DevGraph.hs revision 38f350357e92da312d2c344352180b3dc5c1fc8a
{-|
Module : $Header$
Copyright : (c) Till Mossakowski, Uni Bremen 2002-2004
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : non-portable(Logic)
Central data structure for development graphs.
Follows Sect. IV:4.2 of the CASL Reference Manual.
-}
{-
References:
T. Mossakowski, S. Autexier and D. Hutter:
Extending Development Graphs With Hiding.
H. Hussmann (ed.): Fundamental Approaches to Software Engineering 2001,
Lecture Notes in Computer Science 2029, p. 269-283,
Springer-Verlag 2001.
T. Mossakowski, S. Autexier, D. Hutter, P. Hoffman:
CASL Proof calculus. In: CASL reference manual, part IV.
Available from http://www.cofi.info
todo:
Integrate stuff from Saarbr�cken
Should AS be stored in GloblaContext as well?
-}
module Static.DevGraph where
import Logic.Logic
import Logic.Grothendieck
import Syntax.AS_Library
import Common.GlobalAnnotations
import Common.Lib.Graph as Graph
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Id
import Common.PrettyPrint
import Common.PPUtils
import Common.Result
import Common.Lib.Pretty
-- ??? Some info about the theorems already proved for a node
-- should be added
-- or should it be kept separately?
-- what about open theorems of a node???
data DGNodeLab = DGNode {
dgn_name :: Maybe SIMPLE_ID,
dgn_sign :: G_sign, -- only the delta
dgn_sens :: G_l_sentence_list,
-- or better [(String,G_sentence)] ???
dgn_origin :: DGOrigin
}
| DGRef {
dgn_renamed :: Maybe SIMPLE_ID,
dgn_libname :: LIB_NAME,
dgn_node :: Node
} deriving (Show,Eq)
isDGRef :: DGNodeLab -> Bool
isDGRef (DGNode _ _ _ _) = False
isDGRef (DGRef _ _ _) = True
locallyEmpty :: DGNodeLab -> Bool
locallyEmpty (DGNode _ (G_sign lid sigma) (G_l_sentence_list _ sens) _) =
sigma == empty_signature lid && null sens
locallyEmpty (DGRef _ _ _) = True
data DGLinkLab = DGLink {
-- dgl_name :: String,
-- dgl_src, dgl_tar :: DGNodeLab, -- already in graph structure
dgl_morphism :: GMorphism,
dgl_type :: DGLinkType,
dgl_origin :: DGOrigin }
deriving (Eq,Show)
instance PrettyPrint DGLinkLab where
printText0 ga l = printText0 ga (dgl_morphism l)
<+> ptext (show (dgl_type l))
<+> printText0 ga (dgl_origin l)
data ThmLinkStatus = Open | Proven [DGLinkLab] deriving (Eq, Show)
data DGLinkType = LocalDef
| GlobalDef
| HidingDef
| FreeDef NodeSig -- the "parameter" node
| CofreeDef NodeSig -- the "parameter" node
| LocalThm ThmLinkStatus Conservativity ThmLinkStatus
-- ??? Some more proof information is needed here
-- (proof tree, ...)
| GlobalThm ThmLinkStatus Conservativity ThmLinkStatus
| HidingThm GMorphism ThmLinkStatus
| FreeThm GMorphism Bool
-- DGLink S1 S2 m2 (DGLinkType m1 p) n
-- corresponds to a span of morphisms
-- S1 <--m1-- S --m2--> S2
deriving (Eq,Show)
data Conservativity = None | Cons | Mono | Def
deriving (Eq,Show)
data DGOrigin = DGBasic | DGExtension | DGTranslation | DGUnion | DGHiding
| DGRevealing | DGRevealTranslation | DGFree | DGCofree
| DGLocal | DGClosed | DGClosedLenv
| DGFormalParams | DGImports | DGSpecInst SIMPLE_ID | DGFitSpec
| DGView SIMPLE_ID | DGFitView SIMPLE_ID | DGFitViewImp SIMPLE_ID
| DGFitViewA SIMPLE_ID | DGFitViewAImp SIMPLE_ID | DGProof
deriving (Eq,Show)
type DGraph = Graph DGNodeLab DGLinkLab
data NodeSig = NodeSig (Node,G_sign) | EmptyNode AnyLogic
deriving (Eq,Show)
instance PrettyPrint NodeSig where
printText0 ga (EmptyNode _) = ptext "<empty NodeSig>"
printText0 ga (NodeSig(n,sig)) =
ptext "node" <+> printText0 ga n <> ptext ":" <> printText0 ga sig
getNode (NodeSig (n,sigma)) = Just n
getNode (EmptyNode _) = Nothing
getSig (NodeSig (n,sigma)) = sigma
getSig (EmptyNode (Logic lid)) = G_sign lid (empty_signature lid)
getNodeAndSig (NodeSig (n,sigma)) = Just (n,sigma)
getNodeAndSig (EmptyNode _) = Nothing
getLogic (NodeSig (n,G_sign lid _)) = Logic lid
getLogic (EmptyNode l) = l
-- | Create a node that represents a union of signatures
nodeSigUnion :: LogicGraph -> DGraph -> [NodeSig] -> DGOrigin -> Result (NodeSig, DGraph)
{- TODO: this implementation uses homogenousGsigManyUnion, so requires
that the signatures share common logic. Would it be possible to deduce
a common logic for given signatures based on logic graph? -}
nodeSigUnion lgraph dg nodeSigs orig =
do sigUnion@(G_sign lid _) <- homogeneousGsigManyUnion nullPos (map getSig nodeSigs)
let nodeContents = DGNode {dgn_name = Nothing,
dgn_sign = sigUnion,
dgn_sens = G_l_sentence_list lid [],
dgn_origin = orig }
[node] = newNodes 0 dg
dg' = insNode (node, nodeContents) dg
inslink dgres nsig = do dg <- dgres
case getNode nsig of
Nothing -> return dg
Just n -> do incl <- ginclusion lgraph (getSig nsig) sigUnion
return (insEdge (n, node, DGLink {dgl_morphism = incl,
dgl_type = GlobalDef,
dgl_origin = orig }) dg)
dg'' <- foldl inslink (return dg') nodeSigs
return (NodeSig (node, sigUnion), dg'')
-- | Extend the development graph with given morphism originating
-- from given NodeSig
extendDGraph :: DGraph -- ^ the development graph to be extended
-> NodeSig -- ^ the NodeSig from which the morphism originates
-> GMorphism -- ^ the morphism to be inserted
-> DGOrigin
-> Result (NodeSig, DGraph)
-- ^ returns 1. the target signature of the morphism and 2. the resulting DGraph
extendDGraph _ n@(EmptyNode _) _ _ =
do fatal_error "Trying to add a morphism originating from an empty node" nullPos
extendDGraph dg (NodeSig (n, G_sign lid _)) morph orig =
let targetSig = cod Grothendieck morph
nodeContents = DGNode {dgn_name = Nothing,
dgn_sign = targetSig,
dgn_sens = G_l_sentence_list lid [],
dgn_origin = orig}
linkContents = DGLink {dgl_morphism = morph,
dgl_type = GlobalDef, -- TODO: other type
dgl_origin = orig}
[node] = newNodes 0 dg
dg' = insNode (node, nodeContents) dg
dg'' = insEdge (n, node, linkContents) dg'
in do return (NodeSig (node, targetSig), dg'')
data ExtNodeSig = ExtNodeSig (Node,G_ext_sign) | ExtEmptyNode AnyLogic
deriving (Eq,Show)
instance PrettyPrint ExtNodeSig where
printText0 ga (ExtEmptyNode _) = ptext "<empty NodeSig>"
printText0 ga (ExtNodeSig(n,sig)) =
ptext "node" <+> printText0 ga n <> ptext ":" <> printText0 ga sig
getExtNode (NodeSig (n,sigma)) = Just n
getExtNode (EmptyNode _) = Nothing
getExtSig (ExtNodeSig (n,sigma)) = sigma
getExtSig (ExtEmptyNode (Logic lid)) =
G_ext_sign lid (empty_signature lid) Set.empty
getExtNodeAndSig (ExtNodeSig (n,sigma)) = Just (n,sigma)
getExtNodeAndSig (ExtEmptyNode _) = Nothing
getExtLogic (ExtNodeSig (_,G_ext_sign lid _ _)) = Logic lid
getExtLogic (ExtEmptyNode l) = l
-- import, formal parameters, united signature of formal params, body
type ExtGenSig = (NodeSig,[NodeSig],G_sign,NodeSig)
-- source, morphism, parameterized target
type ExtViewSig = (NodeSig,GMorphism,ExtGenSig)
-- * Types for architectural and unit specification analysis
-- ** Basic types
-- (as defined for basic static semantics in Chap. III:5.1)
type ParUnitSig = ([NodeSig], NodeSig)
data UnitSig = Unit_sig NodeSig
| Par_unit_sig ParUnitSig
deriving (Show, Eq)
emptyUnitSig :: AnyLogic -> UnitSig
emptyUnitSig l = Unit_sig (EmptyNode l)
type ImpUnitSig = (NodeSig, UnitSig)
data ImpUnitSigOrSig = Imp_unit_sig ImpUnitSig
| Sig NodeSig
deriving (Show, Eq)
type StUnitCtx = Map.Map SIMPLE_ID ImpUnitSigOrSig
emptyStUnitCtx :: StUnitCtx
emptyStUnitCtx = Map.empty
-- ** Additional types
-- (as defined for extended static semantics in Chap. III:5.6.1)
data DiagNodeLab = DiagNode { dn_sig :: NodeSig }
deriving Show
emptyDiagNodeLab :: AnyLogic -> DiagNodeLab
emptyDiagNodeLab l = DiagNode { dn_sig = EmptyNode l }
data DiagLinkLab = DiagLink
deriving Show
type BasedParUnitSig = (DiagNodeSig, ParUnitSig)
type Diag = Diagram DiagNodeLab DiagLinkLab
emptyDiag :: Diag
emptyDiag = Graph.empty
data DiagNodeSig = Diag_node_sig Node NodeSig
| Empty_node AnyLogic
deriving Show
emptyDiagNodeSig :: AnyLogic -> DiagNodeSig
emptyDiagNodeSig l = Empty_node l
-- | Return a signature stored within given diagram node sig
getSigFromDiag :: DiagNodeSig -> NodeSig
getSigFromDiag (Diag_node_sig _ ns) = ns
getSigFromDiag (Empty_node l) = EmptyNode l
data BasedUnitSig = Based_unit_sig DiagNodeSig
| Based_par_unit_sig BasedParUnitSig
deriving Show
type StBasedUnitCtx = Map.Map SIMPLE_ID BasedUnitSig
emptyStBasedUnitCtx :: StBasedUnitCtx
emptyStBasedUnitCtx = Map.empty
-- Since Ps and Bs in the definition of ExtStUnitCtx have disjoint domains
-- we can merge them into a single mapping represented by StBasedUnitCtx.
type ExtStUnitCtx = (StBasedUnitCtx, Diag)
emptyExtStUnitCtx :: ExtStUnitCtx
emptyExtStUnitCtx = (emptyStBasedUnitCtx, emptyDiag)
-- | A mapping from extended to basic static unit context
ctx :: ExtStUnitCtx -> StUnitCtx
ctx (buc, _) =
let ctx' [] _ = emptyStUnitCtx
ctx' (id : ids) buc =
let uctx = ctx' ids buc
in case Map.lookup id buc of
Just (Based_unit_sig (Diag_node_sig _ nsig))
-> Map.insert id (Sig nsig) uctx
Just (Based_par_unit_sig ((Diag_node_sig _ nsig), usig))
-> Map.insert id (Imp_unit_sig (nsig, Par_unit_sig usig)) uctx
_ -> uctx -- this should never be the case
in ctx' (Map.keys buc) buc
type ArchSig = (StUnitCtx, UnitSig)
data GlobalEntry = SpecEntry ExtGenSig
| ViewEntry ExtViewSig
| ArchEntry ArchSig
| UnitEntry UnitSig deriving (Show,Eq)
type GlobalEnv = Map.Map SIMPLE_ID GlobalEntry
type GlobalContext = (GlobalAnnos,GlobalEnv,DGraph)
type LibEnv = Map.Map LIB_NAME GlobalContext
emptyLibEnv :: LibEnv
emptyLibEnv = Map.empty
get_dgn_name :: DGNodeLab -> Maybe SIMPLE_ID
get_dgn_name (DGNode (Just name) _ _ _) = Just name
get_dgn_name (DGRef (Just name) _ _) = Just name
get_dgn_name _ = Nothing
instance PrettyPrint DGOrigin where
printText0 _ origin = case origin of
DGBasic -> ptext "basic specification"
DGExtension -> ptext "extension"
DGTranslation -> ptext "translation"
DGUnion -> ptext "union"
DGHiding -> ptext "hiding"
DGRevealing -> ptext "revealing"
DGRevealTranslation -> ptext "translation part of a revealing"
DGFree -> ptext "free specification"
DGCofree -> ptext "cofree specification"
DGLocal -> ptext "local specification"
DGClosed -> ptext "closed specification"
DGClosedLenv -> ptext "closed specification (inclusion of local environment)"
DGFormalParams -> ptext "formal parameters of a generic specification"
DGImports -> ptext "imports of a generic specification"
DGSpecInst n -> ptext ("instantiation of"++showPretty n "")
DGFitSpec -> ptext "fittig specification"
DGView n -> ptext ("view "++showPretty n "")
DGFitView n -> ptext ("fitting view "++showPretty n "")
DGFitViewImp n -> ptext ("fitting view (imports) "++showPretty n "")
DGFitViewA n -> ptext ("fitting view (actual parameters) "++showPretty n "")
DGFitViewAImp n -> ptext ("fitting view (imports and actual parameters) "++showPretty n "")
DGProof -> ptext "constructed within a proof"