http_request.c revision 26a4456dd6f1a5d7d7fff766551461a578687c4a
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2000-2004 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*
* Portions of this software are based upon public domain software
* originally written at the National Center for Supercomputing Applications,
* University of Illinois, Urbana-Champaign.
*/
/*
* http_request.c: functions to get and process requests
*
* Rob McCool 3/21/93
*
* Thoroughly revamped by rst for Apache. NB this file reads
* best from the bottom up.
*
*/
#include "apr_strings.h"
#include "apr_file_io.h"
#include "apr_fnmatch.h"
#define APR_WANT_STRFUNC
#include "apr_want.h"
#define CORE_PRIVATE
#include "ap_config.h"
#include "httpd.h"
#include "http_config.h"
#include "http_request.h"
#include "http_core.h"
#include "http_protocol.h"
#include "http_log.h"
#include "http_main.h"
#include "util_filter.h"
#include "util_charset.h"
#include "scoreboard.h"
#include "mod_core.h"
#if APR_HAVE_STDARG_H
#include <stdarg.h>
#endif
/*****************************************************************
*
* Mainline request processing...
*/
/* XXX A cleaner and faster way to do this might be to pass the request_rec
* down the filter chain as a parameter. It would need to change for
* subrequest vs. main request filters; perhaps the subrequest filter could
* make the switch.
*/
static void update_r_in_filters(ap_filter_t *f,
request_rec *from,
request_rec *to)
{
while (f) {
if (f->r == from) {
f->r = to;
}
f = f->next;
}
}
AP_DECLARE(void) ap_die(int type, request_rec *r)
{
int error_index = ap_index_of_response(type);
char *custom_response = ap_response_code_string(r, error_index);
int recursive_error = 0;
request_rec *r_1st_err = r;
if (type == AP_FILTER_ERROR) {
return;
}
if (type == DONE) {
ap_finalize_request_protocol(r);
return;
}
/*
* The following takes care of Apache redirects to custom response URLs
* Note that if we are already dealing with the response to some other
* error condition, we just report on the original error, and give up on
* any attempt to handle the other thing "intelligently"...
*/
if (r->status != HTTP_OK) {
recursive_error = type;
while (r_1st_err->prev && (r_1st_err->prev->status != HTTP_OK))
r_1st_err = r_1st_err->prev; /* Get back to original error */
if (r_1st_err != r) {
/* The recursive error was caused by an ErrorDocument specifying
* an internal redirect to a bad URI. ap_internal_redirect has
* changed the filter chains to point to the ErrorDocument's
* request_rec. Back out those changes so we can safely use the
* original failing request_rec to send the canned error message.
*
* ap_send_error_response gets rid of existing resource filters
* on the output side, so we can skip those.
*/
update_r_in_filters(r_1st_err->proto_output_filters, r, r_1st_err);
update_r_in_filters(r_1st_err->input_filters, r, r_1st_err);
}
custom_response = NULL; /* Do NOT retry the custom thing! */
}
r->status = type;
/*
* This test is done here so that none of the auth modules needs to know
* about proxy authentication. They treat it like normal auth, and then
* we tweak the status.
*/
if (HTTP_UNAUTHORIZED == r->status && PROXYREQ_PROXY == r->proxyreq) {
r->status = HTTP_PROXY_AUTHENTICATION_REQUIRED;
}
/* If we don't want to keep the connection, make sure we mark that the
* connection is not eligible for keepalive. If we want to keep the
* connection, be sure that the request body (if any) has been read.
*/
if (ap_status_drops_connection(r->status)) {
r->connection->keepalive = AP_CONN_CLOSE;
}
/*
* Two types of custom redirects --- plain text, and URLs. Plain text has
* a leading '"', so the URL code, here, is triggered on its absence
*/
if (custom_response && custom_response[0] != '"') {
if (ap_is_url(custom_response)) {
/*
* The URL isn't local, so lets drop through the rest of this
* apache code, and continue with the usual REDIRECT handler.
* But note that the client will ultimately see the wrong
* status...
*/
r->status = HTTP_MOVED_TEMPORARILY;
apr_table_setn(r->headers_out, "Location", custom_response);
}
else if (custom_response[0] == '/') {
const char *error_notes;
r->no_local_copy = 1; /* Do NOT send HTTP_NOT_MODIFIED for
* error documents! */
/*
* This redirect needs to be a GET no matter what the original
* method was.
*/
apr_table_setn(r->subprocess_env, "REQUEST_METHOD", r->method);
/*
* Provide a special method for modules to communicate
* more informative (than the plain canned) messages to us.
* Propagate them to ErrorDocuments via the ERROR_NOTES variable:
*/
if ((error_notes = apr_table_get(r->notes,
"error-notes")) != NULL) {
apr_table_setn(r->subprocess_env, "ERROR_NOTES", error_notes);
}
r->method = apr_pstrdup(r->pool, "GET");
r->method_number = M_GET;
ap_internal_redirect(custom_response, r);
return;
}
else {
/*
* Dumb user has given us a bad url to redirect to --- fake up
* dying with a recursive server error...
*/
recursive_error = HTTP_INTERNAL_SERVER_ERROR;
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
"Invalid error redirection directive: %s",
custom_response);
}
}
ap_send_error_response(r_1st_err, recursive_error);
}
static void check_pipeline_flush(request_rec *r)
{
conn_rec *c = r->connection;
/* ### if would be nice if we could PEEK without a brigade. that would
### allow us to defer creation of the brigade to when we actually
### need to send a FLUSH. */
apr_bucket_brigade *bb = apr_brigade_create(r->pool, c->bucket_alloc);
/* Flush the filter contents if:
*
* 1) the connection will be closed
* 2) there isn't a request ready to be read
*/
/* ### shouldn't this read from the connection input filters? */
/* ### is zero correct? that means "read one line" */
if (r->connection->keepalive == AP_CONN_CLOSE ||
ap_get_brigade(r->input_filters, bb, AP_MODE_EATCRLF,
APR_NONBLOCK_READ, 0) != APR_SUCCESS) {
apr_bucket *e = apr_bucket_flush_create(c->bucket_alloc);
/* We just send directly to the connection based filters. At
* this point, we know that we have seen all of the data
* (request finalization sent an EOS bucket, which empties all
* of the request filters). We just want to flush the buckets
* if something hasn't been sent to the network yet.
*/
APR_BRIGADE_INSERT_HEAD(bb, e);
ap_pass_brigade(r->connection->output_filters, bb);
}
}
void ap_process_request(request_rec *r)
{
int access_status;
/* Give quick handlers a shot at serving the request on the fast
* path, bypassing all of the other Apache hooks.
*
* This hook was added to enable serving files out of a URI keyed
* content cache ( e.g., Mike Abbott's Quick Shortcut Cache,
* described here: http://oss.sgi.com/projects/apache/mod_qsc.html )
*
* It may have other uses as well, such as routing requests directly to
* content handlers that have the ability to grok HTTP and do their
* own access checking, etc (e.g. servlet engines).
*
* Use this hook with extreme care and only if you know what you are
* doing.
*/
access_status = ap_run_quick_handler(r, 0); /* Not a look-up request */
if (access_status == DECLINED) {
access_status = ap_process_request_internal(r);
if (access_status == OK) {
access_status = ap_invoke_handler(r);
}
}
if (access_status == DONE) {
/* e.g., something not in storage like TRACE */
access_status = OK;
}
if (access_status == OK) {
ap_finalize_request_protocol(r);
}
else {
ap_die(access_status, r);
}
/*
* We want to flush the last packet if this isn't a pipelining connection
* *before* we start into logging. Suppose that the logging causes a DNS
* lookup to occur, which may have a high latency. If we hold off on
* this packet, then it'll appear like the link is stalled when really
* it's the application that's stalled.
*/
check_pipeline_flush(r);
ap_update_child_status(r->connection->sbh, SERVER_BUSY_LOG, r);
ap_run_log_transaction(r);
}
static apr_table_t *rename_original_env(apr_pool_t *p, apr_table_t *t)
{
const apr_array_header_t *env_arr = apr_table_elts(t);
const apr_table_entry_t *elts = (const apr_table_entry_t *) env_arr->elts;
apr_table_t *new = apr_table_make(p, env_arr->nalloc);
int i;
for (i = 0; i < env_arr->nelts; ++i) {
if (!elts[i].key)
continue;
apr_table_setn(new, apr_pstrcat(p, "REDIRECT_", elts[i].key, NULL),
elts[i].val);
}
return new;
}
static request_rec *internal_internal_redirect(const char *new_uri,
request_rec *r) {
int access_status;
request_rec *new;
if (ap_is_recursion_limit_exceeded(r)) {
ap_die(HTTP_INTERNAL_SERVER_ERROR, r);
return NULL;
}
new = (request_rec *) apr_pcalloc(r->pool, sizeof(request_rec));
new->connection = r->connection;
new->server = r->server;
new->pool = r->pool;
/*
* A whole lot of this really ought to be shared with http_protocol.c...
* another missing cleanup. It's particularly inappropriate to be
* setting header_only, etc., here.
*/
new->method = r->method;
new->method_number = r->method_number;
new->allowed_methods = ap_make_method_list(new->pool, 2);
ap_parse_uri(new, new_uri);
new->request_config = ap_create_request_config(r->pool);
new->per_dir_config = r->server->lookup_defaults;
new->prev = r;
r->next = new;
/* Must have prev and next pointers set before calling create_request
* hook.
*/
ap_run_create_request(new);
/* Inherit the rest of the protocol info... */
new->the_request = r->the_request;
new->allowed = r->allowed;
new->status = r->status;
new->assbackwards = r->assbackwards;
new->header_only = r->header_only;
new->protocol = r->protocol;
new->proto_num = r->proto_num;
new->hostname = r->hostname;
new->request_time = r->request_time;
new->main = r->main;
new->headers_in = r->headers_in;
new->headers_out = apr_table_make(r->pool, 12);
new->err_headers_out = r->err_headers_out;
new->subprocess_env = rename_original_env(r->pool, r->subprocess_env);
new->notes = apr_table_make(r->pool, 5);
new->allowed_methods = ap_make_method_list(new->pool, 2);
new->htaccess = r->htaccess;
new->no_cache = r->no_cache;
new->expecting_100 = r->expecting_100;
new->no_local_copy = r->no_local_copy;
new->read_length = r->read_length; /* We can only read it once */
new->vlist_validator = r->vlist_validator;
new->proto_output_filters = r->proto_output_filters;
new->proto_input_filters = r->proto_input_filters;
new->output_filters = new->proto_output_filters;
new->input_filters = new->proto_input_filters;
if (new->main) {
/* Add back the subrequest filter, which we lost when
* we set output_filters to include only the protocol
* output filters from the original request.
*/
ap_add_output_filter_handle(ap_subreq_core_filter_handle,
NULL, new, new->connection);
}
update_r_in_filters(new->input_filters, r, new);
update_r_in_filters(new->output_filters, r, new);
apr_table_setn(new->subprocess_env, "REDIRECT_STATUS",
apr_itoa(r->pool, r->status));
/*
* XXX: hmm. This is because mod_setenvif and mod_unique_id really need
* to do their thing on internal redirects as well. Perhaps this is a
* misnamed function.
*/
if ((access_status = ap_run_post_read_request(new))) {
ap_die(access_status, new);
return NULL;
}
return new;
}
/* XXX: Is this function is so bogus and fragile that we deep-6 it? */
AP_DECLARE(void) ap_internal_fast_redirect(request_rec *rr, request_rec *r)
{
/* We need to tell POOL_DEBUG that we're guaranteeing that rr->pool
* will exist as long as r->pool. Otherwise we run into troubles because
* some values in this request will be allocated in r->pool, and others in
* rr->pool.
*/
apr_pool_join(r->pool, rr->pool);
r->mtime = rr->mtime;
r->uri = rr->uri;
r->filename = rr->filename;
r->canonical_filename = rr->canonical_filename;
r->path_info = rr->path_info;
r->args = rr->args;
r->finfo = rr->finfo;
r->handler = rr->handler;
ap_set_content_type(r, rr->content_type);
r->content_encoding = rr->content_encoding;
r->content_languages = rr->content_languages;
r->per_dir_config = rr->per_dir_config;
/* copy output headers from subrequest, but leave negotiation headers */
r->notes = apr_table_overlay(r->pool, rr->notes, r->notes);
r->headers_out = apr_table_overlay(r->pool, rr->headers_out,
r->headers_out);
r->err_headers_out = apr_table_overlay(r->pool, rr->err_headers_out,
r->err_headers_out);
r->subprocess_env = apr_table_overlay(r->pool, rr->subprocess_env,
r->subprocess_env);
r->output_filters = rr->output_filters;
r->input_filters = rr->input_filters;
if (r->main) {
ap_add_output_filter_handle(ap_subreq_core_filter_handle,
NULL, r, r->connection);
}
else if (r->output_filters->frec == ap_subreq_core_filter_handle) {
ap_remove_output_filter(r->output_filters);
r->output_filters = r->output_filters->next;
}
/* If any filters pointed at the now-defunct rr, we must point them
* at our "new" instance of r. In particular, some of rr's structures
* will now be bogus (say rr->headers_out). If a filter tried to modify
* their f->r structure when it is pointing to rr, the real request_rec
* will not get updated. Fix that here.
*/
update_r_in_filters(r->input_filters, rr, r);
update_r_in_filters(r->output_filters, rr, r);
}
AP_DECLARE(void) ap_internal_redirect(const char *new_uri, request_rec *r)
{
request_rec *new = internal_internal_redirect(new_uri, r);
int access_status;
/* ap_die was already called, if an error occured */
if (!new) {
return;
}
access_status = ap_process_request_internal(new);
if (access_status == OK) {
if ((access_status = ap_invoke_handler(new)) != 0) {
ap_die(access_status, new);
return;
}
ap_finalize_request_protocol(new);
}
else {
ap_die(access_status, new);
}
}
/* This function is designed for things like actions or CGI scripts, when
* using AddHandler, and you want to preserve the content type across
* an internal redirect.
*/
AP_DECLARE(void) ap_internal_redirect_handler(const char *new_uri, request_rec *r)
{
int access_status;
request_rec *new = internal_internal_redirect(new_uri, r);
/* ap_die was already called, if an error occured */
if (!new) {
return;
}
if (r->handler)
ap_set_content_type(new, r->content_type);
access_status = ap_process_request_internal(new);
if (access_status == OK) {
if ((access_status = ap_invoke_handler(new)) != 0) {
ap_die(access_status, new);
return;
}
ap_finalize_request_protocol(new);
}
else {
ap_die(access_status, new);
}
}
AP_DECLARE(void) ap_allow_methods(request_rec *r, int reset, ...)
{
const char *method;
va_list methods;
/*
* Get rid of any current settings if requested; not just the
* well-known methods but any extensions as well.
*/
if (reset) {
ap_clear_method_list(r->allowed_methods);
}
va_start(methods, reset);
while ((method = va_arg(methods, const char *)) != NULL) {
ap_method_list_add(r->allowed_methods, method);
}
}
AP_DECLARE(void) ap_allow_standard_methods(request_rec *r, int reset, ...)
{
int method;
va_list methods;
apr_int64_t mask;
/*
* Get rid of any current settings if requested; not just the
* well-known methods but any extensions as well.
*/
if (reset) {
ap_clear_method_list(r->allowed_methods);
}
mask = 0;
va_start(methods, reset);
while ((method = va_arg(methods, int)) != -1) {
mask |= (AP_METHOD_BIT << method);
}
va_end(methods);
r->allowed_methods->method_mask |= mask;
}