ArchDiagram.hs revision 2eeec5240b424984e3ee26296da1eeab6c6d739e
{- |
Module : $Header$
Description : Data types and functions for architectural diagrams
Copyright : (c) Maciek Makowski, Warsaw University 2004-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (Logic)
Data types and functions for architectural diagrams
Follows the CASL Reference Manual, section III.5.6.
-}
module Static.ArchDiagram where
import Logic.Comorphism
import Logic.Logic
import Logic.Grothendieck
import Logic.Coerce
import Data.Graph.Inductive.Graph as Graph
import qualified Common.Lib.Graph as Tree
import qualified Data.Map as Map
import Common.Doc
import Common.DocUtils
import Common.Result
import Common.Id
import Static.DevGraph
-- * Types
-- (as defined for extended static semantics in Chap. III:5.6.1)
data DiagNodeLab = DiagNode { dn_sig :: NodeSig, dn_desc :: String }
deriving Show
data DiagLinkLab = DiagLink { dl_morphism :: GMorphism }
deriving Show
type Diag = Tree.Gr DiagNodeLab DiagLinkLab
emptyDiag :: Diag
emptyDiag = Graph.empty
data DiagNodeSig = Diag_node_sig Node NodeSig
data MaybeDiagNode = JustDiagNode DiagNodeSig | EmptyDiagNode AnyLogic
toMaybeNode :: MaybeDiagNode -> MaybeNode
toMaybeNode mdn = case mdn of
JustDiagNode dns -> JustNode $ getSigFromDiag dns
EmptyDiagNode l -> EmptyNode l
-- | Return a signature stored within given diagram node sig
getSigFromDiag :: DiagNodeSig -> NodeSig
getSigFromDiag (Diag_node_sig _ ns) = ns
data BasedUnitSig = Based_unit_sig DiagNodeSig
| Based_par_unit_sig MaybeDiagNode UnitSig
type StBasedUnitCtx = Map.Map SIMPLE_ID BasedUnitSig
emptyStBasedUnitCtx :: StBasedUnitCtx
emptyStBasedUnitCtx = Map.empty
-- Since Ps and Bs in the definition of ExtStUnitCtx have disjoint domains
-- we can merge them into a single mapping represented by StBasedUnitCtx.
type ExtStUnitCtx = (StBasedUnitCtx, Diag)
emptyExtStUnitCtx :: ExtStUnitCtx
emptyExtStUnitCtx = (emptyStBasedUnitCtx, emptyDiag)
-- Instance
instance Pretty Diag where
pretty diag =
let gs (n, dn) =
(n, getSig $ dn_sig dn)
in text "nodes:"
<+> sepByCommas (map (pretty . gs) $ labNodes diag)
$+$ text "edges:"
<+> ppWithCommas (edges diag)
-- * Functions
-- | return the diagram
printDiag :: a -> String -> Diag -> Result a
printDiag res _ _ = return res
-- | A mapping from extended to basic static unit context
ctx :: ExtStUnitCtx -> StUnitCtx
ctx (buc, _) =
let ctx' [] _ = emptyStUnitCtx
ctx' (id1 : ids) buc0 =
let uctx = ctx' ids buc0
in case Map.lookup id1 buc0 of
Just (Based_unit_sig mds) -> Map.insert id1
(Sig $ getSigFromDiag mds) uctx
Just (Based_par_unit_sig mds usig) -> Map.insert id1
(Imp_unit_sig (toMaybeNode mds) usig) uctx
_ -> uctx -- this should never be the case
in ctx' (Map.keys buc) buc
-- | Insert the edges from given source nodes to given target node
-- into the given diagram. The edges are labelled with inclusions.
insInclusionEdges :: LogicGraph
-> Diag -- ^ the diagram to insert edges to
-> [DiagNodeSig] -- ^ the source nodes
-> DiagNodeSig -- ^ the target node
-> Result Diag -- ^ the diagram with edges inserted
insInclusionEdges lgraph diag0 srcNodes (Diag_node_sig tn tnsig) =
do let inslink diag dns = do
d <- diag
case dns of
Diag_node_sig n nsig -> do
incl <- ginclusion lgraph (getSig nsig) (getSig tnsig)
return $ insEdge (n, tn, DiagLink { dl_morphism = incl }) d
diag' <- foldl inslink (return diag0) srcNodes
return diag'
-- | Insert the edges from given source node to given target nodes
-- into the given diagram. The edges are labelled with inclusions.
insInclusionEdgesRev :: LogicGraph
-> Diag -- ^ the diagram to insert edges to
-> DiagNodeSig -- ^ the source node
-> [DiagNodeSig] -- ^ the target nodes
-> Result Diag -- ^ the diagram with edges inserted
insInclusionEdgesRev lgraph diag0 (Diag_node_sig sn snsig) targetNodes =
do let inslink diag dns = do
d <- diag
case dns of
Diag_node_sig n nsig -> do
incl <- ginclusion lgraph (getSig snsig) (getSig nsig)
return $ insEdge (sn, n, DiagLink { dl_morphism = incl }) d
diag' <- foldl inslink (return diag0) targetNodes
return diag'
{- | Build a diagram that extends given diagram with a node containing
given signature and with edges from given set of nodes to the new
node. The new edges are labelled with sigature inclusions. -}
extendDiagramIncl :: LogicGraph
-> Diag -- ^ the diagram to be extended
-> [DiagNodeSig]
-- ^ the nodes which should be linked to the new node
-> NodeSig
-- ^ the signature with which the new node should be labelled
-> String -- ^ the node description (for diagnostics)
-> Result (DiagNodeSig, Diag)
-- ^ returns the new node and the extended diagram
extendDiagramIncl lgraph diag srcNodes newNodeSig desc =
do let nodeContents = DiagNode {dn_sig = newNodeSig, dn_desc = desc}
node = getNewNode diag
diag' = insNode (node, nodeContents) diag
newDiagNode = Diag_node_sig node newNodeSig
diag'' <- insInclusionEdges lgraph diag' srcNodes newDiagNode
printDiag (newDiagNode, diag'') "extendDiagramIncl" diag''
{- | Build a diagram that extends the given diagram with a node and an
edge to that node. The edge is labelled with a given signature morphism
and the node contains the target of this morphism. Extends the
development graph with the given morphism as well. -}
extendDiagramWithMorphism :: Range -- ^ the position (for diagnostics)
-> LogicGraph
-> Diag -- ^ the diagram to be extended
-> DGraph -- ^ the development graph
-> DiagNodeSig
-- ^ the node from which the edge should originate
-> GMorphism
-- ^ the morphism as label for the new edge
-> String -- ^ the node description (for diagnostics)
-> DGOrigin -- ^ the origin of the new node
-> Result (DiagNodeSig, Diag, DGraph)
-- ^ returns the new node, the extended diagram and extended development graph
extendDiagramWithMorphism pos _ diag dg (Diag_node_sig n nsig) mor desc orig =
if (getSig nsig) == (dom Grothendieck mor) then
do (targetSig, dg') <- extendDGraph dg nsig mor orig
let nodeContents = DiagNode {dn_sig = targetSig, dn_desc = desc}
node = getNewNode diag
diag' = insNode (node, nodeContents) diag
diag'' = insEdge (n, node, DiagLink { dl_morphism = mor }) diag'
printDiag (Diag_node_sig node targetSig, diag'', dg')
"extendDiagramWithMorphism" diag''
else fatal_error
("Internal error: Static.ArchDiagram.extendDiagramWithMorphism:" ++
"\n the morphism domain differs from the signature in given source node")
pos
{- | Build a diagram that extends a given diagram with a node and an
edge from that node. The edge is labelled with a given signature
morphism and the node contains the source of this morphism. Extends
the development graph with the given morphism as well. -}
extendDiagramWithMorphismRev :: Range -- ^ the position (for diagnostics)
-> LogicGraph
-> Diag -- ^ the diagram to be extended
-> DGraph -- ^ the development graph
-> DiagNodeSig
-- ^ the node to which the edge should point
-> GMorphism
-- ^ the morphism as label for the new edge
-> String -- ^ a diagnostic node description
-> DGOrigin -- ^ the origin of the new node
-> Result (DiagNodeSig, Diag, DGraph)
-- ^ returns the new node, the extended diagram and extended development graph
extendDiagramWithMorphismRev pos _ diag dg (Diag_node_sig n nsig)
mor desc orig =
if (getSig nsig) == (cod Grothendieck mor) then
do (sourceSig, dg') <- extendDGraphRev dg nsig mor orig
let nodeContents = DiagNode {dn_sig = sourceSig, dn_desc = desc}
node = getNewNode diag
diag' = insNode (node, nodeContents) diag
diag'' = insEdge (node, n, DiagLink { dl_morphism = mor }) diag'
printDiag (Diag_node_sig node sourceSig, diag'', dg')
"extendDiagramWithMorphismRev" diag''
else fatal_error
("Internal error: Static.ArchDiagram.extendDiagramWithMorphismRev:\n" ++
" the morphism codomain differs from the signature in given target node")
pos
{- | Build a diagram that extends given diagram with a node containing
given signature and with edge from given nodes to the new node. The
new edge is labelled with given signature morphism. -}
extendDiagram :: Diag -- ^ the diagram to be extended
-> DiagNodeSig -- ^ the node from which morphism originates
-> GMorphism -- ^ the morphism as label for the new edge
-> NodeSig -- ^ the signature as label for the new node
-> String -- ^ the node description (for diagnostics)
-> Result (DiagNodeSig, Diag)
-- ^ returns the new node and the extended diagram
extendDiagram diag (Diag_node_sig n _) edgeMorph newNodeSig desc =
do let nodeContents = DiagNode {dn_sig = newNodeSig, dn_desc = desc}
node = getNewNode diag
diag' = insNode (node, nodeContents) diag
diag'' = insEdge (n, node, DiagLink { dl_morphism = edgeMorph }) diag'
newDiagNode = Diag_node_sig node newNodeSig
printDiag (newDiagNode, diag'') "extendDiagram" diag''
{- | Convert a homogeneous diagram to a simple diagram where all the
signatures in nodes and morphism on the edges are coerced to a common
logic. -}
homogeniseDiagram :: Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree
=> lid -- ^ the target logic to be coerced to
-> Diag -- ^ the diagram to be homogenised
-> Result (Tree.Gr sign morphism)
{- The implementation relies on the representation of graph nodes as
integers. We can therefore just obtain a list of all the labelled
nodes from diag, convert all the nodes and insert them to a new
diagram; then copy all the edges from the original to new diagram
(coercing the morphisms). -}
homogeniseDiagram targetLid diag =
do let convertNode (n, dn) =
do G_sign srcLid sig _ <- return $ getSig $ dn_sig dn
sig' <- coerceSign srcLid targetLid "" sig
return (n, sig')
convertEdge (n1, n2, DiagLink { dl_morphism =
GMorphism cid _ _ mor _})
= if isIdComorphism (Comorphism cid) then
do mor' <- coerceMorphism (targetLogic cid) targetLid "" mor
return (n1, n2, mor')
else fail $
"Trying to coerce a morphism between different logics.\n" ++
"Heterogeneous specifications are not fully supported yet."
convertNodes cDiag [] = do return cDiag
convertNodes cDiag (lNode : lNodes) =
do convNode <- convertNode lNode
let cDiag' = insNode convNode cDiag
convertNodes cDiag' lNodes
convertEdges cDiag [] = do return cDiag
convertEdges cDiag (lEdge : lEdges) =
do convEdge <- convertEdge lEdge
let cDiag' = insEdge convEdge cDiag
convertEdges cDiag' lEdges
dNodes = labNodes diag
dEdges = labEdges diag
-- insert converted nodes to an empty diagram
cDiag <- convertNodes Graph.empty dNodes
-- insert converted edges to the diagram containing only nodes
cDiag' <- convertEdges cDiag dEdges
return cDiag'
-- | Coerce GMorphisms in the list of (diagram node, GMorphism) pairs
-- to morphisms in given logic
homogeniseSink :: Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree
=> lid -- ^ the target logic to which morphisms will be coerced
-> [(Node, GMorphism)] -- ^ the list of edges to be homogenised
-> Result [(Node, morphism)]
homogeniseSink targetLid dEdges =
-- See homogeniseDiagram for comments on implementation.
do let convertMorphism (n, GMorphism cid _ _ mor _) =
if isIdComorphism (Comorphism cid) then
do mor' <- coerceMorphism (targetLogic cid) targetLid "" mor
return (n, mor')
else fail $
"Trying to coerce a morphism between different logics.\n" ++
"Heterogeneous specifications are not fully supported yet."
convEdges [] = do return []
convEdges (e : es) = do ce <- convertMorphism e
ces <- convEdges es
return (ce : ces)
convEdges dEdges
-- | Create a graph containing descriptions of nodes and edges.
diagDesc :: Diag
-> Tree.Gr String String
diagDesc diag =
let insNodeDesc g (n, DiagNode { dn_desc = desc }) =
if desc == "" then g else insNode (n, desc) g
in foldl insNodeDesc Graph.empty (labNodes diag)
-- | Create a sink consisting of incusion morphisms between
-- signatures from given set of nodes and given signature.
inclusionSink :: LogicGraph
-> [DiagNodeSig] -- ^ the source nodes
-> NodeSig -- ^ the target signature
-> Result [(Node, GMorphism)]
-- ^ returns the diagram with edges inserted
inclusionSink lgraph srcNodes tnsig =
do let insmorph ls dns = do
l <- ls
case dns of
Diag_node_sig n nsig -> do
incl <- ginclusion lgraph (getSig nsig) (getSig tnsig)
return ((n, incl): l)
sink <- foldl insmorph (return []) srcNodes
return sink