Mu.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{-# OPTIONS -fglasgow-exts #-}
{- |
Module : $EmptyHeader$
Description : <optional short description entry>
Copyright : (c) <Authors or Affiliations>
License : GPLv2 or higher, see LICENSE.txt
Maintainer : <email>
Stability : unstable | experimental | provisional | stable | frozen
Portability : portable | non-portable (<reason>)
<optional description>
-}
module Mu where
import Control.Monad as Monad
import Data.Set as Set
import Kripke
{------------------------------------------------------------------------------}
{- -}
{- Formulas of the �-Calculus -}
{- -}
{------------------------------------------------------------------------------}
--
-- Given a finite set of variables, the set of �-calculus pre-formulas is the
-- set of formulas that can be derived from the following definitions:
--
data StateFormula a = Var a
| Snot (StateFormula a)
| Sand (StateFormula a) (StateFormula a)
| Sor (StateFormula a) (StateFormula a)
| E (PathFormula a)
| A (PathFormula a)
| Diamond (StateFormula a)
| Box (StateFormula a)
| DiamondPast (StateFormula a)
| BoxPast (StateFormula a)
| Mu a (StateFormula a)
| Nu a (StateFormula a)
deriving (Show)
data PathFormula a = SF (StateFormula a)
| Pnot (PathFormula a)
| Pand (PathFormula a) (PathFormula a)
| Por (PathFormula a) (PathFormula a)
| X (PathFormula a)
deriving (Show)
--
-- The set of �-calculus formulas is the subset of pre-formulas where each
-- subformula of the form (Mu x phi) or (Nu x phi) statisfies the constraint
-- that all occurrences of x in phi occur under an even number of negation
-- symbols.
--
-- A subformula, where all X operators occur in the scope of a path quantifier
-- (E or A) is a state formula, otherwise it is a path formula. The semantics
-- of state formulas is defined on states, while the semantics of path formulas
-- is defined on paths of the Kripke structure.
--
{------------------------------------------------------------------------------}
{- -}
{- Negation Normal Form -}
{- -}
{------------------------------------------------------------------------------}
nnfS :: StateFormula a -> StateFormula a
nnfS (Snot (Var x )) = Snot (Var x)
nnfS (Snot (Snot phi )) = nnfS phi
nnfS (Snot (Sand phi psi)) = Sor (nnfS (Snot phi)) (nnfS (Snot psi))
nnfS (Snot (Sor phi psi)) = Sand (nnfS (Snot phi)) (nnfS (Snot psi))
nnfS (Snot (A phi )) = E (nnfP (Pnot phi))
nnfS (Snot (E phi )) = A (nnfP (Pnot phi))
nnfS (Snot (Box phi )) = Diamond (nnfS (Snot phi))
nnfS (Snot (Diamond phi )) = Box (nnfS (Snot phi))
nnfS (Snot (BoxPast phi )) = DiamondPast (nnfS (Snot phi))
nnfS (Snot (DiamondPast phi )) = BoxPast (nnfS (Snot phi))
nnfS (Snot (Mu x phi )) = Nu x (nnfS (Snot phi))
nnfS (Snot (Nu x phi )) = Mu x (nnfS (Snot phi))
nnfS (Var x ) = Var x
nnfS (Sand phi psi) = Sand (nnfS phi) (nnfS psi)
nnfS (Sor phi psi) = Sor (nnfS phi) (nnfS psi)
nnfS (A phi ) = A (nnfP phi)
nnfS (E phi ) = E (nnfP phi)
nnfS (Box phi ) = Box (nnfS phi)
nnfS (Diamond phi ) = Diamond (nnfS phi)
nnfS (BoxPast phi ) = BoxPast (nnfS phi)
nnfS (DiamondPast phi ) = DiamondPast (nnfS phi)
nnfS (Mu x phi ) = Mu x (nnfS phi)
nnfS (Nu x phi ) = Nu x (nnfS phi)
nnfP :: PathFormula a -> PathFormula a
nnfP (Pnot (Pnot phi )) = nnfP phi
nnfP (Pnot (Pand phi psi)) = Por (nnfP (Pnot phi)) (nnfP (Pnot psi))
nnfP (Pnot (Por phi psi)) = Pand (nnfP (Pnot phi)) (nnfP (Pnot psi))
nnfP (Pnot (X phi )) = X (nnfP (Pnot phi))
nnfP (Pnot (SF phi )) = SF (nnfS (Snot phi))
nnfP (Pand phi psi) = Pand (nnfP phi) (nnfP psi)
nnfP (Por phi psi) = Por (nnfP phi) (nnfP psi)
nnfP (X phi ) = X (nnfP phi)
nnfP (SF phi ) = SF (nnfS phi)
{------------------------------------------------------------------------------}
{- -}
{- Normal Form of �-Calculus Formulas -}
{- -}
{------------------------------------------------------------------------------}
--
-- For every formula of the �-calculus, there is an equivalent formula of the
-- �-calculus where neither path quantifiers E, A nor X operators occur.
--
-- We ensure that the given formula is in negation normal form. Hence, negation
-- symbols only occur in front of variables, which means that we can neglect
-- Pnot.
--
munf :: Set a -> StateFormula a -> StateFormula a
munf vars phi = munf' (nnfS phi)
where
munf' (Var x) = Var x
munf' (Snot (Var x)) = Snot (Var x)
munf' (Sand phi psi) = Sand (munf' phi) (munf' psi)
munf' (Sor phi psi) = Sor (munf' phi) (munf' psi)
munf' (Mu x phi) = Mu x (munf' phi)
munf' (Nu x phi) = Nu x (munf' phi)
munf' (Diamond phi) = Diamond (munf' phi)
munf' (Box phi) = Box (munf' phi)
munf' (DiamondPast phi) = DiamondPast (munf' phi)
munf' (BoxPast phi) = BoxPast (munf' phi)
munf' (A phi) = Snot (munf' (E (nnfP (Pnot phi))))
munf' (E (SF phi)) = Sand (munf' phi) phiinf
munf' (E (Por phi psi)) = Sor (munf' (E phi)) (munf' (E psi))
munf' (E (X phi)) = Sand (Diamond (munf' (E phi))) phiinf
munf' (E (Pand phi psi)) = error "Read the fucking book, pg. 100"
phiinf = Nu (Set.findMin vars) (Diamond (Var (Set.findMin vars)))
{------------------------------------------------------------------------------}
{- -}
{- Local Model Checking for the �-Calculus -}
{- -}
{------------------------------------------------------------------------------}
--
-- We assume that the considered formulas fulfill the following syntactic
-- requirements, that can be achieved without loss of generality:
--
-- * We only consider formulas in guarded normal form, so that every bound
-- variable occurs in the scope of a modal operator. Moreover, we assume
-- negation normal form, so that negation symbols only occur before
-- variables (that are not bound).
--
-- * We assume that every bound variable is bound only once and has no free
-- occurrences, so that we can define for a formula an associated function
-- that maps a bound variable to the unique subformula where the variable
-- is bound.
--
d :: (Eq a) => StateFormula a -> a -> Maybe (StateFormula a)
d (Snot phi) x = d phi x
d (Sand phi psi) x = Monad.mplus (d phi x) (d psi x)
d (Sor phi psi) x = Monad.mplus (d phi x) (d psi x)
d (Mu x' phi) x = if x' == x then Just (Mu x' phi) else d phi x
d (Nu x' phi) x = if x' == x then Just (Nu x' phi) else d phi x
d (Diamond phi) x = d phi x
d (Box phi) x = d phi x
d (DiamondPast phi) x = d phi x
d (BoxPast phi) x = d phi x
d (Var x') x = Nothing
sucE :: (Kripke m a s, Ord a, Ord s) => m -> Set s -> Set s
sucE k y = Set.fold (Set.union . next k) Set.empty y
preE :: (Kripke m a s, Ord a, Ord s) => m -> Set s -> Set s
preE k y = Set.filter (not . Set.null . Set.intersection y . next k) (states k)
localCheck :: (Kripke k a s, Ord a, Ord s, Ord (s, StateFormula a)) => (k, s) -> StateFormula a -> Bool
localCheck (k, s) phi = localCheck' s phi Set.empty
where
localCheck' s (Snot (Var x)) callStack = not $ Set.member x (labels k s)
localCheck' s (Sand phi psi) callStack = conj2 callStack $ Set.fromList [ (s, phi), (s, psi) ]
localCheck' s (Sor phi psi) callStack = disj2 callStack $ Set.fromList [ (s, phi), (s, psi) ]
localCheck' s (Mu x phi ) callStack = localCheck' s phi $ Set.insert (s, Mu x phi) callStack
localCheck' s (Nu x phi ) callStack = localCheck' s phi $ Set.insert (s, Nu x phi) callStack
localCheck' s (Diamond phi ) callStack = disj2 callStack $ Set.map (flip (,) phi) $ sucE k (Set.singleton s)
localCheck' s (Box phi ) callStack = conj2 callStack $ Set.map (flip (,) phi) $ sucE k (Set.singleton s)
localCheck' s (DiamondPast phi ) callStack = disj2 callStack $ Set.map (flip (,) phi) $ preE k (Set.singleton s)
localCheck' s (BoxPast phi ) callStack = conj2 callStack $ Set.map (flip (,) phi) $ preE k (Set.singleton s)
localCheck' s (Var x ) callStack = case d phi x of
Nothing -> Set.member x (labels k s)
Just d' -> if Set.member (s, d') callStack then
case d' of
Mu _ _ -> True
Nu _ _ -> False
else
localCheck' s d' callStack
disj2 callStack = flip Set.fold True $ \(s, phi) b -> b && localCheck' s phi callStack
conj2 callStack = flip Set.fold False $ \(s, phi) b -> b || localCheck' s phi callStack
{------------------------------------------------------------------------------}