GTheory.hs revision 4c7f058cdd19ce67b2b5d4b7f69703d0f8a21e38
{- |
Module : $Header$
Description : theory datastructure for development graphs
Copyright : (c) Till Mossakowski, Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable(Logic)
theory datastructure for development graphs
-}
module Static.GTheory where
import Logic.Prover
import Logic.Logic
import Logic.ExtSign
import Logic.Grothendieck
import Logic.Comorphism
import Logic.Coerce
import qualified Common.OrderedMap as OMap
import Common.AS_Annotation
import Common.Doc
import Common.DocUtils
import Common.ExtSign
import Common.Result
import Data.Typeable
import Control.Monad (foldM)
import Control.Exception
-- a theory index describing a set of sentences
newtype ThId = ThId Int deriving (Typeable, Show, Eq, Ord, Enum)
startThId :: ThId
startThId = ThId 0
-- | Grothendieck theories with lookup indices
data G_theory = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree => G_theory
{ gTheoryLogic :: lid
, gTheorySign :: ExtSign sign symbol
, gTheorySignIdx :: SigId -- ^ index to lookup 'G_sign' (using 'signOf')
, gTheorySens :: ThSens sentence (AnyComorphism, BasicProof)
, gTheorySelfIdx :: ThId -- ^ index to lookup this 'G_theory' in theory map
} deriving Typeable
createGThWith :: G_theory -> SigId -> ThId -> G_theory
createGThWith (G_theory gtl gts _ _ _) si ti = G_theory gtl gts si noSens ti
coerceThSens ::
( Logic lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
, Logic lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2
, Monad m, Typeable b)
=> lid1 -> lid2 -> String -> ThSens sentence1 b -> m (ThSens sentence2 b)
coerceThSens l1 l2 msg t1 = primCoerce l1 l2 msg t1
instance Eq G_theory where
G_theory l1 sig1 ind1 sens1 ind1' == G_theory l2 sig2 ind2 sens2 ind2' =
G_sign l1 sig1 ind1 == G_sign l2 sig2 ind2
&& (ind1' > startThId && ind2' > startThId && ind1' == ind2'
|| coerceThSens l1 l2 "" sens1 == Just sens2)
instance Show G_theory where
show (G_theory _ sign _ sens _) =
shows sign $ "\n" ++ show sens
instance Pretty G_theory where
pretty g = case simplifyTh g of
G_theory lid sign@(ExtSign s _) _ sens _-> let l = toNamedList sens in
if null l && ext_is_subsig lid sign (ext_empty_signature lid) then
specBraces Common.Doc.empty else
pretty s $++$ vsep (map (print_named lid) l)
-- | compute sublogic of a theory
sublogicOfTh :: G_theory -> G_sublogics
sublogicOfTh (G_theory lid (ExtSign sigma _) _ sens _) =
let sub = foldl join
(minSublogic sigma)
(map snd $ OMap.toList $
OMap.map (minSublogic . sentence)
sens)
in G_sublogics lid sub
-- | simplify a theory (throw away qualifications)
simplifyTh :: G_theory -> G_theory
simplifyTh (G_theory lid sigma@(ExtSign s _) ind1 sens ind2) =
G_theory lid sigma ind1
(OMap.map (mapValue $ simplify_sen lid s) sens) ind2
-- | apply a comorphism to a theory
mapG_theory :: AnyComorphism -> G_theory -> Result G_theory
mapG_theory (Comorphism cid) (G_theory lid (ExtSign sign _) ind1 sens ind2) =
do
bTh <- coerceBasicTheory lid (sourceLogic cid)
"mapG_theory" (sign, toNamedList sens)
(sign', sens') <- wrapMapTheory cid bTh
return $ G_theory (targetLogic cid) (mkExtSign sign')
ind1 (toThSens sens') ind2
-- | Translation of a G_theory along a GMorphism
translateG_theory :: GMorphism -> G_theory -> Result G_theory
translateG_theory (GMorphism cid _ _ morphism2 _)
(G_theory lid (ExtSign sign _) _ sens ind) = do
let tlid = targetLogic cid
bTh <- coerceBasicTheory lid (sourceLogic cid)
"translateG_theory" (sign, toNamedList sens)
(_, sens'') <- wrapMapTheory cid bTh
sens''' <- mapM (mapNamedM $ map_sen tlid morphism2) sens''
return $ G_theory tlid (mkExtSign $ cod morphism2)
startSigId (toThSens sens''') ind
-- | Join the sentences of two G_theories
joinG_sentences :: Monad m => G_theory -> G_theory -> m G_theory
joinG_sentences (G_theory lid1 sig1 ind sens1 _)
(G_theory lid2 sig2 _ sens2 _) = do
sens2' <- coerceThSens lid2 lid1 "joinG_sentences" sens2
sig2' <- coerceSign lid2 lid1 "joinG_sentences" sig2
return $ assert (plainSign sig1 == plainSign sig2')
$ G_theory lid1 sig1 ind (joinSens sens2' sens1) startThId
-- | flattening the sentences form a list of G_theories
flatG_sentences :: Monad m => G_theory -> [G_theory] -> m G_theory
flatG_sentences th ths = foldM joinG_sentences th ths
-- | Get signature of a theory
signOf :: G_theory -> G_sign
signOf (G_theory lid sign ind _ _) = G_sign lid sign ind
-- | create theory without sentences
noSensGTheory :: Logic lid sublogics basic_spec sentence symb_items
symb_map_items sign morphism symbol raw_symbol proof_tree
=> lid -> ExtSign sign symbol -> SigId -> G_theory
noSensGTheory lid sig si = G_theory lid sig si noSens startThId
data BasicProof =
forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
BasicProof lid (Proof_status proof_tree)
| Guessed
| Conjectured
| Handwritten
deriving Typeable
instance Eq BasicProof where
Guessed == Guessed = True
Conjectured == Conjectured = True
Handwritten == Handwritten = True
BasicProof lid1 p1 == BasicProof lid2 p2 =
coerceBasicProof lid1 lid2 "Eq BasicProof" p1 == Just p2
_ == _ = False
instance Ord BasicProof where
Guessed <= _ = True
Conjectured <= x = case x of
Guessed -> False
_ -> True
Handwritten <= x = case x of
Guessed -> False
Conjectured -> False
_ -> True
BasicProof lid1 pst1 <= x =
case x of
BasicProof lid2 pst2
| isProvedStat pst1 && not (isProvedStat pst2) -> False
| not (isProvedStat pst1) && isProvedStat pst2 -> True
| otherwise -> case primCoerce lid1 lid2 "" pst1 of
Nothing -> False
Just pst1' -> pst1' <= pst2
_ -> False
instance Show BasicProof where
show (BasicProof _ p1) = show p1
show Guessed = "Guessed"
show Conjectured = "Conjectured"
show Handwritten = "Handwritten"