DevGraph.hs revision 878d0086bd0aae2d7ad64451035c4e78047b1cff
{-|
Module : $Header$
Copyright : (c) Till Mossakowski, Uni Bremen 2002-2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : non-portable(Logic)
Central data structure for development graphs.
Follows Sect. IV:4.2 of the CASL Reference Manual.
-}
{-
References:
T. Mossakowski, S. Autexier and D. Hutter:
Extending Development Graphs With Hiding.
H. Hussmann (ed.): Fundamental Approaches to Software Engineering 2001,
Lecture Notes in Computer Science 2029, p. 269-283,
Springer-Verlag 2001.
T. Mossakowski, S. Autexier, D. Hutter, P. Hoffman:
CASL Proof calculus. In: CASL reference manual, part IV.
Available from http://www.cofi.info
todo:
Integrate stuff from Saarbr�cken
Should AS be stored in GloblaContext as well?
-}
module Static.DevGraph where
import Logic.Logic
import Logic.Grothendieck
import Logic.Comorphism
import Logic.Prover
import Logic.Coerce
import Syntax.AS_Library
import Data.Graph.Inductive.Graph as Graph
import qualified Data.Graph.Inductive.Tree as Tree
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Id
import Common.Lib.Pretty
import Common.PrettyPrint
import Common.PPUtils
import Common.Result
import Common.DynamicUtils
import Data.Dynamic
import Data.List as List
import Control.Monad
getNewNode :: Tree.Gr a b -> Node
getNewNode g = case newNodes 1 g of
[n] -> n
_ -> error "Static.DevGraph.getNewNode"
-- * Types for structured specification analysis
-- ??? Some info about the theorems already proved for a node
-- should be added
-- or should it be kept separately?
-- what about open theorems of a node???
type NODE_NAME = (SIMPLE_ID, String, Int)
data DGNodeLab = DGNode {
dgn_name :: NODE_NAME,
dgn_theory :: G_theory,
dgn_nf :: Maybe Node,
dgn_sigma :: Maybe GMorphism,
dgn_origin :: DGOrigin
}
| DGRef {
dgn_renamed :: NODE_NAME,
dgn_libname :: LIB_NAME,
dgn_node :: Node,
dgn_nf :: Maybe Node,
dgn_sigma :: Maybe GMorphism
} deriving Eq
dgn_sign :: DGNodeLab -> G_sign
dgn_sign dn = case dgn_theory dn of
G_theory lid sig _ -> G_sign lid sig
isInternalNode :: DGNodeLab -> Bool
isInternalNode (DGNode n _ _ _ _) = isInternal n
isInternalNode _ = False
-- gets the name of a development graph node as a string
getDGNodeName :: DGNodeLab -> String
getDGNodeName (DGNode n _ _ _ _) = showName n
getDGNodeName (DGRef n _ _ _ _) = showName n
emptyNodeName :: NODE_NAME
emptyNodeName = (mkSimpleId "","",0)
showInt :: Int -> String
showInt i = if i==0 then "" else show i
showName :: NODE_NAME -> String
showName (n,s,i) = show n ++ if ext=="" then "" else "_"++ext
where ext = s ++ showInt i
makeName :: SIMPLE_ID -> NODE_NAME
makeName n = (n,"",0)
getName :: NODE_NAME -> SIMPLE_ID
getName (n,_,_) = n
makeMaybeName :: Maybe SIMPLE_ID -> NODE_NAME
makeMaybeName Nothing = emptyNodeName
makeMaybeName (Just n) = makeName n
inc :: NODE_NAME -> NODE_NAME
inc (n,s,i) = (n,s,i+1)
isInternal :: NODE_NAME -> Bool
isInternal (_,s,i) = (i/=0) || s/=""
extName :: String -> NODE_NAME -> NODE_NAME
extName s (n,s1,i) = (n,s1++showInt i++s,0)
isDGRef :: DGNodeLab -> Bool
isDGRef (DGNode _ _ _ _ _) = False
isDGRef (DGRef _ _ _ _ _) = True
locallyEmpty :: DGNodeLab -> Bool
locallyEmpty (DGNode _ (G_theory lid sigma sens) _ _ _) =
is_subsig lid sigma (empty_signature lid) && Set.null sens
locallyEmpty (DGRef _ _ _ _ _) = True
data DGLinkLab = DGLink {
-- dgl_name :: String,
-- dgl_src, dgl_tar :: DGNodeLab, -- already in graph structure
dgl_morphism :: GMorphism,
dgl_type :: DGLinkType,
dgl_origin :: DGOrigin }
deriving Eq
instance PrettyPrint DGLinkLab where
printText0 ga l = printText0 ga (dgl_morphism l)
<+> printText0 ga (dgl_type l)
<+> printText0 ga (dgl_origin l)
data DGRule =
TheoremHideShift
| HideTheoremShift (LEdge DGLinkLab)
| Borrowing
| ConsShift
| DefShift
| MonoShift
| ConsComp
| DefComp
| MonoComp
| DefToMono
| MonoToCons
| FreeIsMono
| MonoIsFree
| Composition
| GlobDecomp (LEdge DGLinkLab) -- edge in the conclusion
| LocDecomp (LEdge DGLinkLab)
| LocSubsumption (LEdge DGLinkLab)
| GlobSubsumption (LEdge DGLinkLab)
| LocalInference
| BasicInference BasicProof
| BasicConsInference Edge BasicConsProof
deriving Eq
data BasicProof =
forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
BasicProof lid (Proof_status proof_tree) -- should be list of Proof_Status!
| Guessed
| Conjectured
| Handwritten
instance Eq BasicProof where
Guessed == Guessed = True
Conjectured == Conjectured = True
Handwritten == Handwritten = True
BasicProof lid1 p1 == BasicProof lid2 p2 =
coerceBasicProof lid1 lid2 "Eq BasicProof" p1 == Just p2
_ == _ = False
instance Show BasicProof where
show (BasicProof _ p1) = show p1
show Guessed = "Guessed"
show Conjectured = "Conjectured"
show Handwritten = "Handwritten"
data BasicConsProof = BasicConsProof -- more detail to be added ...
deriving Eq
data ThmLinkStatus = LeftOpen
| Proven DGRule [DGLinkLab]
deriving Eq
instance PrettyPrint ThmLinkStatus where
printText0 ga tls = case tls of
LeftOpen -> text "Open"
Proven _ ls -> vcat $ map (printText0 ga) ls
data DGLinkType = LocalDef
| GlobalDef
| HidingDef
| FreeDef MaybeNode -- the "parameter" node
| CofreeDef MaybeNode -- the "parameter" node
| LocalThm ThmLinkStatus Conservativity ThmLinkStatus
-- ??? Some more proof information is needed here
-- (proof tree, ...)
| GlobalThm ThmLinkStatus Conservativity ThmLinkStatus
| HidingThm GMorphism ThmLinkStatus
| FreeThm GMorphism Bool
-- DGLink S1 S2 m2 (DGLinkType m1 p) n
-- corresponds to a span of morphisms
-- S1 <--m1-- S --m2--> S2
deriving Eq
instance PrettyPrint DGLinkType where
printText0 _ t = text $ case t of
LocalDef -> "LocalDef"
GlobalDef -> "GlobalDef"
HidingDef -> "HidingDef"
FreeDef _ -> "FreeDef"
CofreeDef _ -> "CofreeDef"
LocalThm _ _ _ -> "LocalThm"
GlobalThm _ _ _ -> "GlobalThm"
HidingThm _ _ -> "HidingThm"
FreeThm _ _ -> "FreeThm"
data Conservativity = None | Cons | Mono | Def
deriving (Eq,Ord)
instance Show Conservativity where
show None = ""
show Cons = "Cons"
show Mono = "Mono"
show Def = "Def"
data DGOrigin = DGBasic | DGExtension | DGTranslation | DGUnion | DGHiding
| DGRevealing | DGRevealTranslation | DGFree | DGCofree
| DGLocal | DGClosed | DGClosedLenv | DGLogicQual | DGLogicQualLenv
| DGData
| DGFormalParams | DGImports | DGSpecInst SIMPLE_ID | DGFitSpec
| DGView SIMPLE_ID | DGFitView SIMPLE_ID | DGFitViewImp SIMPLE_ID
| DGFitViewA SIMPLE_ID | DGFitViewAImp SIMPLE_ID | DGProof
deriving (Show, Eq)
type DGraph = Tree.Gr DGNodeLab DGLinkLab
data NodeSig = NodeSig Node G_sign deriving Eq
data MaybeNode = JustNode NodeSig | EmptyNode AnyLogic deriving Eq
instance PrettyPrint NodeSig where
printText0 ga (NodeSig n sig) =
ptext "node" <+> printText0 ga n <> ptext ":" <> printText0 ga sig
emptyG_sign :: AnyLogic -> G_sign
emptyG_sign (Logic lid) = G_sign lid (empty_signature lid)
getSig :: NodeSig -> G_sign
getSig (NodeSig _ sigma) = sigma
getNode :: NodeSig -> Node
getNode (NodeSig n _) = n
getMaybeSig :: MaybeNode -> G_sign
getMaybeSig (JustNode ns) = getSig ns
getMaybeSig (EmptyNode l) = emptyG_sign l
getLogic :: MaybeNode -> AnyLogic
getLogic (JustNode ns) = getNodeLogic ns
getLogic (EmptyNode l) = l
getNodeLogic :: NodeSig -> AnyLogic
getNodeLogic (NodeSig _ (G_sign lid _)) = Logic lid
-- | Create a node that represents a union of signatures
nodeSigUnion :: LogicGraph -> DGraph -> [MaybeNode] -> DGOrigin
-> Result (NodeSig, DGraph)
nodeSigUnion lgraph dg nodeSigs orig =
do sigUnion@(G_sign lid sigU) <- gsigManyUnion lgraph
$ map getMaybeSig nodeSigs
let nodeContents = DGNode {dgn_name = emptyNodeName,
dgn_theory = G_theory lid sigU noSens,
dgn_nf = Nothing,
dgn_sigma = Nothing,
dgn_origin = orig }
node = getNewNode dg
dg' = insNode (node, nodeContents) dg
inslink dgres nsig = do
dgv <- dgres
case nsig of
EmptyNode _ -> dgres
JustNode (NodeSig n sig) -> do
incl <- ginclusion lgraph sig sigUnion
return $ insEdge (n, node, DGLink
{dgl_morphism = incl,
dgl_type = GlobalDef,
dgl_origin = orig }) dgv
dg'' <- foldl inslink (return dg') nodeSigs
return (NodeSig node sigUnion, dg'')
-- | Extend the development graph with given morphism originating
-- from given NodeSig
extendDGraph :: DGraph -- ^ the development graph to be extended
-> NodeSig -- ^ the NodeSig from which the morphism originates
-> GMorphism -- ^ the morphism to be inserted
-> DGOrigin
-> Result (NodeSig, DGraph)
-- ^ returns 1. the target signature of the morphism and 2. the resulting DGraph
extendDGraph dg (NodeSig n _) morph orig = case cod Grothendieck morph of
targetSig@(G_sign lid tar) -> let
nodeContents = DGNode {dgn_name = emptyNodeName,
dgn_theory = G_theory lid tar noSens,
dgn_nf = Nothing,
dgn_sigma = Nothing,
dgn_origin = orig}
linkContents = DGLink {dgl_morphism = morph,
dgl_type = GlobalDef, -- TODO: other type
dgl_origin = orig}
node = getNewNode dg
dg' = insNode (node, nodeContents) dg
dg'' = insEdge (n, node, linkContents) dg'
in return (NodeSig node targetSig, dg'')
-- | Extend the development graph with given morphism pointing to
-- given NodeSig
extendDGraphRev :: DGraph -- ^ the development graph to be extended
-> NodeSig -- ^ the NodeSig to which the morphism points
-> GMorphism -- ^ the morphism to be inserted
-> DGOrigin
-> Result (NodeSig, DGraph)
-- ^ returns 1. the source signature of the morphism and 2. the resulting DGraph
extendDGraphRev dg (NodeSig n _) morph orig = case dom Grothendieck morph of
sourceSig@(G_sign lid src) -> let
nodeContents = DGNode {dgn_name = emptyNodeName,
dgn_theory = G_theory lid src Set.empty,
dgn_nf = Nothing,
dgn_sigma = Nothing,
dgn_origin = orig}
linkContents = DGLink {dgl_morphism = morph,
dgl_type = GlobalDef, -- TODO: other type
dgl_origin = orig}
node = getNewNode dg
dg' = insNode (node, nodeContents) dg
dg'' = insEdge (node, n, linkContents) dg'
in return (NodeSig node sourceSig, dg'')
-- import, formal parameters andd united signature of formal params
type GenericitySig = (MaybeNode, [NodeSig], MaybeNode)
-- import, formal parameters, united signature of formal params, body
type ExtGenSig = (MaybeNode, [NodeSig], G_sign, NodeSig)
-- source, morphism, parameterized target
type ExtViewSig = (NodeSig,GMorphism,ExtGenSig)
-- * Types for architectural and unit specification analysis
-- (as defined for basic static semantics in Chap. III:5.1)
data UnitSig = Unit_sig NodeSig
| Par_unit_sig [NodeSig] NodeSig
data ImpUnitSigOrSig = Imp_unit_sig MaybeNode UnitSig
| Sig NodeSig
type StUnitCtx = Map.Map SIMPLE_ID ImpUnitSigOrSig
emptyStUnitCtx :: StUnitCtx
emptyStUnitCtx = Map.empty
data ArchSig = ArchSig StUnitCtx UnitSig
-- * Types for global and library environments
data GlobalEntry = SpecEntry ExtGenSig
| ViewEntry ExtViewSig
| ArchEntry ArchSig
| UnitEntry UnitSig
| RefEntry
type GlobalEnv = Map.Map SIMPLE_ID GlobalEntry
type GlobalContext = (GlobalAnnos,GlobalEnv,DGraph)
type LibEnv = Map.Map LIB_NAME GlobalContext
emptyLibEnv :: LibEnv
emptyLibEnv = Map.empty
instance PrettyPrint DGOrigin where
printText0 _ origin = text $ case origin of
DGBasic -> "basic specification"
DGExtension -> "extension"
DGTranslation -> "translation"
DGUnion -> "union"
DGHiding -> "hiding"
DGRevealing -> "revealing"
DGRevealTranslation -> "translation part of a revealing"
DGFree -> "free specification"
DGCofree -> "cofree specification"
DGLocal -> "local specification"
DGClosed -> "closed specification"
DGClosedLenv -> "closed specification (inclusion of local environment)"
DGFormalParams -> "formal parameters of a generic specification"
DGImports -> "imports of a generic specification"
DGSpecInst n -> ("instantiation of "++showPretty n "")
DGFitSpec -> "fittig specification"
DGView n -> ("view "++showPretty n "")
DGFitView n -> ("fitting view "++showPretty n "")
DGFitViewImp n -> ("fitting view (imports) "++showPretty n "")
DGFitViewA n -> ("fitting view (actual parameters) "++showPretty n "")
DGFitViewAImp n -> ("fitting view (imports and actual parameters) "++showPretty n "")
DGProof -> "constructed within a proof"
_ -> show origin
-- * sentence packing
data Decorated a = Decorated
{ value :: Named a
, order :: Int
, thmStatus :: ThmLinkStatus
, isDef :: Bool
}
decoTc :: TyCon
decoTc = mkTyCon "Static.DevGraph.Decorated"
instance Typeable s => Typeable (Decorated s) where
typeOf s = mkTyConApp decoTc [typeOf ((undefined :: Decorated a -> a) s)]
type ThSens a = Set.Set (Decorated a)
noSens :: ThSens a
noSens = Set.empty
emptyDecorated :: Decorated a
emptyDecorated = Decorated { value = error "emptyDecorated"
, order = 0
, thmStatus = LeftOpen
, isDef = False }
mapValue :: (a -> b) -> Decorated a -> Decorated b
mapValue f d = d { value = mapNamed f $ value d }
toNamedList :: ThSens a -> [Named a]
toNamedList s = let compO d1 d2 = compare (order d1) (order d2)
in map value $ sortBy compO $ Set.toList s
toThSens :: Ord a => [Named a] -> ThSens a
toThSens sens = Set.fromList $ zipWith
( \ v i -> emptyDecorated { value = v, order = i })
sens [1..]
instance Eq a => Eq (Decorated a) where
d1 == d2 = (value d1, isDef d1) ==
(value d2, isDef d2)
instance Ord a => Ord (Decorated a) where
d1 <= d2 = (value d1, isDef d1) <=
(value d2, isDef d2)
-- * Grothendieck theories
-- | Grothendieck theories
data G_theory = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_theory lid sign (ThSens sentence)
coerceThSens ::
(Logic lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1,
Logic lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2,
Monad m) => lid1 -> lid2 -> String
-> ThSens sentence1 -> m (ThSens sentence2)
coerceThSens l1 l2 msg t1 = primCoerce l1 l2 msg t1
instance Eq G_theory where
G_theory l1 sig1 sens1 == G_theory l2 sig2 sens2 =
coerceSign l1 l2 "" sig1 == Just sig2
&& coerceThSens l1 l2 "" sens1 == Just sens2
instance PrettyPrint G_theory where
printText0 ga g = case simplifyTh g of
G_theory lid sign sens ->
printText0 ga sign $++$ vsep (map (print_named lid ga)
$ toNamedList sens)
-- | compute sublogic of a theory
sublogicOfTh :: G_theory -> G_sublogics
sublogicOfTh (G_theory lid sigma sens) =
let sub = Set.fold Logic.Logic.join
(min_sublogic_sign lid sigma)
(Set.map (min_sublogic_sentence lid . sentence . value)
sens)
in G_sublogics lid sub
-- | simplify a theory (throw away qualifications)
simplifyTh :: G_theory -> G_theory
simplifyTh (G_theory lid sigma sens) = G_theory lid sigma $
Set.map (mapValue $ simplify_sen lid sigma) sens
-- | Translation of a G_theory along a GMorphism
translateG_theory :: GMorphism -> G_theory -> Result G_theory
translateG_theory (GMorphism cid _ morphism2)
(G_theory lid sign sens) = do
let tlid = targetLogic cid
--(sigma2,_) <- map_sign cid sign1
bTh <- coerceBasicTheory lid (sourceLogic cid)
"translateG_theory" (sign, toNamedList sens)
(_, sens'') <- map_theory cid bTh
sens''' <- mapM (mapNamedM $ map_sen tlid morphism2) sens''
return $ G_theory tlid (cod tlid morphism2) $ toThSens sens'''
-- | Join the sentences of two G_theories
joinG_sentences :: Monad m => G_theory -> G_theory -> m G_theory
joinG_sentences (G_theory lid1 sig1 sens1) (G_theory lid2 _ sens2) = do
sens2' <- coerceThSens lid2 lid1 "joinG_sentences" sens2
-- assert (sig1 == sig2') ?
return $ G_theory lid1 sig1 $ Set.union sens1 sens2'
-- | flattening the sentences form a list of G_theories
flatG_sentences :: Monad m => G_theory -> [G_theory] -> m G_theory
flatG_sentences th ths = foldM joinG_sentences th ths
-- | Get signature of a theory
signOf :: G_theory -> G_sign
signOf (G_theory lid sign _) = G_sign lid sign
------------------------------------------------------------------
-- Grothendieck diagrams and weakly amalgamable cocones
------------------------------------------------------------------
type GDiagram = Tree.Gr G_theory GMorphism
gWeaklyAmalgamableCocone :: GDiagram
-> Result (G_theory,Map.Map Graph.Node GMorphism)
gWeaklyAmalgamableCocone _ =
return (undefined,Map.empty) -- dummy implementation