Ctl.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{-# OPTIONS -fglasgow-exts #-}
{- |
Module : $EmptyHeader$
Description : <optional short description entry>
Copyright : (c) <Authors or Affiliations>
License : GPLv2 or higher, see LICENSE.txt
Maintainer : <email>
Stability : unstable | experimental | provisional | stable | frozen
Portability : portable | non-portable (<reason>)
<optional description>
-}
module Ctl where
import Data.Set as Set
exists :: (a -> Bool) -> Set a -> Bool
exists f = Set.fold ((||) . f) False
infixr 3 `And`
infixr 2 `Or`
infixr 1 `Implies`
infixl 1 `AU`, `EU`
infix 0 |=
-- ctl formulas
data Formula a =
Top
| Bottom
| Atom a
| Not (Formula a)
| (Formula a) `And` (Formula a)
| (Formula a) `Or` (Formula a)
| (Formula a) `Implies` (Formula a)
| AX (Formula a)
| EX (Formula a)
| AF (Formula a)
| EF (Formula a)
| AG (Formula a)
| EG (Formula a)
| (Formula a) `AU` (Formula a)
| (Formula a) `EU` (Formula a)
deriving Show
-- ctl class
class CTL m a s | m -> a s where
states :: m -> Set s
next :: m -> s -> Set s
labels :: m -> s -> Set a
-- satisfaction relation
(|=) :: (CTL m a s, Ord a, Ord s) => (m, s) -> Formula a -> Bool
(m, s) |= phi = Set.member s (sat m phi)
sat :: (CTL m a s, Ord a, Ord s) => m -> Formula a -> Set s
sat m Top = states m
sat m Bottom = Set.empty
sat m (Atom a) = Set.filter (Set.member a . labels m) (states m)
sat m (Not phi) = Set.difference (states m) (sat m phi)
sat m (phi `And` psi) = Set.intersection (sat m phi) (sat m psi)
sat m (phi `Or` psi) = Set.union (sat m phi) (sat m psi)
sat m (phi `Implies` psi) = sat m (Not phi `Or` psi)
sat m (AX phi) = sat m (Not (EX (Not phi)))
sat m (EX phi) = satEX m phi
sat m (phi `AU` psi) = sat m (Not (Not psi `EU` (Not phi `And` Not psi) `Or` EG (Not psi)))
sat m (phi `EU` psi) = satEU m phi psi
sat m (EF phi) = sat m (Top `EU` phi)
sat m (EG phi) = sat m (Not (AF (Not phi)))
sat m (AF phi) = satAF m phi
sat m (AG phi) = sat m (Not (EF (Not phi)))
satEX :: (CTL m a s, Ord a, Ord s) => m -> Formula a -> Set s
satEX m phi = preE m (sat m phi)
satAF :: (CTL m a s, Ord a, Ord s) => m -> Formula a -> Set s
satAF m phi = satAF' (states m) (sat m phi)
where
satAF' x y = if x == y then y else satAF' y (Set.union y (preA m y))
satEU :: (CTL m a s, Ord a, Ord s) => m -> Formula a -> Formula a -> Set s
satEU m phi psi = satEU' (sat m phi) (states m) (sat m psi)
where
satEU' w x y = if x == y then y else satEU' w y (Set.union y (Set.intersection w (preE m y)))
preE :: (CTL m a s, Ord a, Ord s) => m -> Set s -> Set s
preE m y = Set.filter (\s-> exists (flip Set.member (next m s)) y) (states m)
preA :: (CTL m a s, Ord a, Ord s) => m -> Set s -> Set s
preA m y = Set.difference (states m) (preE m (Set.difference (states m) y))
-- test model
data My = My
data MyAtoms = P | Q | R deriving (Eq, Ord, Show)
data MyStates = S0 | S1 | S2 deriving (Eq, Ord, Show)
instance CTL My MyAtoms MyStates where
states My = Set.fromList [S0, S1, S2]
next My S0 = Set.fromList [S1, S2]
next My S1 = Set.fromList [S0, S2]
next My S2 = Set.fromList [S2]
labels My S0 = Set.fromList [P, Q]
labels My S1 = Set.fromList [Q, R]
labels My S2 = Set.fromList [R]