StatAna.hs revision 81f49ee02aaa3bc870401f8883bf52742eb3ea7a
{-# LANGUAGE ExistentialQuantification #-}
{- |
Module : $Header$
License : GPLv2 or higher, see LICENSE.txt
Maintainer : nevrenato@gmail.com
Stability : experimental
Portability : not portable
Description :
Static analysis of hybrid logic with an arbitrary logic below.
-}
module TopHybrid.StatAna (thAna,anaForm',simSen) where
import Logic.Logic
import TopHybrid.AS_TopHybrid
import TopHybrid.TopHybridSign
import TopHybrid.Print_AS
import TopHybrid.Utilities
import TopHybrid.ATC_TopHybrid
import CASL.Sign -- Symbols, this should be removed...
import Common.GlobalAnnotations
import Common.Result
import Common.ExtSign
import Common.AS_Annotation
import Common.Id
import Common.DocUtils
import Control.Monad
import Data.List
import Data.Set
import Unsafe.Coerce
import ATerm.Lib
-- | Collects the newly declared nomies and modies
colnomsMods :: [TH_BASIC_ITEM] -> ([MODALITY],[NOMINAL])
colnomsMods = Data.List.foldr f ([],[])
where f (Simple_mod_decl ms) = bimap (++ ms) id
f (Simple_nom_decl ns) = bimap id (++ ns)
-- | Adds the newly declared nomies/modies, and the analysed base
-- signature to a new sig
-- checking for redundancy of modalities and nominals declarations
-- Note : If there are repeated declarations, the size of the sets should
-- be differnt that the size of the lists
topAna :: (Logic l sub bs sen si smi sign mor symb raw pf) =>
[TH_BASIC_ITEM] -> l -> sign -> Result Sgn_Wrap
topAna ds l sig = if not rep then return newSig else mkHint newSig msg
where
x = colnomsMods ds
x' = bimap fromList fromList x
rep = (size $ Data.Set.union (fst x') (snd x')) /= (length $ fst x ++ (snd x))
s = THybridSign (fst x') (snd x') sig
newSig = Sgn_Wrap l s
msg = maybeE 0 Nothing
-- Checks if the modalities and nominals referred in a sentence, really exist
-- in the signature
nomOrModCheck :: (Pretty f, GetRange f) =>
Set SIMPLE_ID -> SIMPLE_ID -> (TH_FORMULA f) -> Result (TH_FORMULA f)
nomOrModCheck xs x = if member x xs then return else mkError msg
where msg = maybeE 1 Nothing
-- | Top Formula analyser
-- The l argument could be discarded, but then we would need an extra unsafe
-- function, to convert the spec type...
-- As l corresponds to the underlying logic bs should correspond to the
-- underlying spec, as some formula analysers need the spec associated
-- with it
anaForm :: (Logic l sub bs sen si smi sign mor symb raw pf) =>
l -> bs -> Sgn_Wrap -> Frm_Wrap -> Result Frm_Wrap
anaForm l bs s (Frm_Wrap _ f) = (unroll l bs s f) >>= return . (Frm_Wrap l)
-- Static analysis of an hybridized sentence, when it's called by an upper
-- level logic. (This is only used when we want to analyse 2 or more times
-- hybridized, sentences).
-- Probably this function can be merged smoothly with the above. I will check this later
-- An hybridized sentence, with the correpondent sign already built, doesn't
-- need the top spec, hence we can discard it and just use the underlying (und)
anaForm' :: (Spc_Wrap, Sgn_Wrap, Frm_Wrap) -> Result Frm_Wrap
anaForm' (Spc_Wrap l bs _, s, f) = anaForm l (und bs) s f
-- | Unrolling the formula, so that we can analyse it further
unroll :: (Show f, GetRange f, ShATermConvertible f,
Logic l sub bs sen sy sm si mo sy' rs pf) =>
l -> bs -> Sgn_Wrap -> (TH_FORMULA f) -> Result (TH_FORMULA sen)
unroll l bs s'@(Sgn_Wrap _ s) f =
case f of
(At n f') -> (unroll l bs s' f') >>= return . (At n) >>= nomOrModCheck (nomies s) n
(Box m f') -> (unroll l bs s' f') >>= return . (Box m) >>= nomOrModCheck (modies s) m
(Dia m f') -> (unroll l bs s' f') >>= return . (Dia m) >>= nomOrModCheck (modies s) m
(Conjunction f' f'') -> (liftM2 Conjunction) (unroll l bs s' f') (unroll l bs s' f'')
(Disjunction f' f'') -> (liftM2 Disjunction) (unroll l bs s' f') (unroll l bs s' f'')
(Implication f' f'') -> (liftM2 Implication) (unroll l bs s' f') (unroll l bs s' f'')
(BiImplication f' f'') -> (liftM2 BiImplication) (unroll l bs s' f') (unroll l bs s' f'')
(Here n) -> nomOrModCheck (nomies s) n $ Here n
(Neg f') -> (liftM Neg) (unroll l bs s' f')
(Uni n f') -> (liftM $ Uni n) (unroll l bs (addNomToSig n s') f') >>= checkForRepNom n (nomies s)
(Exist n f') -> (liftM $ Exist n) (unroll l bs (addNomToSig n s') f') >>= checkForRepNom n (nomies s)
(UnderLogic f') -> (undFormAna l (extended s) f' bs) >>= (return . UnderLogic)
(Par f') -> (liftM Par) (unroll l bs s' f')
TrueA -> return TrueA
FalseA -> return FalseA
unroll _ _ EmptySign _ = error "Signature not computable"
-- helper function
addNomToSig :: NOMINAL -> Sgn_Wrap -> Sgn_Wrap
addNomToSig n (Sgn_Wrap l s) = Sgn_Wrap l s { nomies = Data.Set.insert n $ nomies s}
addNomToSig _ EmptySign = error "Signature not computable"
checkForRepNom :: (Pretty f, GetRange f) =>
NOMINAL -> Set NOMINAL -> (TH_FORMULA f) -> Result (TH_FORMULA f)
checkForRepNom n s = if member n s
then mkError "conflict in nominal decl and quantification"
else return
-- | Lift of the formula analyser
-- Analyses each formula and collects the results. Converting also the
-- annotations to the correct format. The function flipM is needed because
-- we want the annotations independent from the analyser
anaForms :: (Logic l sub bs sen si smi sign mor symb raw pf) =>
l -> bs -> [Annoted Frm_Wrap] -> Sgn_Wrap -> Result [Named Frm_Wrap]
anaForms l bs f s = mapM (flipM . makeNamedSen . (fmap $ anaForm l bs s)) f
-- Just flips the monad position with the functor
flipM :: (Monad m) => Named (m a) -> m (Named a)
flipM x = (return x) >>= f
where f y = (sentence y) >>= \a -> return $ mapNamed (\_->a) y
-- | Examining the list of formulas and collecting results
-- Analyses first the underlying spec; Then analyses the top spec (without the axioms)
-- and merges the resulting sig with the underlying one. Also translates the underlying axioms
-- into hybridized ones, so that in the end all axioms are of the same type;
-- Next analyses the hybrid axioms and puts them together with the already translated axioms.
-- Finnaly prepares the tuple format for outputting.
thAna :: (Spc_Wrap, Sgn_Wrap, GlobalAnnos) ->
Result (Spc_Wrap, ExtSign Sgn_Wrap Symbol, [Named Frm_Wrap])
thAna (Spc_Wrap l sp fs, _, _) = finalRes
where
undA = undAna l $ und sp
partMerge = undA >>= \(x1,x2,x3) -> topAna (bitems sp) l (plainSign x2) >>= \x -> return (x1,x,formMap x3)
partMerge' = partMerge >>= \(x1,x2,x3) -> (anaForms l x1 fs x2) >>= \x -> return (x1,x2,x3++x)
finalRes = partMerge' >>= \(x1,x2,x3) -> return (mergSpec x1, mkExtSign x2, x3)
formMap = Data.List.map $ mapNamed $ (Frm_Wrap l) . UnderLogic
mergSpec e = Spc_Wrap l (Bspec (bitems sp) e) fs
-- Analysis of the underlying logic spec
undAna :: (StaticAnalysis l bs sen si smi sign mor symb raw) =>
l -> bs -> Result(bs,ExtSign sign symb,[Named sen])
undAna l b = (maybeE 2 $ basic_analysis l) x
where x = (b, empty_signature l, emptyGlobalAnnos)
unsafeToForm :: (StaticAnalysis l bs sen si smi sign mor symb raw) => l -> a -> sen
unsafeToForm _ = unsafeCoerce
unsafeToSig :: (StaticAnalysis l bs sen si smi sign mor symb raw) => l -> a -> sign
unsafeToSig _ = unsafeCoerce
-- Analysis of the sentences part the corresponds to the underlying logic. We need
-- to use the unsafe functions here, because the typechecker has no way to check the
-- (simple) relations (l -> sig) and (l -> sen). In other words it can't check that
-- the arguments l and a belong to the Logic class, likewise for l -> b.
-- The unsafe functions will give the "right" type associated with l.
undFormAna :: (StaticAnalysis l bs sen si smi sign mor symb raw) =>
l -> a -> b -> bs -> Result sen
undFormAna l a b c = (maybeE 4 $ sen_analysis l) (c, a',b')
where a' = (unsafeToSig l a)
b' = (unsafeToForm l b)
---- Operations on sentences ----
-- How can we guarantee that the l in Sgn_Wrap is equal
-- to the l in Frm_Wrap ?
simSen :: Sgn_Wrap -> Frm_Wrap -> Frm_Wrap
simSen (Sgn_Wrap _ s) (Frm_Wrap l f) = Frm_Wrap l $
uroll l (unsafeCoerce (extended s)) f
simSen EmptySign _ = error "The signature cannot be empty"
uroll :: (Logic l sub bs f s sm sgn mo sy rw pf) =>
l -> sgn -> (TH_FORMULA f) -> (TH_FORMULA f)
uroll l s f = case f of
At n f' -> At n $ uroll l s f'
Box m f' -> Box m $ uroll l s f'
Dia m f' -> Dia m $ uroll l s f'
Conjunction f' f'' -> Conjunction (uroll l s f') $ uroll l s f''
Disjunction f' f'' -> Disjunction (uroll l s f') $ uroll l s f''
Implication f' f'' -> Implication (uroll l s f') $ uroll l s f''
BiImplication f' f'' -> BiImplication (uroll l s f') $ uroll l s f''
Here n -> Here n
Neg f' -> Neg $ uroll l s f'
Par f' -> Par $ uroll l s f'
UnderLogic f' -> UnderLogic $ simplify_sen l s f'
x -> x
-- These instances should be automatically generated by DriFT, but it cannot
-- since they are not declared in a usual format
instance ShATermConvertible Sgn_Wrap where
toShATermAux att (Sgn_Wrap _ s) = toShATermAux att s
toShATermAux _ EmptySign = error "I entered in emptySign"
fromShATermAux _ _= error "I entered here"
instance ShATermConvertible Spc_Wrap where
toShATermAux att (Spc_Wrap _ s _) = toShATermAux att s
fromShATermAux _ _ = error "I entered here"
instance ShATermConvertible Frm_Wrap where
toShATermAux att (Frm_Wrap _ f) = toShATermAux att f
fromShATermAux _ _ = error "I entered here"