WACocone.hs revision 90d7cac36f60438bd35124e3389b5bce6d114b46
{- |
Module : $Header$
Description : heterogeneous signatures colimits approximations
Copyright : (c) Mihai Codescu, and Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : mcodescu@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable
Heterogeneous version of weakly_amalgamable_cocones.
Needs some improvements (see TO DO).
-}
module Static.WACocone(GDiagram,
isHomogeneousGDiagram,
homogeniseGDiagram,
isConnected,
isAcyclic,
removeIdentities,
hetWeakAmalgCocone,
initDescList,
buildStrMorphisms
) where
import Data.Graph.Inductive.Graph
import Data.List(nub)
import Common.Lib.Graph
import Common.Result
import Logic.Logic
import Logic.Comorphism
import Logic.Modification
import Logic.Grothendieck
import Logic.Coerce
import Logic.Prover(noSens)
import Static.GTheory
import Common.ExtSign
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.IntMap as IntMap
import Control.Monad
import Common.LogicT
import Comorphisms.LogicGraph
-- | Grothendieck diagrams
type GDiagram = Gr G_theory (Int, GMorphism)
-- | checks whether a connected GDiagram is homogeneous
isHomogeneousGDiagram :: GDiagram -> Bool
isHomogeneousGDiagram diag = foldl (&&) True $ map isHomogeneous $
map (\(_,_,(_,phi)) -> phi) $ labEdges diag
-- | homogenise a GDiagram to a targeted logic
homogeniseGDiagram :: Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree
=> lid -- ^ the target logic to be coerced to
-> GDiagram -- ^ the GDiagram to be homogenised
-> Result (Gr sign (Int,morphism))
homogeniseGDiagram targetLid diag = do
let convertNode (n, gth) = do
G_sign srcLid extSig _ <- return $ signOf gth
extSig' <- coerceSign srcLid targetLid "" extSig
return (n, plainSign extSig')
convertEdge (n1, n2, (nr,GMorphism cid _ _ mor _ ))
= if isIdComorphism (Comorphism cid) then
do mor' <- coerceMorphism (targetLogic cid) targetLid "" mor
return (n1, n2, (nr,mor'))
else fail $
"Trying to coerce a morphism between different logics.\n" ++
"Heterogeneous specifications are not fully supported yet."
convertNodes cDiag [] = do return cDiag
convertNodes cDiag (lNode : lNodes) =
do convNode <- convertNode lNode
let cDiag' = insNode convNode cDiag
convertNodes cDiag' lNodes
convertEdges cDiag [] = do return cDiag
convertEdges cDiag (lEdge : lEdges) =
do convEdge <- convertEdge lEdge
let cDiag' = insEdge convEdge cDiag
convertEdges cDiag' lEdges
dNodes = labNodes diag
dEdges = labEdges diag
-- insert converted nodes to an empty diagram
cDiag <- convertNodes (unsafeConstructGr IntMap.empty) dNodes
-- insert converted edges to the diagram containing only nodes
cDiag' <- convertEdges cDiag dEdges
return cDiag'
-- | checks whether a graph is connected
isConnected :: Gr a b -> Bool
isConnected graph = let
nodeList = nodes graph
root = head nodeList
availNodes = Map.fromList $ zip nodeList (repeat True)
bfs queue avail = case queue of
[] -> avail
n:ns -> let
avail1 = Map.insert n False avail
nbs = filter ((Map.!) avail) $ neighbors graph n
in bfs (ns++nbs) avail1
in filter ((Map.!) (bfs [root] availNodes)) nodeList == []
-- | checks whether a graph is acyclic
isAcyclic :: (Eq b) => Gr a b -> Bool
isAcyclic graph = let
queue = filter (\x -> indeg graph x == 0) $ nodes graph
topologicalSort q gr = case q of
[] -> if edges gr == [] then True else False
n:ns -> let
oEdges = lsuc gr n
delLEdges gr1 edgeList = case edgeList of
[] -> gr1
edge:edgeL -> delLEdges (delLEdge edge gr1) edgeL
graph1 = delLEdges gr $ map (\(y,label) -> (n,y,label)) oEdges
succs = filter (\x -> indeg graph1 x == 0) $ suc gr n
in topologicalSort (ns++succs) graph1
in topologicalSort queue graph
-- | auxiliary for removing the identity edges from a graph
removeIdentities :: Gr a b -> Gr a b
removeIdentities graph = let
addEdges gr eList = case eList of
[] -> gr
(sn, tn, label):eList1 -> if sn == tn then addEdges gr eList1
else addEdges (insEdge (sn, tn, label) gr) eList1
in (addEdges $ insNodes (labNodes graph) $ unsafeConstructGr $ IntMap.empty)
$ labEdges graph
-- assigns to a node all proper descendants
initDescList :: Gr a b -> Map.Map Node [(Node, a)]
initDescList graph = let
isProperDescOf gr n x = let
existsPath diag snode nlist = if snode `elem` nlist then True
else let
nlist1 = foldl (++) [] $ map (pre diag) nlist
in if nlist1 == [] then False
else existsPath diag snode nlist1
in if n == x then False
else existsPath gr x [n]
descsOf n = filter (\(x,_) -> isProperDescOf graph n x)$ labNodes graph
in Map.fromList$ map (\node -> (node, descsOf node)) $ nodes graph
commonBounds :: (Eq a) => Map.Map Node [(Node, a)] -> Node -> Node -> [(Node,a)]
commonBounds funDesc n1 n2 = filter
(\x -> x `elem` ((Map.!) funDesc n1) && x `elem` ((Map.!) funDesc n2) )
$ nub $ (Map.!) funDesc n1 ++ (Map.!) funDesc n2
-- returns the greatest lower bound of two maximal nodes,if it exists
glb :: (Eq a) => Map.Map Node [(Node, a)] -> Node -> Node -> Maybe (Node,a)
glb funDesc n1 n2 = let
cDescs = commonBounds funDesc n1 n2
subList [] _ = True
subList (x:xs) l2 = x `elem` l2 && subList xs l2
glbList = filter (\(n, x) -> subList
(filter (\(n0,x0) -> (n,x)/= (n0,x0)) cDescs) (funDesc Map.! n)
) cDescs
-- a node n is glb of n1 and n2 iff
-- all common bounds of n1 and n2 are also descendants of n
in case glbList of
[] -> Nothing
x:_ -> Just x -- because if it exists, there can be only one
-- if no greatest lower bound exists, compute all maximal bounds of the nodes
maxBounds :: (Eq a) => Map.Map Node [(Node, a)] -> Node -> Node -> [(Node, a)]
maxBounds funDesc n1 n2 = let
cDescs = commonBounds funDesc n1 n2
isDesc n0 (n,y) = (n,y) `elem` funDesc Map.! n0
noDescs (n,y) = filter (\(n0, _) -> isDesc n0 (n,y)) cDescs == []
in filter noDescs cDescs
-- dijsktra algorithm for finding the the shortest path between two nodes
dijkstra :: GDiagram -> Node -> Node -> Result GMorphism
dijkstra graph source target = let
dist = Map.insert source 0 $ Map.fromList $
zip (nodes graph) $ repeat $ 2 * (length $ edges graph)
prev = Map.empty
q = nodes graph
com = case lab graph source of
Nothing -> Map.empty --shouldnt be the case
Just gt -> Map.insert source (ide Grothendieck $ signOf gt) Map.empty
(nodeList, com1) = mainloop graph source target q dist prev com
extractMin queue dMap = let
u = head $
filter (\x -> (Map.!) dMap x == (minimum $ map ((Map.!)dMap) queue)) queue
updateNeighbors d p c u gr = let
outEdges = out gr u
upNeighbor dMap pMap cMap uNode edgeList = case edgeList of
[] -> (dMap, pMap, cMap)
(_, v, (_, gmor)):edgeL -> let
alt = (Map.!) dMap uNode + 1
in if (alt >= (Map.!) dMap v) then upNeighbor dMap pMap cMap uNode edgeL
else let
d1 = Map.insert v alt dMap
p1 = Map.insert v uNode pMap
c1 = Map.insert v gmor cMap
in upNeighbor d1 p1 c1 uNode edgeL
in upNeighbor d p c u outEdges
-- for each neighbor of u, if d(u)+1 < d(v), modify p(v) = u, d(v) = d(u)+1
mainloop gr sn tn qL d p c = let
(q1, u) = extractMin qL d
(d1, p1, c1) = updateNeighbors d p c u gr
in if (u == tn) then shortPath gr sn p1 c [] tn
else mainloop gr sn tn q1 d1 p1 c1
shortPath gr sn p1 c s u = if (Map.!) p1 u == sn then (u:s, c)
else shortPath gr sn p1 c (u:s) $(Map.!) p1 u
in foldM (comp Grothendieck) ((Map.!) com1 source) $ map ((Map.!)com1) nodeList
-- builds the arrows from the nodes of the original graph
-- to the unique maximal node of the obtained graph
-- TO DO:different cases if the new graph is the same as the old one
-- (i.e. a graph with a single maximal node)?
buildStrMorphisms :: GDiagram -> GDiagram
->Result (G_theory, Map.Map Node GMorphism)
buildStrMorphisms initGraph newGraph = do
let (maxNode, sigma) = head $ filter (\(node,_) -> outdeg newGraph node == 0) $
labNodes newGraph
buildMor pairList solList = do
case pairList of
(n, _):pairs -> do nMor <- dijkstra newGraph n maxNode
buildMor pairs (solList ++ [(n,nMor)])
[] -> return solList
morList <- buildMor (labNodes initGraph) []
return $ (sigma, Map.fromList morList)
-- computes the colimit and inserts it into the graph
addNodeToGraph :: GDiagram -> G_theory -> G_theory -> G_theory -> Int -> Int
-> Int -> GMorphism -> GMorphism
-> Map.Map Node [(Node, G_theory)] -> [(Int, G_theory)]
-> Result (GDiagram, Map.Map Node [(Node, G_theory)])
addNodeToGraph oldGraph
(G_theory lid extSign _ _ _)
gt1@(G_theory lid1 extSign1 idx1 _ _)
gt2@(G_theory lid2 extSign2 idx2 _ _)
n
n1
n2
(GMorphism cid1 _ _ mor1 _)
(GMorphism cid2 _ _ mor2 _)
funDesc maxNodes = do
let newNode = 1 + (maximum $ nodes oldGraph) --get a new node
s1 <- coerceSign lid1 lid "addToNodeGraph" extSign1
s2 <- coerceSign lid2 lid "addToNodeGraph" extSign2
m1 <- coerceMorphism (targetLogic cid1) lid "addToNodeGraph" mor1
m2 <- coerceMorphism (targetLogic cid2) lid "addToNodeGraph" mor2
let spanGr = unsafeConstructGr $ IntMap.fromList $
[(n,([],plainSign extSign,[((1::Int,m1), n1),((1::Int,m2), n2)])),
(n1,([((1::Int,m1), n)],plainSign s1,[])),
(n2,([((1::Int,m2), n)],plainSign s2,[]))]
(s, morMap) <- weakly_amalgamable_colimit lid spanGr
let gtheory = G_theory lid (mkExtSign s) 0 noSens 0
-- must coerce here
m11 <- coerceMorphism lid (targetLogic cid1) "addToNodeGraph" $
morMap Map.! n1
m22 <- coerceMorphism lid (targetLogic cid2) "addToNodeGraph" $
morMap Map.! n2
s11 <- coerceSign lid (sourceLogic cid1) "addToNodeGraph" s1
s22 <- coerceSign lid (sourceLogic cid2) "addToNodeGraph" s2
let gmor1 = GMorphism cid1 s11 idx1 m11 0
let gmor2 = GMorphism cid2 s22 idx2 m22 0
case maxNodes of
[] -> do
let newGraph = insEdges [(n1, newNode,(1, gmor1)),(n2, newNode,(1,gmor2))] $
insNode (newNode, gtheory) oldGraph
funDesc1 = Map.insert newNode
(nub $ (Map.!)funDesc n1 ++ (Map.!) funDesc n2 ) funDesc
return (newGraph, funDesc1)
_ -> computeCoeqs oldGraph funDesc (n1, gt1) (n2, gt2)
(newNode, gtheory) gmor1 gmor2 maxNodes
-- for each node in the list, check whether the coequalizer can be computed
-- if so, modify the maximal node of graph and the edges to it from n1 and n2
computeCoeqs :: GDiagram -> Map.Map Node [(Node, G_theory)]
-> (Node,G_theory) -> (Node,G_theory) -> (Node, G_theory)
-> GMorphism -> GMorphism -> [(Node, G_theory)]->
Result (GDiagram, Map.Map Node [(Node, G_theory)])
computeCoeqs oldGraph funDesc (n1,_) (n2,_) (newN, newGt) gmor1 gmor2 [] = do
let newGraph = insEdges [(n1, newN, (1, gmor1)),(n2, newN, (1, gmor2))] $
insNode (newN, newGt) oldGraph
descFun1 = Map.insert newN
(nub $ (Map.!)funDesc n1 ++ (Map.!) funDesc n2 ) funDesc
return $ (newGraph, descFun1)
computeCoeqs graph funDesc (n1,gt1) (n2,gt2)
(newN, _newGt@(G_theory tlid tsign _ _ _))
_gmor1@(GMorphism cid1 sig1 _ mor1 _ )
_gmor2@(GMorphism cid2 sig2 _ mor2 _ ) ((n,gt):descs)= do
_rho1@(GMorphism cid3 _ _ mor3 _)<- dijkstra graph n n1
_rho2@(GMorphism cid4 _ _ mor4 _)<- dijkstra graph n n2
com1 <- compComorphism (Comorphism cid1) (Comorphism cid3)
com2 <- compComorphism (Comorphism cid1) (Comorphism cid3)
if com1 /= com2 then fail "Unable to compute coequalizer" else do
_gtM@(G_theory lidM signM _idxM _ _)<- mapG_theory com1 gt
s1 <- coerceSign lidM tlid "coequalizers" signM
mor3' <- coerceMorphism (targetLogic cid3) (sourceLogic cid1) "coeqs" mor3
mor4' <- coerceMorphism (targetLogic cid4) (sourceLogic cid2) "coeqs" mor4
m1 <- map_morphism cid1 mor3'
m2 <- map_morphism cid2 mor4'
phi1' <- comp (targetLogic cid1) m1 mor1
phi2' <- comp (targetLogic cid2) m2 mor2
phi1 <- coerceMorphism (targetLogic cid1) tlid "coeqs" phi1'
phi2 <- coerceMorphism (targetLogic cid2) tlid "coeqs" phi2'
--build the duble arrow for computing the coequalizers
let doubleArrow = unsafeConstructGr $ IntMap.fromList $
[(n, ([], plainSign s1,[((1::Int, phi1),newN), ((1::Int,phi2),newN)])),
(newN, ([((1::Int, phi1),n),((1::Int,phi2),n)],plainSign tsign,[]))]
(colS, colM) <- weakly_amalgamable_colimit tlid doubleArrow
let newGt1 = G_theory tlid (mkExtSign colS) 0 noSens 0
mor11' <- coerceMorphism tlid (targetLogic cid1) "coeqs" $ (Map.!) colM newN
mor11 <- comp (targetLogic cid1) mor1 mor11'
mor22' <- coerceMorphism tlid (targetLogic cid2) "coeqs" $ (Map.!) colM newN
mor22 <- comp (targetLogic cid2) mor2 mor22'
let gMor11 = GMorphism cid1 sig1 0 mor11 0
let gMor22 = GMorphism cid2 sig2 0 mor22 0
computeCoeqs graph funDesc (n1, gt1) (n2,gt2) (newN, newGt1)
gMor11 gMor22 descs
-- returns a maximal node available
pickMaxNode :: (MonadPlus t) => Gr a b -> t (Node,a)
pickMaxNode graph = msum $ map return $
filter (\(node,_) -> outdeg graph node == 0) $
labNodes graph
-- returns a list of common descendants of two maximal nodes:
-- one node if a glb exists, or all maximal descendants otherwise
commonDesc :: Map.Map Node [(Node,G_theory)] -> Node -> Node
-> [(Node, G_theory)]
commonDesc funDesc n1 n2 = case glb funDesc n1 n2 of
Just x -> [x]
Nothing -> maxBounds funDesc n1 n2
-- returns a weakly amalgamable square of lax triangles
pickSquare :: (MonadPlus t) => Result GMorphism -> Result GMorphism -> t Square
pickSquare (Result _ (Just phi1@(GMorphism cid1 _ _ _ _)))
(Result _ (Just phi2@(GMorphism cid2 _ _ _ _))) =
if (isHomogeneous phi1 && isHomogeneous phi2) then
return $ mkIdSquare $ Logic $ sourceLogic cid1
--since they have the same target, both homogeneous implies same logic
else
case maybeResult $ lookupSquare_in_LG (Comorphism cid1)(Comorphism cid2) of
Nothing -> mzero
Just sqList -> msum $ map return sqList
pickSquare (Result _ Nothing) _ = fail "Error computing comorphisms"
pickSquare _ (Result _ Nothing) = fail "Error computing comorphisms"
-- builds the span for which the colimit is computed
buildSpan :: GDiagram ->
Map.Map Node [(Node, G_theory)] ->
AnyComorphism ->
AnyComorphism ->
AnyComorphism ->
AnyComorphism ->
AnyComorphism ->
AnyModification ->
AnyModification ->
G_theory ->
G_theory ->
G_theory ->
GMorphism ->
GMorphism ->
Int -> Int -> Int ->
[(Int, G_theory)]->
Result (GDiagram, Map.Map Node [(Node,G_theory)])
buildSpan graph
funDesc
d@(Comorphism _cidD)
e1@(Comorphism cidE1)
e2@(Comorphism cidE2)
_d1@(Comorphism _cidD1)
_d2@(Comorphism _cidD2)
_m1@(Modification cidM1)
_m2@(Modification cidM2)
gt@(G_theory lid sign _ _ _)
gt1@(G_theory _lid1 _sign1 _ _ _)
gt2@(G_theory _lid2 _sign2 _ _ _)
_phi1@(GMorphism cid1 _ _ mor1 _)
_phi2@(GMorphism cid2 _ _ mor2 _)
n n1 n2
maxNodes
= do
sig@(G_theory lid0 sign0 _ _ _) <- mapG_theory d gt -- phi^d(Sigma)
sig1 <- mapG_theory e1 gt1 -- phi^e1(Sigma1)
sig2 <- mapG_theory e2 gt2 -- phi^e2(Sigma2)
mor1' <- coerceMorphism (targetLogic cid1) (sourceLogic cidE1) "buildSpan" mor1
eps1 <- map_morphism cidE1 mor1' -- phi^e1(sigma1)
sign' <- coerceSign lid (sourceLogic$ sourceComorphism cidM1) "buildSpan" sign
tau1 <- tauSigma cidM1 (plainSign sign') -- I^u1_Sigma
tau1' <- coerceMorphism (targetLogic$ sourceComorphism cidM1)
(targetLogic cidE1) "buildSpan" tau1
rho1 <- comp (targetLogic cidE1) tau1' eps1
mor2' <- coerceMorphism (targetLogic cid2) (sourceLogic cidE2) "buildSpan" mor2
eps2 <- map_morphism cidE2 mor2' --phi^e2(sigma2)
sign'' <- coerceSign lid (sourceLogic$ sourceComorphism cidM2) "buildSpan" sign
tau2 <- tauSigma cidM2 (plainSign sign'') -- I^u2_Sigma
tau2' <- coerceMorphism (targetLogic$ sourceComorphism cidM2)
(targetLogic cidE2) "buildSpan" tau2
rho2 <- comp (targetLogic cidE2) tau2' eps2
signE1 <- coerceSign lid0 (sourceLogic cidE1) " " sign0
signE2 <- coerceSign lid0 (sourceLogic cidE2) " " sign0
(graph1, funDesc1) <- addNodeToGraph graph sig sig1 sig2 n n1 n2
(GMorphism cidE1 signE1 0 rho1 0)
(GMorphism cidE2 signE2 0 rho2 0) funDesc maxNodes
return (graph1, funDesc1)
pickMaximalDesc :: (MonadPlus t) => [(Node, G_theory)] -> t (Node, G_theory)
pickMaximalDesc descList = msum$ map return descList
nrMaxNodes :: Gr a b -> Int
nrMaxNodes graph = length $ filter (\n -> outdeg graph n == 0) $ nodes graph
-- | backtracking function for heterogeneous weak amalgamable cocones
hetWeakAmalgCocone :: (Monad m, LogicT t, MonadPlus (t m)) =>
GDiagram -> Map.Map Int [(Int, G_theory)] -> t m GDiagram
hetWeakAmalgCocone graph funDesc =
if nrMaxNodes graph == 1 then return graph
else once $ do
(n1,gt1) <- pickMaxNode graph
(n2,gt2) <- pickMaxNode graph
guard (n1 < n2) -- to consider each pair of maximal nodes only once
let descList = commonDesc funDesc n1 n2
case length descList of
0 -> mzero -- no common descendants for n1 and n2
_ -> do -- just one common descendant implies greatest lower bound
-- for several, the tail is not empty and we compute coequalizers
(n,gt) <- pickMaximalDesc descList
let phi1 = dijkstra graph n n1
phi2 = dijkstra graph n n2
square <- pickSquare phi1 phi2
let d = laxTarget $ leftTriangle square
e1 = laxFst $ leftTriangle square
d1 = laxSnd $ leftTriangle square
e2 = laxFst $ rightTriangle square
d2 = laxSnd $ rightTriangle square
m1 = laxModif $ leftTriangle square
m2 = laxModif $ rightTriangle square
case maybeResult phi1 of
Nothing -> mzero
Just phi1' -> case maybeResult phi2 of
Nothing -> mzero
Just phi2' -> do
let mGraph = buildSpan graph funDesc d e1 e2 d1 d2 m1 m2 gt gt1 gt2
phi1' phi2' n n1 n2 $ filter (\(nx,_) -> nx /=n) descList
case maybeResult mGraph of
Nothing -> mzero
Just (graph1, funDesc1) -> hetWeakAmalgCocone graph1 funDesc1