WACocone.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $Header$
Description : heterogeneous signatures colimits approximations
Copyright : (c) Mihai Codescu, and Uni Bremen 2002-2006
License : GPLv2 or higher, see LICENSE.txt
Maintainer : mcodescu@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable
Heterogeneous version of weakly_amalgamable_cocones.
Needs some improvements (see TO DO).
-}
module Static.WACocone(isConnected,
isAcyclic,
isThin,
removeIdentities,
hetWeakAmalgCocone,
initDescList,
dijkstra,
buildStrMorphisms,
weakly_amalgamable_colimit
) where
import Control.Monad
import Data.List(nub)
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.Graph.Inductive.Graph as Graph
import Common.Lib.Graph as Tree
import Common.ExtSign
import Common.Result
import Common.LogicT
import Logic.Logic
import Logic.Comorphism
import Logic.Modification
import Logic.Grothendieck
import Logic.Coerce
import Static.GTheory
import Comorphisms.LogicGraph
weakly_amalgamable_colimit :: StaticAnalysis lid
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol
=> lid -> Tree.Gr sign (Int, morphism)
-> Result (sign, Map.Map Int morphism)
weakly_amalgamable_colimit l diag = do
(sig, sink) <- signature_colimit l diag
return (sig, sink)
-- until amalgamability check is fixed, just return a colimit
-- get (commented out) code from rev:11881
-- | checks whether a graph is connected
isConnected :: Gr a b -> Bool
isConnected graph = let
nodeList = nodes graph
root = head nodeList
availNodes = Map.fromList $ zip nodeList (repeat True)
bfs queue avail = case queue of
[] -> avail
n:ns -> let
avail1 = Map.insert n False avail
nbs = filter (\x -> Map.findWithDefault (error "isconnected") x avail)
$ neighbors graph n
in bfs (ns++nbs) avail1
in filter (\x -> Map.findWithDefault (error "iscon 2") x
(bfs [root] availNodes)) nodeList == []
-- | checks whether the graph is thin
isThin :: Gr a b -> Bool
isThin graph = checkThinness (Map.empty) $ edges graph
checkThinness :: Map.Map Edge Int -> [Edge] -> Bool
checkThinness paths eList =
case eList of
[] -> True
(sn,tn):eList' ->
if (sn,tn) `elem` (Map.keys paths) then
False -- multiple paths between (sn, tn)
else
let pathsToS = filter (\(_,y) -> y == sn) $ Map.keys paths
updatePaths pathF dest pList =
case pList of
[] -> Just pathF
(x,_):pList' ->
if (x,dest) `elem` (Map.keys pathF) then Nothing
else updatePaths (Map.insert (x,dest) 1 pathF) dest pList'
in case updatePaths paths tn pathsToS of
Nothing -> False
Just paths' -> checkThinness (Map.insert (sn,tn) 1 paths') eList'
-- | checks whether a graph is acyclic
isAcyclic :: (Eq b) => Gr a b -> Bool
isAcyclic graph = let
filterIns gr = filter (\ x -> indeg gr x == 0)
queue = filterIns graph $ nodes graph
topologicalSort q gr = case q of
[] -> null $ edges gr
n : ns -> let
oEdges = lsuc gr n
graph1 = foldl (flip Graph.delLEdge) gr
$ map (\ (y, label) -> (n, y, label)) oEdges
succs = filterIns graph1 $ suc gr n
in topologicalSort (ns ++ succs) graph1
in topologicalSort queue graph
-- | auxiliary for removing the identity edges from a graph
removeIdentities :: Gr a b -> Gr a b
removeIdentities graph = let
addEdges gr eList = case eList of
[] -> gr
(sn, tn, label):eList1 -> if sn == tn then addEdges gr eList1
else addEdges (insEdge (sn, tn, label) gr) eList1
in (addEdges $ insNodes (labNodes graph) Graph.empty)
$ labEdges graph
-- assigns to a node all proper descendents
initDescList :: (Eq a, Eq b) => Gr a b -> Map.Map Node [(Node, a)]
initDescList graph = let
descsOf n = let
nodeList = filter (\x -> x /= n) $ pre graph n
f = Map.fromList $ zip nodeList (repeat False)
precs nList nList' avail =
case nList of
[] -> nList'
_ -> let
nList'' = concat $
map (\y -> filter (\x -> if x `elem` Map.keys avail
then
Map.findWithDefault (error "iDL")
x avail
else True ) $
filter (\x -> x /= y) $
pre graph y) nList
avail' = Map.union avail $
Map.fromList $ zip nList'' (repeat False)
in precs (nub nList'') (nub $ nList' ++ nList'') avail'
in precs nodeList nodeList f
in Map.fromList$ map (\node -> (node, filter (\x->(fst x) `elem`
descsOf node)
$ labNodes graph )) $ nodes graph
commonBounds :: (Eq a) => Map.Map Node [(Node, a)] -> Node -> Node -> [(Node,a)]
commonBounds funDesc n1 n2 = filter
(\x -> x `elem` ((Map.!) funDesc n1) && x `elem` ((Map.!) funDesc n2) )
$ nub $ (Map.!) funDesc n1 ++ (Map.!) funDesc n2
-- returns the greatest lower bound of two maximal nodes,if it exists
glb :: (Eq a) => Map.Map Node [(Node, a)] -> Node -> Node -> Maybe (Node,a)
glb funDesc n1 n2 = let
cDescs = commonBounds funDesc n1 n2
subList [] _ = True
subList (x:xs) l2 = x `elem` l2 && subList xs l2
glbList = filter (\(n, x) -> subList
(filter (\(n0,x0) -> (n,x)/= (n0,x0)) cDescs) (funDesc Map.! n)
) cDescs
-- a node n is glb of n1 and n2 iff
-- all common bounds of n1 and n2 are also descendants of n
in case glbList of
[] -> Nothing
x:_ -> Just x -- because if it exists, there can be only one
-- if no greatest lower bound exists, compute all maximal bounds of the nodes
maxBounds :: (Eq a) => Map.Map Node [(Node, a)] -> Node -> Node -> [(Node, a)]
maxBounds funDesc n1 n2 = let
cDescs = commonBounds funDesc n1 n2
isDesc n0 (n,y) = (n,y) `elem` funDesc Map.! n0
noDescs (n,y) = filter (\(n0, _) -> isDesc n0 (n,y)) cDescs == []
in filter noDescs cDescs
-- dijsktra algorithm for finding the the shortest path between two nodes
dijkstra :: GDiagram -> Node -> Node -> Result GMorphism
dijkstra graph source target = do
let
dist = Map.insert source 0 $ Map.fromList $
zip (nodes graph) $ repeat $ 2 * (length $ edges graph)
prev = if source == target then Map.insert source source Map.empty
else Map.empty
q = nodes graph
com = case lab graph source of
Nothing -> Map.empty --shouldnt be the case
Just gt -> Map.insert source (ide $ signOf gt) Map.empty
extractMin queue dMap = let
u = head $
filter (\x -> Map.findWithDefault (error "dijkstra") x dMap ==
(minimum $
map (\x1 -> Map.findWithDefault (error "dijkstra") x1 dMap)
queue))
queue
in ( Set.toList $ Set.difference (Set.fromList queue) (Set.fromList [u]) , u)
updateNeighbors d p c u gr = let
outEdges = out gr u
upNeighbor dMap pMap cMap uNode edgeList = case edgeList of
[] -> (dMap, pMap, cMap)
(_, v, (_, gmor)):edgeL -> let
alt = ( Map.findWithDefault (error "dijkstra") uNode dMap) + 1
in
if (alt >= Map.findWithDefault (error "dijsktra") v dMap) then
upNeighbor dMap pMap cMap uNode edgeL
else let
d1 = Map.insert v alt dMap
p1 = Map.insert v uNode pMap
c1 = Map.insert v gmor cMap
in upNeighbor d1 p1 c1 uNode edgeL
in upNeighbor d p c u outEdges
-- for each neighbor of u, if d(u)+1 < d(v), modify p(v) = u, d(v) = d(u)+1
mainloop gr sn tn qL d p c = let
(q1, u) = extractMin qL d
(d1, p1, c1) = updateNeighbors d p c u gr
in if (u == tn) then shortPath sn p1 c1 [] tn
else mainloop gr sn tn q1 d1 p1 c1
shortPath sn p1 c s u =
if not $ u `elem` Map.keys p1 then fail "path not found"
else let
x = Map.findWithDefault (error $ show u) u p1 in
if x == sn then return (u:s, c)
else shortPath sn p1 c (u:s) x
(nodeList, com1) <- mainloop graph source target q dist prev com
foldM comp ((Map.!) com1 source) . map ((Map.!) com1) $ nodeList
-- builds the arrows from the nodes of the original graph
-- to the unique maximal node of the obtained graph
buildStrMorphisms :: GDiagram -> GDiagram
->Result (G_theory, Map.Map Node GMorphism)
buildStrMorphisms initGraph newGraph = do
let (maxNode, sigma) = head $ filter (\(node,_) -> outdeg newGraph node == 0) $
labNodes newGraph
buildMor pairList solList = do
case pairList of
(n, _):pairs -> do nMor <- dijkstra newGraph n maxNode
buildMor pairs (solList ++ [(n,nMor)])
[] -> return solList
morList <- buildMor (labNodes initGraph) []
return $ (sigma, Map.fromList morList)
-- computes the colimit and inserts it into the graph
addNodeToGraph :: GDiagram -> G_theory -> G_theory -> G_theory -> Int -> Int
-> Int -> GMorphism -> GMorphism
-> Map.Map Node [(Node, G_theory)] -> [(Int, G_theory)]
-> Result (GDiagram, Map.Map Node [(Node, G_theory)])
addNodeToGraph oldGraph
(G_theory lid extSign _ _ _)
gt1@(G_theory lid1 extSign1 idx1 _ _)
gt2@(G_theory lid2 extSign2 idx2 _ _)
n
n1
n2
(GMorphism cid1 ss1 _ mor1 _)
(GMorphism cid2 ss2 _ mor2 _)
funDesc maxNodes = do
let newNode = 1 + (maximum $ nodes oldGraph) --get a new node
s1 <- coerceSign lid1 lid "addToNodeGraph" extSign1
s2 <- coerceSign lid2 lid "addToNodeGraph" extSign2
m1 <- coerceMorphism (targetLogic cid1) lid "addToNodeGraph" mor1
m2 <- coerceMorphism (targetLogic cid2) lid "addToNodeGraph" mor2
let spanGr = Graph.mkGraph
[(n, plainSign extSign), (n1, plainSign s1), (n2, plainSign s2)]
[(n, n1, (1, m1)), (n, n2, (1, m2))]
(sig,morMap) <- weakly_amalgamable_colimit lid spanGr
-- must coerce here
m11 <- coerceMorphism lid (targetLogic cid1) "addToNodeGraph" $
morMap Map.! n1
m22 <- coerceMorphism lid (targetLogic cid2) "addToNodeGraph" $
morMap Map.! n2
let gth = noSensGTheory lid (mkExtSign sig) startSigId
gmor1 = GMorphism cid1 ss1 idx1 m11 startMorId
gmor2 = GMorphism cid2 ss2 idx2 m22 startMorId
case maxNodes of
[] -> do
let newGraph = insEdges [(n1, newNode,(1, gmor1)),(n2, newNode,(1,gmor2))] $
insNode (newNode, gth) oldGraph
funDesc1 = Map.insert newNode
(nub $ (Map.!)funDesc n1 ++ (Map.!) funDesc n2 ) funDesc
return (newGraph, funDesc1)
_ -> computeCoeqs oldGraph funDesc (n1, gt1) (n2, gt2)
(newNode, gth) gmor1 gmor2 maxNodes
-- for each node in the list, check whether the coequalizer can be computed
-- if so, modify the maximal node of graph and the edges to it from n1 and n2
computeCoeqs :: GDiagram -> Map.Map Node [(Node, G_theory)]
-> (Node,G_theory) -> (Node,G_theory) -> (Node, G_theory)
-> GMorphism -> GMorphism -> [(Node, G_theory)]->
Result (GDiagram, Map.Map Node [(Node, G_theory)])
computeCoeqs oldGraph funDesc (n1,_) (n2,_) (newN, newGt) gmor1 gmor2 [] = do
let newGraph = insEdges [(n1, newN, (1, gmor1)),(n2, newN, (1, gmor2))] $
insNode (newN, newGt) oldGraph
descFun1 = Map.insert newN
(nub $ (Map.!)funDesc n1 ++ (Map.!) funDesc n2 ) funDesc
return $ (newGraph, descFun1)
computeCoeqs graph funDesc (n1,gt1) (n2,gt2)
(newN, _newGt@(G_theory tlid tsign _ _ _))
_gmor1@(GMorphism cid1 sig1 idx1 mor1 _ )
_gmor2@(GMorphism cid2 sig2 idx2 mor2 _ ) ((n,gt):descs)= do
_rho1@(GMorphism cid3 _ _ mor3 _)<- dijkstra graph n n1
_rho2@(GMorphism cid4 _ _ mor4 _)<- dijkstra graph n n2
com1 <- compComorphism (Comorphism cid1) (Comorphism cid3)
com2 <- compComorphism (Comorphism cid1) (Comorphism cid3)
if com1 /= com2 then fail "Unable to compute coequalizer" else do
_gtM@(G_theory lidM signM _idxM _ _)<- mapG_theory com1 gt
s1 <- coerceSign lidM tlid "coequalizers" signM
mor3' <- coerceMorphism (targetLogic cid3) (sourceLogic cid1) "coeqs" mor3
mor4' <- coerceMorphism (targetLogic cid4) (sourceLogic cid2) "coeqs" mor4
m1 <- map_morphism cid1 mor3'
m2 <- map_morphism cid2 mor4'
phi1' <- comp m1 mor1
phi2' <- comp m2 mor2
phi1 <- coerceMorphism (targetLogic cid1) tlid "coeqs" phi1'
phi2 <- coerceMorphism (targetLogic cid2) tlid "coeqs" phi2'
-- build the double arrow for computing the coequalizers
let doubleArrow = Graph.mkGraph
[(n, plainSign s1), (newN, plainSign tsign)]
[(n, newN, (1, phi1)), (n, newN, (1, phi2))]
(colS, colM) <- weakly_amalgamable_colimit tlid doubleArrow
let newGt1 = noSensGTheory tlid (mkExtSign colS) startSigId
mor11' <- coerceMorphism tlid (targetLogic cid1) "coeqs" $ (Map.!) colM newN
mor11 <- comp mor1 mor11'
mor22' <- coerceMorphism tlid (targetLogic cid2) "coeqs" $ (Map.!) colM newN
mor22 <- comp mor2 mor22'
let gMor11 = GMorphism cid1 sig1 idx1 mor11 startMorId
let gMor22 = GMorphism cid2 sig2 idx2 mor22 startMorId
computeCoeqs graph funDesc (n1, gt1) (n2,gt2) (newN, newGt1)
gMor11 gMor22 descs
-- returns a maximal node available
pickMaxNode :: (MonadPlus t) => Gr a b -> t (Node,a)
pickMaxNode graph = msum $ map return $
filter (\(node,_) -> outdeg graph node == 0) $
labNodes graph
-- returns a list of common descendants of two maximal nodes:
-- one node if a glb exists, or all maximal descendants otherwise
commonDesc :: Map.Map Node [(Node,G_theory)] -> Node -> Node
-> [(Node, G_theory)]
commonDesc funDesc n1 n2 = case glb funDesc n1 n2 of
Just x -> [x]
Nothing -> maxBounds funDesc n1 n2
-- returns a weakly amalgamable square of lax triangles
pickSquare :: (MonadPlus t) => Result GMorphism -> Result GMorphism -> t Square
pickSquare (Result _ (Just phi1@(GMorphism cid1 _ _ _ _)))
(Result _ (Just phi2@(GMorphism cid2 _ _ _ _))) =
if (isHomogeneous phi1 && isHomogeneous phi2) then
return $ mkIdSquare $ Logic $ sourceLogic cid1
--since they have the same target, both homogeneous implies same logic
else do
-- if one of them is homogeneous, build the square
-- with identity modification of the other comorphism
let defaultSquare = if isHomogeneous phi1 then
[mkDefSquare $ Comorphism cid2]
else if isHomogeneous phi2 then
[mirrorSquare $ mkDefSquare $ Comorphism cid1]
else []
case maybeResult $ lookupSquare_in_LG (Comorphism cid1)(Comorphism cid2) of
Nothing -> msum $ map return $ defaultSquare
Just sqList -> msum $ map return $ sqList ++ defaultSquare
pickSquare (Result _ Nothing) _ = fail "Error computing comorphisms"
pickSquare _ (Result _ Nothing) = fail "Error computing comorphisms"
-- builds the span for which the colimit is computed
buildSpan :: GDiagram ->
Map.Map Node [(Node, G_theory)] ->
AnyComorphism ->
AnyComorphism ->
AnyComorphism ->
AnyComorphism ->
AnyComorphism ->
AnyModification ->
AnyModification ->
G_theory ->
G_theory ->
G_theory ->
GMorphism ->
GMorphism ->
Int -> Int -> Int ->
[(Int, G_theory)]->
Result (GDiagram, Map.Map Node [(Node,G_theory)])
buildSpan graph
funDesc
d@(Comorphism _cidD)
e1@(Comorphism cidE1)
e2@(Comorphism cidE2)
_d1@(Comorphism _cidD1)
_d2@(Comorphism _cidD2)
_m1@(Modification cidM1)
_m2@(Modification cidM2)
gt@(G_theory lid sign _ _ _)
gt1@(G_theory lid1 sign1 _ _ _)
gt2@(G_theory lid2 sign2 _ _ _)
_phi1@(GMorphism cid1 _ _ mor1 _)
_phi2@(GMorphism cid2 _ _ mor2 _)
n n1 n2
maxNodes
= do
sig@(G_theory _lid0 _sign0 _ _ _) <- mapG_theory d gt -- phi^d(Sigma)
sig1 <- mapG_theory e1 gt1 -- phi^e1(Sigma1)
sig2 <- mapG_theory e2 gt2 -- phi^e2(Sigma2)
mor1' <- coerceMorphism (targetLogic cid1) (sourceLogic cidE1) "buildSpan" mor1
eps1 <- map_morphism cidE1 mor1' -- phi^e1(sigma1)
sign' <- coerceSign lid (sourceLogic$ sourceComorphism cidM1) "buildSpan" sign
tau1 <- tauSigma cidM1 (plainSign sign') -- I^u1_Sigma
tau1' <- coerceMorphism (targetLogic$ sourceComorphism cidM1)
(targetLogic cidE1) "buildSpan" tau1
rho1 <- comp tau1' eps1
mor2' <- coerceMorphism (targetLogic cid2) (sourceLogic cidE2) "buildSpan" mor2
eps2 <- map_morphism cidE2 mor2' --phi^e2(sigma2)
sign'' <- coerceSign lid (sourceLogic$ sourceComorphism cidM2) "buildSpan" sign
tau2 <- tauSigma cidM2 (plainSign sign'') -- I^u2_Sigma
tau2' <- coerceMorphism (targetLogic$ sourceComorphism cidM2)
(targetLogic cidE2) "buildSpan" tau2
rho2 <- comp tau2' eps2
signE1 <- coerceSign lid1 (sourceLogic cidE1) " " sign1
signE2 <- coerceSign lid2 (sourceLogic cidE2) " " sign2
(graph1, funDesc1) <- addNodeToGraph graph sig sig1 sig2 n n1 n2
(GMorphism cidE1 signE1 startSigId rho1 startMorId)
(GMorphism cidE2 signE2 startSigId rho2 startMorId)
funDesc maxNodes
return (graph1, funDesc1)
pickMaximalDesc :: (MonadPlus t) => [(Node, G_theory)] -> t (Node, G_theory)
pickMaximalDesc descList = msum$ map return descList
nrMaxNodes :: Gr a b -> Int
nrMaxNodes graph = length $ filter (\n -> outdeg graph n == 0) $ nodes graph
-- | backtracking function for heterogeneous weak amalgamable cocones
hetWeakAmalgCocone :: (Monad m, LogicT t, MonadPlus (t m)) =>
GDiagram -> Map.Map Int [(Int, G_theory)] -> t m GDiagram
hetWeakAmalgCocone graph funDesc =
if nrMaxNodes graph == 1 then return graph
else once $ do
(n1,gt1) <- pickMaxNode graph
(n2,gt2) <- pickMaxNode graph
guard (n1 < n2) -- to consider each pair of maximal nodes only once
let descList = commonDesc funDesc n1 n2
case length descList of
0 -> mzero -- no common descendants for n1 and n2
_ -> do -- just one common descendant implies greatest lower bound
-- for several, the tail is not empty and we compute coequalizers
(n,gt) <- pickMaximalDesc descList
let phi1 = dijkstra graph n n1
phi2 = dijkstra graph n n2
square <- pickSquare phi1 phi2
let d = laxTarget $ leftTriangle square
e1 = laxFst $ leftTriangle square
d1 = laxSnd $ leftTriangle square
e2 = laxFst $ rightTriangle square
d2 = laxSnd $ rightTriangle square
m1 = laxModif $ leftTriangle square
m2 = laxModif $ rightTriangle square
case maybeResult phi1 of
Nothing -> mzero
Just phi1' -> case maybeResult phi2 of
Nothing -> mzero
Just phi2' -> do
let mGraph = buildSpan graph funDesc d e1 e2 d1 d2 m1 m2 gt gt1 gt2
phi1' phi2' n n1 n2 $ filter (\(nx,_) -> nx /=n) descList
case maybeResult mGraph of
Nothing -> mzero
Just (graph1, funDesc1) -> hetWeakAmalgCocone graph1 funDesc1