StaticAnalysisTHF.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances #-}
{- |
Module : ./THF/StaticAnalysisTHF.hs
Description : Static analysis for THF
Copyright : (c) A. Tsogias, DFKI Bremen 2011
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Alexis.Tsogias@dfki.de
Stability : provisional
Portability : portable
Static analysis for THF.
NOTE: This implementation covers only THF0!
-}
module THF.StaticAnalysisTHF (basicAnalysis) where
import THF.As as As
import THF.Cons
import THF.Print ()
import THF.Sign
import THF.Poly (type_check)
import THF.Utils (thfTopLevelTypeToType)
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Result
import Common.ExtSign
import Common.Lib.State
import Common.DocUtils
import Control.Monad
import qualified Data.Map as Map
import qualified Data.Set as Set
{- -----------------------------------------------------------------------------
Questions:
how to handle SysType in isTypeConsistent?
Todo:
find out what fi_domain, fi_predicates and fi_functors are and try
to somehow support them
----------------------------------------------------------------------------- -}
-- The main method for the static analysis
basicAnalysis :: (BasicSpecTHF, SignTHF, GlobalAnnos) ->
Result (BasicSpecTHF, ExtSign SignTHF SymbolTHF, [Named THFFormula])
basicAnalysis (bs@(BasicSpecTHF bs1), sig1, _) =
let (diag1, bs2) = filterBS [] bs1
(diag2, sig2, syms) = execState (fillSig bs2) (diag1, sig1, Set.empty)
(diag3, ns) = getSentences bs2 (diag2, [])
in do
type_check (types sig2) (consts sig2) ns
Result (reverse diag3) $ Just (bs, ExtSign sig2 syms, ns)
{- This functions delets all Comments and Includes because they are not needed
for the static analysis
The diagnosis list has a reverted order! -}
filterBS :: [Diagnosis] -> [TPTP_THF] -> ([Diagnosis], [TPTP_THF])
filterBS d [] = (d, [])
filterBS d (t : rt) = case t of
TPTP_Include i -> let ds = mkDiag Warning "Include will be ignored." i
in filterBS (ds : d) rt
TPTP_Comment _ -> filterBS d rt
TPTP_Defined_Comment _ -> filterBS d rt
TPTP_System_Comment _ -> filterBS d rt
TPTP_Header _ -> filterBS d rt
_ -> let (diag, thf) = filterBS d rt
in (diag, t : thf)
-- Append the Signature by the Types and Constants given inside the basic spec
fillSig :: [TPTP_THF] -> State ([Diagnosis], SignTHF, Set.Set SymbolTHF) ()
fillSig [] = return ()
fillSig bs = mapM_ fillSingleType bs >> mapM_ fillSingleConst bs
where
fillSingleType t = case t of
TPTP_THF_Annotated_Formula n fr tf a -> case fr of
Type ->
when (isKind tf) $ case makeKind tf of
Right d -> appandDiag d
Left (k, c) -> insertType c n k a
_ -> return ()
_ -> return ()
fillSingleConst t = case t of
TPTP_THF_Annotated_Formula n fr tf a -> case fr of
Type ->
unless (isKind tf) $ case makeType tf of
Right d -> appandDiag d
Left (ty, c) -> insertConst c n ty a
_ -> return ()
_ -> return ()
{- Append the Diagnosis-List by the given Diagnosis
The new diag will be put on top of the existing list. -}
appandDiag :: Diagnosis -> State ([Diagnosis], SignTHF, Set.Set SymbolTHF) ()
appandDiag d = modify (\ (diag, s, syms) -> (d : diag, s, syms))
-- insert the given type into the Signature
insertType :: Constant -> As.Name -> Kind -> Annotations
-> State ([Diagnosis], SignTHF, Set.Set SymbolTHF) ()
insertType c n k a = do
(diag, sig, syms) <- get
if sigHasConstSymbol c sig then appandDiag $ mkDiag Error
"Duplicate definition of a symbol as a type constant. Symbol: " c
else
if sigHasTypeSymbol c sig then
unless (sigHasSameKind c k sig) $ appandDiag $
mkDiag Error ("A type with the same identifier"
++ "but another Kind is already inside the signature") c
else do -- everythign is fine
let ti = TypeInfo { typeId = c, typeName = n, typeKind = k
, typeAnno = a }
sym = Symbol { symId = c, symName = n, symType = ST_Type k }
put (diag, sig { types = Map.insert c ti (types sig)
, symbols = Map.insert c sym (symbols sig) }
, Set.insert sym syms)
-- insert the given constant into the Signature
insertConst :: Constant -> As.Name -> Type -> Annotations
-> State ([Diagnosis], SignTHF, Set.Set SymbolTHF) ()
insertConst c n t a = do
(_, sig, _) <- get
if sigHasTypeSymbol c sig then (appandDiag $ mkDiag Error
"Duplicate definition of a symbol as a type constant. Symbol: " c)
else do
isTypeConsistent t
if sigHasConstSymbol c sig then
unless (sigHasSameType c t sig) $ appandDiag $ mkDiag Error
("A constant with the same identifier but another " ++
"type is already inside the signature") c
else -- everything is fine
let ci = ConstInfo { constId = c, constName = n, constType = t
, constAnno = a }
sym = Symbol { symId = c, symName = n
, symType = ST_Const t }
in do
(diag', sig', syms') <- get
put (diag', sig' { consts = Map.insert c ci (consts sig')
, symbols = Map.insert c sym (symbols sig') }
, Set.insert sym syms')
-- Check if a type symbol is already inside the sig
sigHasTypeSymbol :: Constant -> SignTHF -> Bool
sigHasTypeSymbol c sig = Map.member c (types sig)
{- This Method is ment to be used after sigHasTypeSymbol
Check if a type symbol with the same kind is inside the Sig
If this is not the case me have a problem! -}
sigHasSameKind :: Constant -> Kind -> SignTHF -> Bool
sigHasSameKind c k sig = typeKind (types sig Map.! c) == k
-- Check if a const symbol is already inside the sig
sigHasConstSymbol :: Constant -> SignTHF -> Bool
sigHasConstSymbol c sig = Map.member c (consts sig)
{- This Method is ment to be used after sigHasConstSymbol
Check if a const symbol with the same type is inside the Sig
If this is not the case me have a problem! -}
sigHasSameType :: Constant -> Type -> SignTHF -> Bool
sigHasSameType c t sig = constType (consts sig Map.! c) == t
{- check if all cTypes inside the given Type are elements of the signaure.
Nothing means that everything is fine, otherwise Just diag will be returned. -}
isTypeConsistent :: Type -> State ([Diagnosis], SignTHF, Set.Set SymbolTHF) ()
isTypeConsistent t = do
(_, sig, _) <- get
case t of
MapType t1 t2 -> do
isTypeConsistent t1
isTypeConsistent t2
ParType t1 -> isTypeConsistent t1
CType c -> when (not (sigHasTypeSymbol c sig))
(do
insertType c (N_Atomic_Word c) Kind Null
appandDiag $ mkDiag Warning "Unknown type: " c)
ProdType ts -> mapM_ isTypeConsistent ts
_ -> return ()
-- SType _ -> ... -- how to handle these?
{- -----------------------------------------------------------------------------
Extract the sentences from the basic spec
----------------------------------------------------------------------------- -}
{- Get all sentences from the content of the BasicSpecTH
The diag list has a reverted order. -}
getSentences :: [TPTP_THF] -> ([Diagnosis], [Named THFFormula])
-> ([Diagnosis], [Named THFFormula])
getSentences [] dn = dn
getSentences (t : rt) dn@(d, ns) = case t of
TPTP_THF_Annotated_Formula _ fr _ _ -> case fr of
Type -> getSentences rt dn
Unknown ->
let diag = mkDiag Warning
"THFFormula with role \'unknown\' will be ignored." t
in getSentences rt (diag : d, ns)
Plain ->
let diag = mkDiag Warning
"THFFormula with role \'plain\' will be ignored." t
in getSentences rt (diag : d, ns)
Fi_Domain ->
let diag = mkDiag Warning
"THFFormula with role \'fi_domain\' will be ignored." t
in getSentences rt (diag : d, ns)
Fi_Functors ->
let diag = mkDiag Warning
"THFFormula with role \'fi_functors\' will be ignored." t
in getSentences rt (diag : d, ns)
Fi_Predicates ->
let diag = mkDiag Warning
"THFFormula with role \'fi_predicates\' will be ignored." t
in getSentences rt (diag : d, ns)
Assumption ->
let diag = mkDiag Warning
"THFFormula with role \'assumption\' will be ignored." t
in getSentences rt (diag : d, ns)
_ ->
let (d1, ns1) = getSentences rt dn
in (d1, tptpthfToNS t : ns1)
_ -> getSentences rt dn
{- Precondition: The formulaRole must not be Type, Unknown, Plain, Fi_Domain
Fi_Functors, Fi_Predicates or Assumption
(They are filtered out in getSentences) -}
tptpthfToNS :: TPTP_THF -> Named THFFormula
tptpthfToNS f =
let s = makeNamed (show $ pretty $ nameAF f) (thfFormulaAF f)
t = s { isAxiom = False }
w = s { wasTheorem = True }
in case formulaRoleAF f of
Definition -> s { isDef = True }
Conjecture -> t
Negated_Conjecture -> t
Theorem -> w
Lemma -> w
Hypothesis -> t
_ -> s -- { isAxiom = True, isDef = False, wasTheorem = False }
{- -----------------------------------------------------------------------------
Get the Kind of a type
----------------------------------------------------------------------------- -}
makeKind :: THFFormula -> Either (Kind, Constant) Diagnosis
makeKind t = maybe (Right $ mkDiag Error "Error while parsing the kind of:" t)
Left (thfFormulaToKind t)
thfFormulaToKind :: THFFormula -> Maybe (Kind, Constant)
thfFormulaToKind (T0F_THF_Typed_Const tc) = thfTypedConstToKind tc
thfFormulaToKind _ = Nothing
thfTypedConstToKind :: THFTypedConst -> Maybe (Kind, Constant)
thfTypedConstToKind (T0TC_THF_TypedConst_Par tcp) = thfTypedConstToKind tcp
thfTypedConstToKind (T0TC_Typed_Const c tlt) =
maybe Nothing (\ k -> Just (k, c))
(thfTopLevelTypeToKind tlt)
thfTopLevelTypeToKind :: THFTopLevelType -> Maybe Kind
thfTopLevelTypeToKind tlt = case tlt of
T0TLT_THF_Binary_Type bt -> thfBinaryTypeToKind bt
T0TLT_Defined_Type _ -> Just Kind
_ -> Nothing
thfBinaryTypeToKind :: THFBinaryType -> Maybe Kind
thfBinaryTypeToKind bt = case bt of
T0BT_THF_Binary_Type_Par btp -> thfBinaryTypeToKind btp
_ -> Nothing
{- -----------------------------------------------------------------------------
Get the Type of a constant
----------------------------------------------------------------------------- -}
makeType :: THFFormula -> Either (Type, Constant) Diagnosis
makeType t = maybe (Right $ mkDiag Error "Error while parsing the type of:" t)
Left (thfFormulaToType t)
thfFormulaToType :: THFFormula -> Maybe (Type, Constant)
thfFormulaToType (T0F_THF_Typed_Const tc) = thfTypedConstToType tc
thfFormulaToType _ = Nothing
thfTypedConstToType :: THFTypedConst -> Maybe (Type, Constant)
thfTypedConstToType (T0TC_THF_TypedConst_Par tcp) = thfTypedConstToType tcp
thfTypedConstToType (T0TC_Typed_Const c tlt) =
maybe Nothing (\ t -> Just (t, c))
(thfTopLevelTypeToType tlt)
{- -----------------------------------------------------------------------------
Check if a THFFormula is a Type definition
----------------------------------------------------------------------------- -}
isKind :: THFFormula -> Bool
isKind tf = case tf of
T0F_THF_Typed_Const tc -> thfTypedConstIsKind tc
_ -> False
thfTypedConstIsKind :: THFTypedConst -> Bool
thfTypedConstIsKind tc = case tc of
T0TC_THF_TypedConst_Par tcp -> thfTypedConstIsKind tcp
T0TC_Typed_Const _ tlt -> thfTopLevelTypeIsKind tlt
thfTopLevelTypeIsKind :: THFTopLevelType -> Bool
thfTopLevelTypeIsKind tlt = case tlt of
T0TLT_THF_Binary_Type bt -> thfBinaryTypeIsKind bt
T0TLT_Defined_Type dt -> thfDefinedTypeIsKind dt
_ -> False
thfDefinedTypeIsKind :: DefinedType -> Bool
thfDefinedTypeIsKind dt = case dt of
DT_tType -> True
_ -> False
thfBinaryTypeIsKind :: THFBinaryType -> Bool
thfBinaryTypeIsKind bt = case bt of
T0BT_THF_Binary_Type_Par btp -> thfBinaryTypeIsKind btp
_ -> False