Parse_AS_Structured.hs revision b87efd3db0d2dc41615ea28669faf80fc1b48d56
{- |
Module : $Header$
Description : parser for CASL (heterogeneous) structured specifications
Copyright : (c) Till Mossakowski, Christian Maeder, Uni Bremen 2002-2005
License : GPLv2 or higher
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable(Grothendieck)
Parser for CASL (heterogeneous) structured specifications
Concerning the homogeneous syntax, this follows Sect II:3.1.3
of the CASL Reference Manual.
-}
module Syntax.Parse_AS_Structured
( annoParser2
, groupSpec
, aSpec
, logicName
, parseMapping
, translationList
) where
import Logic.Logic (AnyLogic(..), language_name, data_logic, Syntax(..))
import Logic.Comorphism (targetLogic, AnyComorphism(..))
import Logic.Grothendieck
( LogicGraph (currentLogic)
, G_basic_spec(..)
, G_symb_map_items_list(..)
, G_symb_items_list(..)
, lookupCurrentLogic
, lookupComorphism)
import Syntax.AS_Structured
import Common.AS_Annotation
import Common.AnnoState
import Common.Id
import Common.Keywords
import Common.Lexer
import Common.Parsec
import Common.Token
import Text.ParserCombinators.Parsec
import Data.List((\\))
import Control.Monad
-- | parse annotations and then still call an annotation parser
annoParser2 :: AParser st (Annoted a) -> AParser st (Annoted a)
annoParser2 =
liftM2 (\ x (Annoted y pos l r) -> Annoted y pos (x ++ l) r) annos
------------------------------------------------------------------------
-- logic and encoding names
------------------------------------------------------------------------
-- exclude colon (because encoding must be recognized)
-- exclude dot to recognize optional sublogic name
-- include underscore and backquote
-- better list what is allowed rather than exclude what is forbidden
-- white spaces und non-printables should be not allowed!
encodingName :: AParser st Token
encodingName = parseToken (reserved (funS : casl_reserved_words)
(many1 (oneOf ("_`" ++ (signChars \\ ":.")) <|> scanLPD)))
-- keep these identical in order to
-- decide after seeing ".", ":" or "->" what was meant
parseLogicName :: AParser st Logic_name
parseLogicName = do
e <- encodingName
do string dotS
s <- encodingName
return (Logic_name e (Just s))
<|> return (Logic_name e Nothing)
logicName :: AParser st Logic_name
logicName = parseLogicName << skipSmart
------------------------------------------------------------------------
-- parse Logic_code
------------------------------------------------------------------------
parseLogic :: LogicGraph -> AParser st (Logic_code, LogicGraph)
parseLogic lG = do
lc <- parseLogicAux
case lc of
Logic_code _ _ (Just l) _ -> return (lc, setLogicName l lG)
Logic_code (Just c) _ _ _ -> do
nLg <- lookupAndSetComorphismName c lG
return (lc, nLg)
_ -> return (lc, lG)
parseLogicAux :: AParser st Logic_code
parseLogicAux =
do l <- asKey logicS
do e <- logicName -- try to parse encoding or logic source after "logic"
case e of
Logic_name _ (Just _) -> parseOptLogTarget Nothing (Just e) [l]
Logic_name f Nothing ->
do c <- colonT
parseLogAfterColon (Just f) [l,c]
<|> parseOptLogTarget Nothing (Just e) [l]
<|> return (Logic_code (Just f) Nothing Nothing
$ tokPos l)
<|> do f <- asKey funS -- parse at least a logic target after "logic"
t <- logicName
return $ Logic_code Nothing Nothing (Just t)
$ tokPos l `appRange` tokPos f
-- parse optional logic source and target after a colon (given an encoding e)
parseLogAfterColon :: Maybe Token -> [Token] -> AParser st Logic_code
parseLogAfterColon e l =
do s <- logicName
parseOptLogTarget e (Just s) l
<|> return (Logic_code e (Just s) Nothing $ catRange l)
<|> parseOptLogTarget e Nothing l
-- parse an optional logic target (given encoding e or source s)
parseOptLogTarget :: Maybe Token -> Maybe Logic_name -> [Token]
-> AParser st Logic_code
parseOptLogTarget e s l =
do f <- asKey funS
let p = catRange $ l++[f]
do t <- logicName
return (Logic_code e s (Just t) p)
<|> return (Logic_code e s Nothing p)
plainComma :: AParser st Token
plainComma = anComma `notFollowedWith` asKey logicS
------------------------------------------------------------------------
-- parse G_mapping
------------------------------------------------------------------------
callSymParser :: Maybe (AParser st a) -> String -> String ->
AParser st ([a], [Token])
callSymParser p name itemType = case p of
Nothing ->
fail $ "no symbol" ++ itemType ++ " parser for language " ++ name
Just pa -> separatedBy pa plainComma
parseItemsMap :: AnyLogic -> AParser st (G_symb_map_items_list, [Token])
parseItemsMap (Logic lid) = do
(cs, ps) <- callSymParser (parse_symb_map_items lid)
(language_name lid) " maps"
return (G_symb_map_items_list lid cs, ps)
parseMapping :: LogicGraph -> AParser st ([G_mapping], [Token])
parseMapping = parseMapOrHide G_logic_translation G_symb_map parseItemsMap
parseMapOrHide :: (Logic_code -> a) -> (t -> a)
-> (AnyLogic -> AParser st (t, [Token])) -> LogicGraph
-> AParser st ([a], [Token])
parseMapOrHide constrLogic constrMap pa lG =
do (n, nLg) <- parseLogic lG
do c <- anComma
(gs, ps) <- parseMapOrHide constrLogic constrMap pa nLg
return (constrLogic n : gs, c:ps)
<|> return ([constrLogic n], [])
<|> do l <- lookupCurrentLogic "parseMapOrHide" lG
(m, ps) <- pa l
do c <- anComma
(gs, qs) <- parseMapOrHide constrLogic constrMap pa lG
return (constrMap m : gs, ps ++ c : qs)
<|> return ([constrMap m], ps)
------------------------------------------------------------------------
-- parse G_hiding
------------------------------------------------------------------------
parseItemsList :: AnyLogic -> AParser st (G_symb_items_list, [Token])
parseItemsList (Logic lid) = do
(cs, ps) <- callSymParser (parse_symb_items lid)
(language_name lid) ""
return (G_symb_items_list lid cs, ps)
parseHiding :: LogicGraph -> AParser st ([G_hiding], [Token])
parseHiding = parseMapOrHide G_logic_projection G_symb_list parseItemsList
------------------------------------------------------------------------
-- specs
------------------------------------------------------------------------
spec :: LogicGraph -> AParser st (Annoted SPEC)
spec l = do
(sps,ps) <- annoParser2 (specA l) `separatedBy` asKey thenS
return $ case sps of
[sp] -> sp
_ -> emptyAnno (Extension sps $ catRange ps)
specA :: LogicGraph -> AParser st (Annoted SPEC)
specA l = do
(sps,ps) <- annoParser2 (specB l) `separatedBy` asKey andS
return $ case sps of
[sp] -> sp
_ -> emptyAnno (Union sps $ catRange ps)
specB :: LogicGraph -> AParser st (Annoted SPEC)
specB l = do
p1 <- asKey localS
sp1 <- aSpec l
p2 <- asKey withinS
sp2 <- annoParser2 $ specB l
return (emptyAnno $ Local_spec sp1 sp2 $ tokPos p1 `appRange` tokPos p2)
<|> specC l
specC :: LogicGraph -> AParser st (Annoted SPEC)
specC lG = do
let spD = annoParser $ specD lG
rest = spD >>= translationList lG Translation Reduction
l@(Logic lid) <- lookupCurrentLogic "specC" lG
-- if the current logic has an associated data_logic,
-- parse "data SPEC1 SPEC2", where SPEC1 is in the data_logic
-- SPEC1 needs to be a basic spec or a grouped spec
-- SPEC2 is in the currrent logic
case data_logic lid of
Nothing -> rest
Just lD@(Logic dl) -> do
p1 <- asKey dataS -- not a keyword
sp1 <- annoParser $ basicSpec lD
<|> groupSpec lG { currentLogic = language_name dl }
sp2 <- spD
return (emptyAnno $ Data lD l sp1 sp2 $ tokPos p1)
<|> rest
translationList :: LogicGraph -> (Annoted b -> RENAMING -> b)
-> (Annoted b -> RESTRICTION -> b) -> Annoted b -> AParser st (Annoted b)
translationList l ftrans frestr sp =
do sp' <- translation l sp ftrans frestr
translationList l ftrans frestr (emptyAnno sp')
<|> return sp
-- | Parse renaming
-- @
-- RENAMING ::= with SYMB-MAP-ITEMS-LIST
-- @
-- SYMB-MAP-ITEMS-LIST is parsed using parseMapping
renaming :: LogicGraph -> AParser st RENAMING
renaming l =
do kWith <- asKey withS
(mappings, commas) <- parseMapping l
return (Renaming mappings $ catRange $ kWith:commas)
-- | Parse restriction
-- @
-- RESTRICTION ::= hide SYMB-ITEMS-LIST
-- | reveal SYMB-MAP-ITEMS-LIST
-- @
-- SYMB-ITEMS-LIST is parsed using parseHiding; SYMB-MAP-ITEMS-LIST is
-- parsed using parseItemsMap
restriction :: LogicGraph -> AParser st RESTRICTION
restriction lg =
-- hide
do kHide <- asKey hideS
(symbs, commas) <- parseHiding lg
return (Hidden symbs (catRange (kHide : commas)))
<|> -- reveal
do kReveal <- asKey revealS
nl <- lookupCurrentLogic "reveal" lg
(mappings, commas) <- parseItemsMap nl
return (Revealed mappings (catRange (kReveal : commas)))
translation :: LogicGraph -> a -> (a -> RENAMING -> b)
-> (a -> RESTRICTION -> b) -> AParser st b
translation l sp ftrans frestr =
do r <- renaming l
return (ftrans sp r)
<|>
do r <- restriction l
return (frestr sp r)
groupSpecLookhead :: AParser st Token
groupSpecLookhead = oBraceT <|> followedWith (simpleId << annos)
(asKey withS <|> asKey hideS <|> asKey revealS <|> asKey andS
<|> asKey thenS <|> cBraceT <|> asKey fitS <|> asKey viewS
<|> asKey specS <|> asKey archS <|> asKey unitS <|> asKey withinS
<|> asKey endS <|> oBracketT <|> cBracketT
<|> (eof >> return (Token "" nullRange)))
specD :: LogicGraph -> AParser st SPEC
-- do some lookahead for free spec, to avoid clash with free type
specD l = do p <- asKey freeS `followedWith` groupSpecLookhead
sp <- annoParser $ groupSpec l
return (Free_spec sp $ tokPos p)
<|> do p <- asKey cofreeS `followedWith` groupSpecLookhead
sp <- annoParser $ groupSpec l
return (Cofree_spec sp $ tokPos p)
<|> do p <- asKey closedS `followedWith` groupSpecLookhead
sp <- annoParser $ groupSpec l
return (Closed_spec sp $ tokPos p)
<|> specE l
specE :: LogicGraph -> AParser st SPEC
specE l = logicSpec l
<|> (lookAhead groupSpecLookhead >> groupSpec l)
<|> (lookupCurrentLogic "basic spec" l >>= basicSpec)
-- | call a logic specific parser if it exists
callParser :: Maybe (AParser st a) -> String -> String -> AParser st a
callParser p name itemType = case p of
Nothing -> fail $ "no "++ itemType ++ " parser for language " ++ name
Just pa -> pa
basicSpec :: AnyLogic -> AParser st SPEC
basicSpec (Logic lid) = do
p <- getPos
bspec <- callParser (parse_basic_spec lid) (language_name lid)
"basic specification"
q <- getPos
return $ Basic_spec (G_basic_spec lid bspec) $ Range [p, q]
logicSpec :: LogicGraph -> AParser st SPEC
logicSpec lG = do
s1 <- asKey logicS
ln <- logicName
s2 <- colonT
sp <- annoParser $ specD $ setLogicName ln lG
return $ Qualified_spec ln sp $ toRange s1 [] s2
setLogicName :: Logic_name -> LogicGraph -> LogicGraph
setLogicName (Logic_name lid _) lg = lg { currentLogic = tokStr lid }
lookupAndSetComorphismName :: Token -> LogicGraph -> AParser st LogicGraph
lookupAndSetComorphismName ctok lg = do
Comorphism cid <- lookupComorphism (tokStr ctok) lg
return lg { currentLogic = language_name $ targetLogic cid }
aSpec :: LogicGraph -> AParser st (Annoted SPEC)
aSpec = annoParser2 . spec
groupSpec :: LogicGraph -> AParser st SPEC
groupSpec l = do
b <- oBraceT
do
c <- cBraceT
return $ EmptySpec $ catRange [b, c]
<|> do
a <- aSpec l
c <- cBraceT
return $ Group a $ catRange [b, c]
<|> do
n <- simpleId
(f, ps) <- fitArgs l
return (Spec_inst n f ps)
fitArgs :: LogicGraph -> AParser st ([Annoted FIT_ARG],Range)
fitArgs l = do fas <- many (fitArg l)
let (fas1,ps) = unzip fas
return (fas1,concatMapRange id ps)
fitArg :: LogicGraph -> AParser st (Annoted FIT_ARG,Range)
fitArg l = do b <- oBracketT
fa <- annoParser (fittingArg l)
c <- cBracketT
return (fa, toRange b [] c)
fittingArg :: LogicGraph -> AParser st FIT_ARG
fittingArg l = do s <- asKey viewS
vn <- simpleId
(fa,ps) <- fitArgs l
return (Fit_view vn fa (tokPos s`appRange` ps))
<|>
do sp <- aSpec l
(symbit, ps) <- option ([],nullRange) $ do
s <- asKey fitS
(m, qs) <- parseMapping l
return (m, catRange $ s : qs)
return (Fit_spec sp symbit ps)