap_get_server_version());
ap_log_error(APLOG_MARK, APLOG_INFO, 0, ap_server_conf,
"Server built: %s", ap_get_server_built());
restart_pending = shutdown_pending = 0;
mpm_state = AP_MPMQ_RUNNING;
server_main_loop(remaining_children_to_start);
mpm_state = AP_MPMQ_STOPPING;
if (shutdown_pending && !is_graceful) {
/* Time to shut down:
* Kill child processes, tell them to call child_exit, etc...
*/
ap_mpm_pod_killpg(pod, ap_daemons_limit, FALSE);
ap_reclaim_child_processes(1); /* Start with SIGTERM */
if (!child_fatal) {
/* cleanup pid file on normal shutdown */
const char *pidfile = NULL;
pidfile = ap_server_root_relative(pconf, ap_pid_fname);
if (pidfile != NULL && unlink(pidfile) == 0)
ap_log_error(APLOG_MARK, APLOG_INFO, 0,
ap_server_conf,
"removed PID file %s (pid=%ld)",
pidfile, (long) getpid());
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0,
ap_server_conf, "caught SIGTERM, shutting down");
}
return 1;
} else if (shutdown_pending) {
/* Time to gracefully shut down:
* Kill child processes, tell them to call child_exit, etc...
*/
int active_children;
int index;
apr_time_t cutoff = 0;
/* Close our listeners, and then ask our children to do same */
ap_close_listeners();
ap_mpm_pod_killpg(pod, ap_daemons_limit, TRUE);
ap_relieve_child_processes();
if (!child_fatal) {
/* cleanup pid file on normal shutdown */
const char *pidfile = NULL;
pidfile = ap_server_root_relative (pconf, ap_pid_fname);
if ( pidfile != NULL && unlink(pidfile) == 0)
ap_log_error(APLOG_MARK, APLOG_INFO, 0,
ap_server_conf,
"removed PID file %s (pid=%ld)",
pidfile, (long)getpid());
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
"caught " AP_SIG_GRACEFUL_STOP_STRING
", shutting down gracefully");
}
if (ap_graceful_shutdown_timeout) {
cutoff = apr_time_now() +
apr_time_from_sec(ap_graceful_shutdown_timeout);
}
/* Don't really exit until each child has finished */
shutdown_pending = 0;
do {
/* Pause for a second */
apr_sleep(apr_time_from_sec(1));
/* Relieve any children which have now exited */
ap_relieve_child_processes();
active_children = 0;
for (index = 0; index < ap_daemons_limit; ++index) {
if (MPM_CHILD_PID(index) != 0) {
if (kill(MPM_CHILD_PID(index), 0) == 0) {
active_children = 1;
/* Having just one child is enough to stay around */
break;
}
}
}
} while (!shutdown_pending && active_children &&
(!ap_graceful_shutdown_timeout || apr_time_now() < cutoff));
/* We might be here because we received SIGTERM, either
* way, try and make sure that all of our processes are
* really dead.
*/
ap_mpm_pod_killpg(pod, ap_daemons_limit, FALSE);
ap_reclaim_child_processes(1);
return 1;
}
/* we've been told to restart */
apr_signal(SIGHUP, SIG_IGN);
if (one_process) {
/* not worth thinking about */
return 1;
}
/* advance to the next generation */
/* XXX: we really need to make sure this new generation number isn't in
* use by any of the children.
*/
++ap_my_generation;
ap_scoreboard_image->global->running_generation = ap_my_generation;
if (is_graceful) {
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
AP_SIG_GRACEFUL_STRING
" received. Doing graceful restart");
/* wake up the children...time to die. But we'll have more soon */
ap_mpm_pod_killpg(pod, ap_daemons_limit, TRUE);
/* This is mostly for debugging... so that we know what is still
* gracefully dealing with existing request.
*/
}
else {
/* Kill 'em all. Since the child acts the same on the parents SIGTERM
* and a SIGHUP, we may as well use the same signal, because some user
* pthreads are stealing signals from us left and right.
*/
ap_mpm_pod_killpg(pod, ap_daemons_limit, FALSE);
ap_reclaim_child_processes(1); /* Start with SIGTERM */
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
"SIGHUP received. Attempting to restart");
}
return 0;
}
/* This really should be a post_config hook, but the error log is already
* redirected by that point, so we need to do this in the open_logs phase.
*/
static int worker_open_logs(apr_pool_t * p, apr_pool_t * plog,
apr_pool_t * ptemp, server_rec * s)
{
static int restart_num = 0;
int startup = 0;
int level_flags = 0;
apr_status_t rv;
pconf = p;
ap_server_conf = s;
/* the reverse of pre_config, we want this only the first time around */
if (restart_num++ == 0) {
startup = 1;
level_flags |= APLOG_STARTUP;
}
if ((num_listensocks = ap_setup_listeners(ap_server_conf)) < 1) {
ap_log_error(APLOG_MARK, APLOG_ALERT | level_flags, 0,
(startup ? NULL : s),
"no listening sockets available, shutting down");
return DONE;
}
if (!one_process) {
if ((rv = ap_mpm_pod_open(pconf, &pod))) {
ap_log_error(APLOG_MARK, APLOG_CRIT | level_flags, rv,
(startup ? NULL : s),
"could not open pipe-of-death");
return DONE;
}
}
return OK;
}
static int worker_pre_config(apr_pool_t * pconf, apr_pool_t * plog,
apr_pool_t * ptemp)
{
static int restart_num = 0;
int no_detach, debug, foreground;
apr_status_t rv;
mpm_state = AP_MPMQ_STARTING;
debug = ap_exists_config_define("DEBUG");
if (debug) {
foreground = one_process = 1;
no_detach = 0;
}
else {
one_process = ap_exists_config_define("ONE_PROCESS");
no_detach = ap_exists_config_define("NO_DETACH");
foreground = ap_exists_config_define("FOREGROUND");
}
/* sigh, want this only the second time around */
if (restart_num++ == 1) {
is_graceful = 0;
rv = apr_pollset_create(&event_pollset, 1, plog,
APR_POLLSET_THREADSAFE | APR_POLLSET_NOCOPY);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rv, NULL,
"Couldn't create a Thread Safe Pollset. "
"Is it supported on your platform?");
return HTTP_INTERNAL_SERVER_ERROR;
}
apr_pollset_destroy(event_pollset);
if (!one_process && !foreground) {
rv = apr_proc_detach(no_detach ? APR_PROC_DETACH_FOREGROUND
: APR_PROC_DETACH_DAEMONIZE);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rv, NULL,
"apr_proc_detach failed");
return HTTP_INTERNAL_SERVER_ERROR;
}
}
parent_pid = ap_my_pid = getpid();
}
unixd_pre_config(ptemp);
ap_listen_pre_config();
ap_daemons_to_start = DEFAULT_START_DAEMON;
min_spare_threads = DEFAULT_MIN_FREE_DAEMON * DEFAULT_THREADS_PER_CHILD;
max_spare_threads = DEFAULT_MAX_FREE_DAEMON * DEFAULT_THREADS_PER_CHILD;
server_limit = DEFAULT_SERVER_LIMIT;
thread_limit = DEFAULT_THREAD_LIMIT;
ap_daemons_limit = server_limit;
ap_threads_per_child = DEFAULT_THREADS_PER_CHILD;
max_clients = ap_daemons_limit * ap_threads_per_child;
ap_pid_fname = DEFAULT_PIDLOG;
ap_lock_fname = DEFAULT_LOCKFILE;
ap_max_requests_per_child = DEFAULT_MAX_REQUESTS_PER_CHILD;
ap_extended_status = 0;
#ifdef AP_MPM_WANT_SET_MAX_MEM_FREE
ap_max_mem_free = APR_ALLOCATOR_MAX_FREE_UNLIMITED;
#endif
apr_cpystrn(ap_coredump_dir, ap_server_root, sizeof(ap_coredump_dir));
return OK;
}
static int event_check_config(apr_pool_t *p, apr_pool_t *plog,
apr_pool_t *ptemp, server_rec *s)
{
static int restart_num = 0;
int startup = 0;
apr_status_t rv;
/* the reverse of pre_config, we want this only the first time around */
if (restart_num++ == 0) {
startup = 1;
}
if (server_limit > MAX_SERVER_LIMIT) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: ServerLimit of %d exceeds compile-time "
"limit of", server_limit);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" %d servers, decreasing to %d.",
MAX_SERVER_LIMIT, MAX_SERVER_LIMIT);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"ServerLimit of %d exceeds compile-time limit "
"of %d, decreasing to match",
server_limit, MAX_SERVER_LIMIT);
}
server_limit = MAX_SERVER_LIMIT;
}
else if (server_limit < 1) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: ServerLimit of %d not allowed, "
"increasing to 1.", server_limit);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"ServerLimit of %d not allowed, increasing to 1",
server_limit);
}
server_limit = 1;
}
/* you cannot change ServerLimit across a restart; ignore
* any such attempts
*/
if (!first_server_limit) {
first_server_limit = server_limit;
}
else if (server_limit != first_server_limit) {
/* don't need a startup console version here */
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"changing ServerLimit to %d from original value of %d "
"not allowed during restart",
server_limit, first_server_limit);
server_limit = first_server_limit;
}
if (thread_limit > MAX_THREAD_LIMIT) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: ThreadLimit of %d exceeds compile-time "
"limit of", thread_limit);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" %d threads, decreasing to %d.",
MAX_THREAD_LIMIT, MAX_THREAD_LIMIT);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"ThreadLimit of %d exceeds compile-time limit "
"of %d, decreasing to match",
thread_limit, MAX_THREAD_LIMIT);
}
thread_limit = MAX_THREAD_LIMIT;
}
else if (thread_limit < 1) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: ThreadLimit of %d not allowed, "
"increasing to 1.", thread_limit);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"ThreadLimit of %d not allowed, increasing to 1",
thread_limit);
}
thread_limit = 1;
}
/* you cannot change ThreadLimit across a restart; ignore
* any such attempts
*/
if (!first_thread_limit) {
first_thread_limit = thread_limit;
}
else if (thread_limit != first_thread_limit) {
/* don't need a startup console version here */
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"changing ThreadLimit to %d from original value of %d "
"not allowed during restart",
thread_limit, first_thread_limit);
thread_limit = first_thread_limit;
}
if (ap_threads_per_child > thread_limit) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
"of", ap_threads_per_child);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" %d threads, decreasing to %d.",
thread_limit, thread_limit);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" To increase, please see the ThreadLimit "
"directive.");
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"ThreadsPerChild of %d exceeds ThreadLimit "
"of %d, decreasing to match",
ap_threads_per_child, thread_limit);
}
ap_threads_per_child = thread_limit;
}
else if (ap_threads_per_child < 1) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: ThreadsPerChild of %d not allowed, "
"increasing to 1.", ap_threads_per_child);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"ThreadsPerChild of %d not allowed, increasing to 1",
ap_threads_per_child);
}
ap_threads_per_child = 1;
}
if (max_clients < ap_threads_per_child) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MaxClients of %d is less than "
"ThreadsPerChild of", max_clients);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" %d, increasing to %d. MaxClients must be at "
"least as large",
ap_threads_per_child, ap_threads_per_child);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" as the number of threads in a single server.");
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MaxClients of %d is less than ThreadsPerChild "
"of %d, increasing to match",
max_clients, ap_threads_per_child);
}
max_clients = ap_threads_per_child;
}
ap_daemons_limit = max_clients / ap_threads_per_child;
if (max_clients % ap_threads_per_child) {
int tmp_max_clients = ap_daemons_limit * ap_threads_per_child;
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MaxClients of %d is not an integer "
"multiple of", max_clients);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" ThreadsPerChild of %d, decreasing to nearest "
"multiple %d,", ap_threads_per_child,
tmp_max_clients);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" for a maximum of %d servers.",
ap_daemons_limit);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MaxClients of %d is not an integer multiple of "
"ThreadsPerChild of %d, decreasing to nearest "
"multiple %d", max_clients, ap_threads_per_child,
tmp_max_clients);
}
max_clients = tmp_max_clients;
}
if (ap_daemons_limit > server_limit) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MaxClients of %d would require %d "
"servers and ", max_clients, ap_daemons_limit);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" would exceed ServerLimit of %d, decreasing to %d.",
server_limit, server_limit * ap_threads_per_child);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" To increase, please see the ServerLimit "
"directive.");
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MaxClients of %d would require %d servers and "
"exceed ServerLimit of %d, decreasing to %d",
max_clients, ap_daemons_limit, server_limit,
server_limit * ap_threads_per_child);
}
ap_daemons_limit = server_limit;
}
/* ap_daemons_to_start > ap_daemons_limit checked in ap_mpm_run() */
if (ap_daemons_to_start < 0) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: StartServers of %d not allowed, "
"increasing to 1.", ap_daemons_to_start);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"StartServers of %d not allowed, increasing to 1",
ap_daemons_to_start);
}
ap_daemons_to_start = 1;
}
if (min_spare_threads < 1) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MinSpareThreads of %d not allowed, "
"increasing to 1", min_spare_threads);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" to avoid almost certain server failure.");
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" Please read the documentation.");
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MinSpareThreads of %d not allowed, increasing to 1",
min_spare_threads);
}
min_spare_threads = 1;
}
/* max_spare_threads < min_spare_threads + ap_threads_per_child
* checked in ap_mpm_run()
*/
return OK;
}
static void event_hooks(apr_pool_t * p)
{
/* Our open_logs hook function must run before the core's, or stderr
* will be redirected to a file, and the messages won't print to the
* console.
*/
static const char *const aszSucc[] = { "core.c", NULL };
one_process = 0;
ap_hook_open_logs(worker_open_logs, NULL, aszSucc, APR_HOOK_REALLY_FIRST);
/* we need to set the MPM state before other pre-config hooks use MPM query
* to retrieve it, so register as REALLY_FIRST
*/
ap_hook_pre_config(worker_pre_config, NULL, NULL, APR_HOOK_REALLY_FIRST);
ap_hook_check_config(event_check_config, NULL, NULL, APR_HOOK_MIDDLE);
}
static const char *set_daemons_to_start(cmd_parms *cmd, void *dummy,
const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_daemons_to_start = atoi(arg);
return NULL;
}
static const char *set_min_spare_threads(cmd_parms * cmd, void *dummy,
const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
min_spare_threads = atoi(arg);
return NULL;
}
static const char *set_max_spare_threads(cmd_parms * cmd, void *dummy,
const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
max_spare_threads = atoi(arg);
return NULL;
}
static const char *set_max_clients(cmd_parms * cmd, void *dummy,
const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
max_clients = atoi(arg);
return NULL;
}
static const char *set_threads_per_child(cmd_parms * cmd, void *dummy,
const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_threads_per_child = atoi(arg);
return NULL;
}
static const char *set_server_limit (cmd_parms *cmd, void *dummy, const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
server_limit = atoi(arg);
return NULL;
}
static const char *set_thread_limit(cmd_parms * cmd, void *dummy,
const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
thread_limit = atoi(arg);
return NULL;
}
static const command_rec event_cmds[] = {
UNIX_DAEMON_COMMANDS,
LISTEN_COMMANDS,
AP_INIT_TAKE1("StartServers", set_daemons_to_start, NULL, RSRC_CONF,
"Number of child processes launched at server startup"),
AP_INIT_TAKE1("ServerLimit", set_server_limit, NULL, RSRC_CONF,
"Maximum number of child processes for this run of Apache"),
AP_INIT_TAKE1("MinSpareThreads", set_min_spare_threads, NULL, RSRC_CONF,
"Minimum number of idle threads, to handle request spikes"),
AP_INIT_TAKE1("MaxSpareThreads", set_max_spare_threads, NULL, RSRC_CONF,
"Maximum number of idle threads"),
AP_INIT_TAKE1("MaxClients", set_max_clients, NULL, RSRC_CONF,
"Maximum number of threads alive at the same time"),
AP_INIT_TAKE1("ThreadsPerChild", set_threads_per_child, NULL, RSRC_CONF,
"Number of threads each child creates"),
AP_INIT_TAKE1("ThreadLimit", set_thread_limit, NULL, RSRC_CONF,
"Maximum number of worker threads per child process for this "
"run of Apache - Upper limit for ThreadsPerChild"),
AP_GRACEFUL_SHUTDOWN_TIMEOUT_COMMAND,
{NULL}
};
module AP_MODULE_DECLARE_DATA mpm_event_module = {
MPM20_MODULE_STUFF,
ap_mpm_rewrite_args, /* hook to run before apache parses args */
NULL, /* create per-directory config structure */
NULL, /* merge per-directory config structures */
NULL, /* create per-server config structure */
NULL, /* merge per-server config structures */
event_cmds, /* command apr_table_t */
event_hooks /* register_hooks */
};