beos.c revision 10d486b9267800c5e376c22f6c0d45dc2ae86f67
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* The BeOS MPM!
*
* This is a single process, with multiple worker threads.
*
* Under testing I found that given the inability of BeOS to handle threads
* and forks it didn't make sense to try and have a set of "children" threads
* that spawned the "worker" threads, so just missed out the middle mand and
* somehow arrived here.
*
* For 2.1 this has been rewritten to have simpler logic, though there is still
* some simplification that can be done. It's still a work in progress!
*
* TODO Items
*
* - on exit most worker threads segfault trying to access a kernel page.
*/
#define CORE_PRIVATE
#include <kernel/OS.h>
#include <unistd.h>
#include <sys/socket.h>
#include <signal.h>
#include "apr_strings.h"
#include "apr_portable.h"
#include "httpd.h"
#include "http_main.h"
#include "http_log.h"
#include "http_config.h" /* for read_config */
#include "http_core.h" /* for get_remote_host */
#include "http_connection.h"
#include "ap_mpm.h"
#include "beosd.h"
#include "ap_listen.h"
#include "scoreboard.h"
#include "mpm_common.h"
#include "mpm.h"
#include "mpm_default.h"
#include "apr_thread_mutex.h"
#include "apr_poll.h"
extern int _kset_fd_limit_(int num);
/* Limit on the total --- clients will be locked out if more servers than
* this are needed. It is intended solely to keep the server from crashing
* when things get out of hand.
*
* We keep a hard maximum number of servers, for two reasons:
* 1) in case something goes seriously wrong, we want to stop the server starting
* threads ad infinitum and crashing the server (remember that BeOS has a 192
* thread per team limit).
* 2) it keeps the size of the scoreboard file small
* enough that we can read the whole thing without worrying too much about
* the overhead.
*/
/* we only ever have 1 main process running... */
#define HARD_SERVER_LIMIT 1
/* Limit on the threads per process. Clients will be locked out if more than
* this * HARD_SERVER_LIMIT are needed.
*
* We keep this for one reason it keeps the size of the scoreboard file small
* enough that we can read the whole thing without worrying too much about
* the overhead.
*/
#ifdef NO_THREADS
#define HARD_THREAD_LIMIT 1
#endif
#ifndef HARD_THREAD_LIMIT
#define HARD_THREAD_LIMIT 50
#endif
/*
* Actual definitions of config globals
*/
static int ap_threads_to_start=0;
static int ap_max_requests_per_thread = 0;
static int min_spare_threads=0;
static int max_spare_threads=0;
static int ap_thread_limit=0;
static int num_listening_sockets = 0;
static int mpm_state = AP_MPMQ_STARTING;
apr_thread_mutex_t *accept_mutex = NULL;
static apr_pool_t *pconf; /* Pool for config stuff */
static apr_pool_t *pmain; /* Pool for httpd child stuff */
static int server_pid;
/*
* The max child slot ever assigned, preserved across restarts. Necessary
* to deal with MaxClients changes across AP_SIG_GRACEFUL restarts. We use
* this value to optimize routines that have to scan the entire scoreboard.
*/
int ap_max_child_assigned = -1;
int ap_max_threads_limit = -1;
static apr_socket_t *udp_sock;
static apr_sockaddr_t *udp_sa;
server_rec *ap_server_conf;
/* one_process */
static int one_process = 0;
#ifdef DEBUG_SIGSTOP
int raise_sigstop_flags;
#endif
static void check_restart(void *data);
/* When a worker thread gets to the end of it's life it dies with an
* exit value of the code supplied to this function. The thread has
* already had check_restart() registered to be called when dying, so
* we don't concern ourselves with restarting at all here. We do however
* mark the scoreboard slot as belonging to a dead server and zero out
* it's thread_id.
*
* TODO - use the status we set to determine if we need to restart the
* thread.
*/
static void clean_child_exit(int code, int slot)
{
(void) ap_update_child_status_from_indexes(0, slot, SERVER_DEAD,
(request_rec*)NULL);
ap_scoreboard_image->servers[0][slot].tid = 0;
exit_thread(code);
}
/* proper cleanup when returning from ap_mpm_run() */
static void mpm_main_cleanup(void)
{
if (pmain) {
apr_pool_destroy(pmain);
}
}
/*****************************************************************
* Connection structures and accounting...
*/
/* volatile just in case */
static int volatile shutdown_pending;
static int volatile restart_pending;
static int volatile is_graceful;
static int volatile child_fatal;
ap_generation_t volatile ap_my_generation = 0;
/*
* ap_start_shutdown() and ap_start_restart(), below, are a first stab at
* functions to initiate shutdown or restart without relying on signals.
* Previously this was initiated in sig_term() and restart() signal handlers,
* but we want to be able to start a shutdown/restart from other sources --
* e.g. on Win32, from the service manager. Now the service manager can
* call ap_start_shutdown() or ap_start_restart() as appropiate. Note that
* these functions can also be called by the child processes, since global
* variables are no longer used to pass on the required action to the parent.
*
* These should only be called from the parent process itself, since the
* parent process will use the shutdown_pending and restart_pending variables
* to determine whether to shutdown or restart. The child process should
* call signal_parent() directly to tell the parent to die -- this will
* cause neither of those variable to be set, which the parent will
* assume means something serious is wrong (which it will be, for the
* child to force an exit) and so do an exit anyway.
*/
static void ap_start_shutdown(void)
{
/* If the user tries to shut us down twice in quick succession then we
* may well get triggered while we are working through previous attempt
* to shutdown. We won't worry about even reporting it as it seems a little
* pointless.
*/
if (shutdown_pending == 1)
return;
shutdown_pending = 1;
}
/* do a graceful restart if graceful == 1 */
static void ap_start_restart(int graceful)
{
if (restart_pending == 1) {
/* Probably not an error - don't bother reporting it */
return;
}
restart_pending = 1;
is_graceful = graceful;
}
/* sig_coredump attempts to handle all the potential signals we
* may get that should result in a core dump. This is called from
* the signal handler routine, so when we enter we are essentially blocked
* on the signal. Once we exit we will allow the signal to be processed by
* system, which may or may not produce a .core file. All this function does
* is try and respect the users wishes about where that file should be
* located (chdir) and then signal the parent with the signal.
*
* If we called abort() the parent would only see SIGABRT which doesn't provide
* as much information.
*/
static void sig_coredump(int sig)
{
chdir(ap_coredump_dir);
signal(sig, SIG_DFL);
kill(server_pid, sig);
}
static void sig_term(int sig)
{
ap_start_shutdown();
}
static void restart(int sig)
{
ap_start_restart(sig == AP_SIG_GRACEFUL);
}
/* Handle queries about our inner workings... */
AP_DECLARE(apr_status_t) ap_mpm_query(int query_code, int *result)
{
switch(query_code){
case AP_MPMQ_MAX_DAEMON_USED:
*result = ap_max_child_assigned;
return APR_SUCCESS;
case AP_MPMQ_IS_THREADED:
*result = AP_MPMQ_DYNAMIC;
return APR_SUCCESS;
case AP_MPMQ_IS_FORKED:
*result = AP_MPMQ_NOT_SUPPORTED;
return APR_SUCCESS;
case AP_MPMQ_HARD_LIMIT_DAEMONS:
*result = HARD_SERVER_LIMIT;
return APR_SUCCESS;
case AP_MPMQ_HARD_LIMIT_THREADS:
*result = HARD_THREAD_LIMIT;
return APR_SUCCESS;
case AP_MPMQ_MAX_THREADS:
*result = HARD_THREAD_LIMIT;
return APR_SUCCESS;
case AP_MPMQ_MIN_SPARE_DAEMONS:
*result = 0;
return APR_SUCCESS;
case AP_MPMQ_MIN_SPARE_THREADS:
*result = max_spare_threads;
return APR_SUCCESS;
case AP_MPMQ_MAX_SPARE_DAEMONS:
*result = 0;
return APR_SUCCESS;
case AP_MPMQ_MAX_SPARE_THREADS:
*result = min_spare_threads;
return APR_SUCCESS;
case AP_MPMQ_MAX_REQUESTS_DAEMON:
*result = ap_max_requests_per_thread;
return APR_SUCCESS;
case AP_MPMQ_MAX_DAEMONS:
*result = HARD_SERVER_LIMIT;
return APR_SUCCESS;
case AP_MPMQ_MPM_STATE:
*result = mpm_state;
return APR_SUCCESS;
}
return APR_ENOTIMPL;
}
/* This accepts a connection and allows us to handle the error codes better than
* the previous code, while also making it more obvious.
*/
static apr_status_t beos_accept(void **accepted, ap_listen_rec *lr, apr_pool_t *ptrans)
{
apr_socket_t *csd;
apr_status_t status;
int sockdes;
*accepted = NULL;
status = apr_socket_accept(&csd, lr->sd, ptrans);
if (status == APR_SUCCESS) {
*accepted = csd;
apr_os_sock_get(&sockdes, csd);
return status;
}
if (APR_STATUS_IS_EINTR(status)) {
return status;
}
/* This switch statement provides us with better error details. */
switch (status) {
#ifdef ECONNABORTED
case ECONNABORTED:
#endif
#ifdef ETIMEDOUT
case ETIMEDOUT:
#endif
#ifdef EHOSTUNREACH
case EHOSTUNREACH:
#endif
#ifdef ENETUNREACH
case ENETUNREACH:
#endif
break;
#ifdef ENETDOWN
case ENETDOWN:
/*
* When the network layer has been shut down, there
* is not much use in simply exiting: the parent
* would simply re-create us (and we'd fail again).
* Use the CHILDFATAL code to tear the server down.
* @@@ Martin's idea for possible improvement:
* A different approach would be to define
* a new APEXIT_NETDOWN exit code, the reception
* of which would make the parent shutdown all
* children, then idle-loop until it detected that
* the network is up again, and restart the children.
* Ben Hyde noted that temporary ENETDOWN situations
* occur in mobile IP.
*/
ap_log_error(APLOG_MARK, APLOG_EMERG, status, ap_server_conf,
"apr_socket_accept: giving up.");
return APR_EGENERAL;
#endif /*ENETDOWN*/
default:
ap_log_error(APLOG_MARK, APLOG_ERR, status, ap_server_conf,
"apr_socket_accept: (client socket)");
return APR_EGENERAL;
}
return status;
}
static void tell_workers_to_exit(void)
{
apr_size_t len;
int i = 0;
for (i = 0 ; i < ap_max_child_assigned; i++){
len = 4;
if (apr_socket_sendto(udp_sock, udp_sa, 0, "die!", &len) != APR_SUCCESS)
break;
}
}
static void set_signals(void)
{
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
/* The first batch get handled by sig_coredump */
if (!one_process) {
sa.sa_handler = sig_coredump;
if (sigaction(SIGSEGV, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGSEGV)");
if (sigaction(SIGBUS, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGBUS)");
if (sigaction(SIGABRT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGABRT)");
if (sigaction(SIGILL, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGILL)");
sa.sa_flags = 0;
}
/* These next two are handled by sig_term */
sa.sa_handler = sig_term;
if (sigaction(SIGTERM, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGTERM)");
if (sigaction(SIGINT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGINT)");
/* We ignore SIGPIPE */
sa.sa_handler = SIG_IGN;
if (sigaction(SIGPIPE, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGPIPE)");
/* we want to ignore HUPs and AP_SIG_GRACEFUL while we're busy
* processing one */
sigaddset(&sa.sa_mask, SIGHUP);
sigaddset(&sa.sa_mask, AP_SIG_GRACEFUL);
sa.sa_handler = restart;
if (sigaction(SIGHUP, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(SIGHUP)");
if (sigaction(AP_SIG_GRACEFUL, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf, "sigaction(" AP_SIG_GRACEFUL_STRING ")");
}
/*****************************************************************
* Here follows a long bunch of generic server bookkeeping stuff...
*/
int ap_graceful_stop_signalled(void)
{
return is_graceful;
}
/* This is the thread that actually does all the work. */
static int32 worker_thread(void *dummy)
{
int worker_slot = (int)dummy;
apr_allocator_t *allocator;
apr_bucket_alloc_t *bucket_alloc;
apr_status_t rv = APR_EINIT;
int last_poll_idx = 0;
sigset_t sig_mask;
int requests_this_child = 0;
apr_pollset_t *pollset = NULL;
ap_listen_rec *lr = NULL;
ap_sb_handle_t *sbh = NULL;
int i;
/* each worker thread is in control of its own destiny...*/
int this_worker_should_exit = 0;
/* We have 2 pools that we create/use throughout the lifetime of this
* worker. The first and longest lived is the pworker pool. From
* this we create the ptrans pool, the lifetime of which is the same
* as each connection and is reset prior to each attempt to
* process a connection.
*/
apr_pool_t *ptrans = NULL;
apr_pool_t *pworker = NULL;
mpm_state = AP_MPMQ_STARTING; /* for benefit of any hooks that run as this
* child initializes
*/
on_exit_thread(check_restart, (void*)worker_slot);
/* block the signals for this thread only if we're not running as a
* single process.
*/
if (!one_process) {
sigfillset(&sig_mask);
sigprocmask(SIG_BLOCK, &sig_mask, NULL);
}
/* Each worker thread is fully in control of it's destinay and so
* to allow each thread to handle the lifetime of it's own resources
* we create and use a subcontext for every thread.
* The subcontext is a child of the pconf pool.
*/
apr_allocator_create(&allocator);
apr_allocator_max_free_set(allocator, ap_max_mem_free);
apr_pool_create_ex(&pworker, pconf, NULL, allocator);
apr_allocator_owner_set(allocator, pworker);
apr_pool_create(&ptrans, pworker);
apr_pool_tag(ptrans, "transaction");
ap_create_sb_handle(&sbh, pworker, 0, worker_slot);
(void) ap_update_child_status(sbh, SERVER_READY, (request_rec *) NULL);
/* We add an extra socket here as we add the udp_sock we use for signalling
* death. This gets added after the others.
*/
apr_pollset_create(&pollset, num_listening_sockets + 1, pworker, 0);
for (lr = ap_listeners, i = num_listening_sockets; i--; lr = lr->next) {
apr_pollfd_t pfd = {0};
pfd.desc_type = APR_POLL_SOCKET;
pfd.desc.s = lr->sd;
pfd.reqevents = APR_POLLIN;
pfd.client_data = lr;
apr_pollset_add(pollset, &pfd);
}
{
apr_pollfd_t pfd = {0};
pfd.desc_type = APR_POLL_SOCKET;
pfd.desc.s = udp_sock;
pfd.reqevents = APR_POLLIN;
apr_pollset_add(pollset, &pfd);
}
bucket_alloc = apr_bucket_alloc_create(pworker);
mpm_state = AP_MPMQ_RUNNING;
while (!this_worker_should_exit) {
conn_rec *current_conn;
void *csd;
/* (Re)initialize this child to a pre-connection state. */
apr_pool_clear(ptrans);
if ((ap_max_requests_per_thread > 0
&& requests_this_child++ >= ap_max_requests_per_thread))
clean_child_exit(0, worker_slot);
(void) ap_update_child_status(sbh, SERVER_READY, (request_rec *) NULL);
apr_thread_mutex_lock(accept_mutex);
/* We always (presently) have at least 2 sockets we listen on, so
* we don't have the ability for a fast path for a single socket
* as some MPM's allow :(
*/
for (;;) {
apr_int32_t numdesc = 0;
const apr_pollfd_t *pdesc = NULL;
rv = apr_pollset_poll(pollset, -1, &numdesc, &pdesc);
if (rv != APR_SUCCESS) {
if (APR_STATUS_IS_EINTR(rv)) {
if (one_process && shutdown_pending)
return;
continue;
}
ap_log_error(APLOG_MARK, APLOG_ERR, rv,
ap_server_conf, "apr_pollset_poll: (listen)");
clean_child_exit(1, worker_slot);
}
/* We can always use pdesc[0], but sockets at position N
* could end up completely starved of attention in a very
* busy server. Therefore, we round-robin across the
* returned set of descriptors. While it is possible that
* the returned set of descriptors might flip around and
* continue to starve some sockets, we happen to know the
* internal pollset implementation retains ordering
* stability of the sockets. Thus, the round-robin should
* ensure that a socket will eventually be serviced.
*/
if (last_poll_idx >= numdesc)
last_poll_idx = 0;
/* Grab a listener record from the client_data of the poll
* descriptor, and advance our saved index to round-robin
* the next fetch.
*
* ### hmm... this descriptor might have POLLERR rather
* ### than POLLIN
*/
lr = pdesc[last_poll_idx++].client_data;
/* The only socket we add without client_data is the first, the UDP socket
* we listen on for restart signals. If we've therefore gotten a hit on that
* listener lr will be NULL here and we know we've been told to die.
* Before we jump to the end of the while loop with this_worker_should_exit
* set to 1 (causing us to exit normally we hope) we release the accept_mutex
* as we want every thread to go through this same routine :)
* Bit of a hack, but compared to what I had before...
*/
if (lr == NULL) {
this_worker_should_exit = 1;
apr_thread_mutex_unlock(accept_mutex);
goto got_a_black_spot;
}
goto got_fd;
}
got_fd:
/* Run beos_accept to accept the connection and set things up to
* allow us to process it. We always release the accept_lock here,
* even if we failt o accept as otherwise we'll starve other workers
* which would be bad.
*/
rv = beos_accept(&csd, lr, ptrans);
apr_thread_mutex_unlock(accept_mutex);
if (rv == APR_EGENERAL) {
/* resource shortage or should-not-occur occured */
clean_child_exit(1, worker_slot);
} else if (rv != APR_SUCCESS)
continue;
current_conn = ap_run_create_connection(ptrans, ap_server_conf, csd, worker_slot, sbh, bucket_alloc);
if (current_conn) {
ap_process_connection(current_conn, csd);
ap_lingering_close(current_conn);
}
if (ap_my_generation !=
ap_scoreboard_image->global->running_generation) { /* restart? */
/* yeah, this could be non-graceful restart, in which case the
* parent will kill us soon enough, but why bother checking?
*/
this_worker_should_exit = 1;
}
got_a_black_spot:
}
apr_pool_destroy(ptrans);
apr_pool_destroy(pworker);
clean_child_exit(0, worker_slot);
}
static int make_worker(int slot)
{
thread_id tid;
if (slot + 1 > ap_max_child_assigned)
ap_max_child_assigned = slot + 1;
(void) ap_update_child_status_from_indexes(0, slot, SERVER_STARTING, (request_rec*)NULL);
if (one_process) {
set_signals();
ap_scoreboard_image->parent[0].pid = getpid();
ap_scoreboard_image->servers[0][slot].tid = find_thread(NULL);
return 0;
}
tid = spawn_thread(worker_thread, "apache_worker", B_NORMAL_PRIORITY,
(void *)slot);
if (tid < B_NO_ERROR) {
ap_log_error(APLOG_MARK, APLOG_ERR, errno, NULL,
"spawn_thread: Unable to start a new thread");
/* In case system resources are maxed out, we don't want
* Apache running away with the CPU trying to fork over and
* over and over again.
*/
(void) ap_update_child_status_from_indexes(0, slot, SERVER_DEAD,
(request_rec*)NULL);
sleep(10);
return -1;
}
resume_thread(tid);
ap_scoreboard_image->servers[0][slot].tid = tid;
return 0;
}
/* When a worker thread exits, this function is called. If we are not in
* a shutdown situation then we restart the worker in the slot that was
* just vacated.
*/
static void check_restart(void *data)
{
if (!restart_pending && !shutdown_pending) {
int slot = (int)data;
make_worker(slot);
ap_log_error(APLOG_MARK, APLOG_INFO, 0, NULL,
"spawning a new worker thread in slot %d", slot);
}
}
/* Start number_to_start children. This is used to start both the
* initial 'pool' of workers but also to replace existing workers who
* have reached the end of their time. It walks through the scoreboard to find
* an empty slot and starts the worker thread in that slot.
*/
static void startup_threads(int number_to_start)
{
int i;
for (i = 0; number_to_start && i < ap_thread_limit; ++i) {
if (ap_scoreboard_image->servers[0][i].tid)
continue;
if (make_worker(i) < 0)
break;
--number_to_start;
}
}
/*
* spawn_rate is the number of children that will be spawned on the
* next maintenance cycle if there aren't enough idle servers. It is
* doubled up to MAX_SPAWN_RATE, and reset only when a cycle goes by
* without the need to spawn.
*/
static int spawn_rate = 1;
#ifndef MAX_SPAWN_RATE
#define MAX_SPAWN_RATE (32)
#endif
static int hold_off_on_exponential_spawning;
static void perform_idle_server_maintenance(void)
{
int i;
int free_length;
int free_slots[MAX_SPAWN_RATE];
int last_non_dead = -1;
/* initialize the free_list */
free_length = 0;
for (i = 0; i < ap_thread_limit; ++i) {
if (ap_scoreboard_image->servers[0][i].tid == 0) {
if (free_length < spawn_rate) {
free_slots[free_length] = i;
++free_length;
}
}
else {
last_non_dead = i;
}
if (i >= ap_max_child_assigned && free_length >= spawn_rate) {
break;
}
}
ap_max_child_assigned = last_non_dead + 1;
if (free_length > 0) {
for (i = 0; i < free_length; ++i) {
make_worker(free_slots[i]);
}
/* the next time around we want to spawn twice as many if this
* wasn't good enough, but not if we've just done a graceful
*/
if (hold_off_on_exponential_spawning) {
--hold_off_on_exponential_spawning;
} else if (spawn_rate < MAX_SPAWN_RATE) {
spawn_rate *= 2;
}
} else {
spawn_rate = 1;
}
}
static void server_main_loop(int remaining_threads_to_start)
{
int child_slot;
apr_exit_why_e exitwhy;
int status;
apr_proc_t pid;
int i;
while (!restart_pending && !shutdown_pending) {
ap_wait_or_timeout(&exitwhy, &status, &pid, pconf);
if (pid.pid >= 0) {
if (ap_process_child_status(&pid, exitwhy, status) == APEXIT_CHILDFATAL) {
shutdown_pending = 1;
child_fatal = 1;
return;
}
/* non-fatal death... note that it's gone in the scoreboard. */
child_slot = -1;
for (i = 0; i < ap_max_child_assigned; ++i) {
if (ap_scoreboard_image->servers[0][i].tid == pid.pid) {
child_slot = i;
break;
}
}
if (child_slot >= 0) {
ap_scoreboard_image->servers[0][child_slot].tid = 0;
(void) ap_update_child_status_from_indexes(0, child_slot,
SERVER_DEAD,
(request_rec*)NULL);
if (remaining_threads_to_start
&& child_slot < ap_thread_limit) {
/* we're still doing a 1-for-1 replacement of dead
* children with new children
*/
make_worker(child_slot);
--remaining_threads_to_start;
}
/* TODO
#if APR_HAS_OTHER_CHILD
}
else if (apr_proc_other_child_refresh(&pid, status) == 0) {
#endif
*/
}
else if (is_graceful) {
/* Great, we've probably just lost a slot in the
* scoreboard. Somehow we don't know about this
* child.
*/
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, ap_server_conf,
"long lost child came home! (pid %ld)", pid.pid);
}
/* Don't perform idle maintenance when a child dies,
* only do it when there's a timeout. Remember only a
* finite number of children can die, and it's pretty
* pathological for a lot to die suddenly.
*/
continue;
}
else if (remaining_threads_to_start) {
/* we hit a 1 second timeout in which none of the previous
* generation of children needed to be reaped... so assume
* they're all done, and pick up the slack if any is left.
*/
startup_threads(remaining_threads_to_start);
remaining_threads_to_start = 0;
/* In any event we really shouldn't do the code below because
* few of the servers we just started are in the IDLE state
* yet, so we'd mistakenly create an extra server.
*/
continue;
}
perform_idle_server_maintenance();
}
}
/* This is called to not only setup and run for the initial time, but also
* when we've asked for a restart. This means it must be able to handle both
* situations. It also means that when we exit here we should have tidied
* up after ourselves fully.
*/
int ap_mpm_run(apr_pool_t *_pconf, apr_pool_t *plog, server_rec *s)
{
int remaining_threads_to_start, i,j;
apr_status_t rv;
ap_listen_rec *lr;
pconf = _pconf;
ap_server_conf = s;
/* Increase the available pool of fd's. This code from
* Joe Kloss <joek@be.com>
*/
if( FD_SETSIZE > 128 && (i = _kset_fd_limit_( 128 )) < 0 ){
ap_log_error(APLOG_MARK, APLOG_ERR, i, s,
"could not set FD_SETSIZE (_kset_fd_limit_ failed)");
}
/* BeOS R5 doesn't support pipes on select() calls, so we use a
* UDP socket as these are supported in both R5 and BONE. If we only cared
* about BONE we'd use a pipe, but there it is.
* As we have UDP support in APR, now use the APR functions and check all the
* return values...
*/
if (apr_sockaddr_info_get(&udp_sa, "127.0.0.1", APR_UNSPEC, 7772, 0, _pconf)
!= APR_SUCCESS){
ap_log_error(APLOG_MARK, APLOG_ALERT, errno, s,
"couldn't create control socket information, shutting down");
return 1;
}
if (apr_socket_create(&udp_sock, udp_sa->family, SOCK_DGRAM, 0,
_pconf) != APR_SUCCESS){
ap_log_error(APLOG_MARK, APLOG_ALERT, errno, s,
"couldn't create control socket, shutting down");
return 1;
}
if (apr_socket_bind(udp_sock, udp_sa) != APR_SUCCESS){
ap_log_error(APLOG_MARK, APLOG_ALERT, errno, s,
"couldn't bind UDP socket!");
return 1;
}
if ((num_listening_sockets = ap_setup_listeners(ap_server_conf)) < 1) {
ap_log_error(APLOG_MARK, APLOG_ALERT, 0, s,
"no listening sockets available, shutting down");
return 1;
}
ap_log_pid(pconf, ap_pid_fname);
/*
* Create our locks...
*/
/* accept_mutex
* used to lock around select so we only have one thread
* in select at a time
*/
rv = apr_thread_mutex_create(&accept_mutex, 0, pconf);
if (rv != APR_SUCCESS) {
/* tsch tsch, can't have more than one thread in the accept loop
at a time so we need to fall on our sword... */
ap_log_error(APLOG_MARK, APLOG_EMERG, rv, s,
"Couldn't create accept lock");
return 1;
}
/*
* Startup/shutdown...
*/
if (!is_graceful) {
/* setup the scoreboard shared memory */
if (ap_run_pre_mpm(s->process->pool, SB_SHARED) != OK) {
return 1;
}
for (i = 0; i < HARD_SERVER_LIMIT; i++) {
ap_scoreboard_image->parent[i].pid = 0;
for (j = 0;j < HARD_THREAD_LIMIT; j++)
ap_scoreboard_image->servers[i][j].tid = 0;
}
}
if (HARD_SERVER_LIMIT == 1)
ap_scoreboard_image->parent[0].pid = getpid();
set_signals();
apr_pool_create(&pmain, pconf);
ap_run_child_init(pmain, ap_server_conf);
/* Sanity checks to avoid thrashing... */
if (max_spare_threads < min_spare_threads )
max_spare_threads = min_spare_threads;
/* If we're doing a graceful_restart then we're going to see a lot
* of threads exiting immediately when we get into the main loop
* below (because we just sent them AP_SIG_GRACEFUL). This happens
* pretty rapidly... and for each one that exits we'll start a new one
* until we reach at least threads_min_free. But we may be permitted to
* start more than that, so we'll just keep track of how many we're
* supposed to start up without the 1 second penalty between each fork.
*/
remaining_threads_to_start = ap_threads_to_start;
/* sanity check on the number to start... */
if (remaining_threads_to_start > ap_thread_limit) {
remaining_threads_to_start = ap_thread_limit;
}
/* If we're doing the single process thing or we're in a graceful_restart
* then we don't start threads here.
* if we're in one_process mode we don't want to start threads
* do we??
*/
if (!is_graceful && !one_process) {
startup_threads(remaining_threads_to_start);
remaining_threads_to_start = 0;
} else {
/* give the system some time to recover before kicking into
* exponential mode */
hold_off_on_exponential_spawning = 10;
}
/*
* record that we've entered the world !
*/
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
"%s configured -- resuming normal operations",
ap_get_server_description());
ap_log_error(APLOG_MARK, APLOG_INFO, 0, ap_server_conf,
"Server built: %s", ap_get_server_built());
restart_pending = shutdown_pending = 0;
mpm_state = AP_MPMQ_RUNNING;
/* We sit in the server_main_loop() until we somehow manage to exit. When
* we do, we need to kill the workers we have, so we start by using the
* tell_workers_to_exit() function, but as it sometimes takes a short while
* to accomplish this we have a pause builtin to allow them the chance to
* gracefully exit.
*/
if (!one_process) {
server_main_loop(remaining_threads_to_start);
tell_workers_to_exit();
snooze(1000000);
} else {
worker_thread((void*)0);
}
mpm_state = AP_MPMQ_STOPPING;
/* close the UDP socket we've been using... */
apr_socket_close(udp_sock);
if ((one_process || shutdown_pending) && !child_fatal) {
const char *pidfile = NULL;
pidfile = ap_server_root_relative (pconf, ap_pid_fname);
if ( pidfile != NULL && unlink(pidfile) == 0)
ap_log_error(APLOG_MARK, APLOG_INFO, 0, ap_server_conf,
"removed PID file %s (pid=%ld)", pidfile,
(long)getpid());
}
if (one_process) {
mpm_main_cleanup();
return 1;
}
/*
* If we get here we're shutting down...
*/
if (shutdown_pending) {
/* Time to gracefully shut down:
* Kill child processes, tell them to call child_exit, etc...
*/
if (beosd_killpg(getpgrp(), SIGTERM) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, ap_server_conf,
"killpg SIGTERM");
/* use ap_reclaim_child_processes starting with SIGTERM */
ap_reclaim_child_processes(1);
if (!child_fatal) { /* already recorded */
/* record the shutdown in the log */
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
"caught SIGTERM, shutting down");
}
mpm_main_cleanup();
return 1;
}
/* we've been told to restart */
signal(SIGHUP, SIG_IGN);
if (is_graceful) {
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
AP_SIG_GRACEFUL_STRING " received. Doing graceful restart");
} else {
/* Kill 'em all. Since the child acts the same on the parents SIGTERM
* and a SIGHUP, we may as well use the same signal, because some user
* pthreads are stealing signals from us left and right.
*/
ap_reclaim_child_processes(1); /* Start with SIGTERM */
ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf,
"SIGHUP received. Attempting to restart");
}
/* just before we go, tidy up the lock we created to prevent a
* potential leak of semaphores...
*/
apr_thread_mutex_destroy(accept_mutex);
mpm_main_cleanup();
return 0;
}
static int beos_pre_config(apr_pool_t *pconf, apr_pool_t *plog, apr_pool_t *ptemp)
{
static int restart_num = 0;
int no_detach, debug, foreground;
apr_status_t rv;
mpm_state = AP_MPMQ_STARTING;
debug = ap_exists_config_define("DEBUG");
if (debug) {
foreground = one_process = 1;
no_detach = 0;
}
else
{
one_process = ap_exists_config_define("ONE_PROCESS");
no_detach = ap_exists_config_define("NO_DETACH");
foreground = ap_exists_config_define("FOREGROUND");
}
/* sigh, want this only the second time around */
if (restart_num++ == 1) {
is_graceful = 0;
if (!one_process && !foreground) {
rv = apr_proc_detach(no_detach ? APR_PROC_DETACH_FOREGROUND
: APR_PROC_DETACH_DAEMONIZE);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rv, NULL,
"apr_proc_detach failed");
return HTTP_INTERNAL_SERVER_ERROR;
}
}
server_pid = getpid();
}
beosd_pre_config();
ap_listen_pre_config();
ap_threads_to_start = DEFAULT_START_THREADS;
min_spare_threads = DEFAULT_MIN_FREE_THREADS;
max_spare_threads = DEFAULT_MAX_FREE_THREADS;
ap_thread_limit = HARD_THREAD_LIMIT;
ap_pid_fname = DEFAULT_PIDLOG;
ap_max_requests_per_thread = DEFAULT_MAX_REQUESTS_PER_THREAD;
#ifdef AP_MPM_WANT_SET_MAX_MEM_FREE
ap_max_mem_free = APR_ALLOCATOR_MAX_FREE_UNLIMITED;
#endif
apr_cpystrn(ap_coredump_dir, ap_server_root, sizeof(ap_coredump_dir));
return OK;
}
static int beos_check_config(apr_pool_t *pconf, apr_pool_t *plog,
apr_pool_t *ptemp, server_rec *s)
{
static int restart_num = 0;
int startup = 0;
/* the reverse of pre_config, we want this only the first time around */
if (restart_num++ == 0) {
startup = 1;
}
if (ap_thread_limit > HARD_THREAD_LIMIT) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MaxClients of %d exceeds compile-time "
"limit of", ap_thread_limit);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" %d servers, decreasing to %d.",
HARD_THREAD_LIMIT, HARD_THREAD_LIMIT);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" To increase, please see the HARD_THREAD_LIMIT"
"define in");
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" server/mpm/beos%s.", AP_MPM_HARD_LIMITS_FILE);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MaxClients of %d exceeds compile-time limit "
"of %d, decreasing to match",
ap_thread_limit, HARD_THREAD_LIMIT);
}
ap_thread_limit = HARD_THREAD_LIMIT;
}
else if (ap_thread_limit < 1) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MaxClients of %d not allowed, "
"increasing to 1.", ap_thread_limit);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MaxClients of %d not allowed, increasing to 1",
ap_thread_limit);
}
ap_thread_limit = 1;
}
/* ap_threads_to_start > ap_thread_limit checked in ap_mpm_run() */
if (ap_threads_to_start < 0) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: StartThreads of %d not allowed, "
"increasing to 1.", ap_threads_to_start);
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"StartThreads of %d not allowed, increasing to 1",
ap_threads_to_start);
}
ap_threads_to_start = 1;
}
if (min_spare_threads < 1) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MinSpareThreads of %d not allowed, "
"increasing to 1", min_spare_threads);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" to avoid almost certain server failure.");
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" Please read the documentation.");
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MinSpareThreads of %d not allowed, increasing to 1",
min_spare_threads);
}
min_spare_threads = 1;
}
/* max_spare_threads < min_spare_threads checked in ap_mpm_run() */
if (ap_max_requests_per_thread < 0) {
if (startup) {
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
"WARNING: MaxRequestsPerThread of %d not allowed, "
"increasing to 0,", ap_max_requests_per_thread);
ap_log_error(APLOG_MARK, APLOG_WARNING | APLOG_STARTUP, 0, NULL,
" but this may not be what you want.");
} else {
ap_log_error(APLOG_MARK, APLOG_WARNING, 0, s,
"MaxRequestsPerThread of %d not allowed, "
"increasing to 0", ap_max_requests_per_thread);
}
ap_max_requests_per_thread = 0;
}
return OK;
}
static void beos_hooks(apr_pool_t *p)
{
one_process = 0;
ap_hook_pre_config(beos_pre_config, NULL, NULL, APR_HOOK_MIDDLE);
ap_hook_check_config(beos_check_config, NULL, NULL, APR_HOOK_MIDDLE);
}
static const char *set_threads_to_start(cmd_parms *cmd, void *dummy, const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_threads_to_start = atoi(arg);
return NULL;
}
static const char *set_min_spare_threads(cmd_parms *cmd, void *dummy, const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
min_spare_threads = atoi(arg);
return NULL;
}
static const char *set_max_spare_threads(cmd_parms *cmd, void *dummy, const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
max_spare_threads = atoi(arg);
return NULL;
}
static const char *set_threads_limit (cmd_parms *cmd, void *dummy, const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_thread_limit = atoi(arg);
return NULL;
}
static const char *set_max_requests_per_thread (cmd_parms *cmd, void *dummy, const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_max_requests_per_thread = atoi(arg);
return NULL;
}
static const command_rec beos_cmds[] = {
BEOS_DAEMON_COMMANDS,
LISTEN_COMMANDS,
AP_INIT_TAKE1( "StartThreads", set_threads_to_start, NULL, RSRC_CONF,
"Number of threads to launch at server startup"),
AP_INIT_TAKE1( "MinSpareThreads", set_min_spare_threads, NULL, RSRC_CONF,
"Minimum number of idle children, to handle request spikes"),
AP_INIT_TAKE1( "MaxSpareThreads", set_max_spare_threads, NULL, RSRC_CONF,
"Maximum number of idle children" ),
AP_INIT_TAKE1( "MaxClients", set_threads_limit, NULL, RSRC_CONF,
"Maximum number of children alive at the same time (max threads)" ),
AP_INIT_TAKE1( "MaxRequestsPerThread", set_max_requests_per_thread, NULL, RSRC_CONF,
"Maximum number of requests served by a thread" ),
{ NULL }
};
module AP_MODULE_DECLARE_DATA mpm_beos_module = {
MPM20_MODULE_STUFF,
NULL, /* hook to run before apache parses args */
NULL, /* create per-directory config structure */
NULL, /* merge per-directory config structures */
NULL, /* create per-server config structure */
NULL, /* merge per-server config structures */
beos_cmds, /* command apr_table_t */
beos_hooks /* register_hooks */
};