AnalysisStructured.hs revision 9192fdd8f0e682ac0f0183dd854d5210fbfa4ec5
{- |
Module : $Header$
Description : static analysis of heterogeneous structured specifications
Copyright : (c) Till Mossakowski and Uni Bremen 2003-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (imports Logic.Grothendieck)
Static analysis of CASL (heterogeneous) structured specifications
Follows the verfication semantic rules in Chap. IV:4.7
of the CASL Reference Manual.
-}
module Static.AnalysisStructured
( ana_SPEC
, isStructured
, ana_RENAMING
, ana_RESTRICTION
, homogenizeGM
, ana_Gmaps
, insGSig
, insLink
, extendMorphism
) where
import Driver.Options
import Logic.Logic
import Logic.ExtSign
import Logic.Coerce
import Logic.Comorphism
import Logic.Grothendieck
import Logic.Prover
import Static.DevGraph
import Static.GTheory
import Syntax.AS_Structured
import Common.Result
import Common.Id
import Common.ExtSign
import Common.AS_Annotation hiding (isAxiom, isDef)
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Common.Lib.Rel as Rel(image, setInsert)
import Data.Graph.Inductive.Graph as Graph (Node)
import Common.DocUtils
import Data.Maybe
import Data.List (find)
import Control.Monad
coerceMaybeNode :: LogicGraph -> DGraph -> MaybeNode -> NodeName -> AnyLogic
-> Result (MaybeNode, DGraph)
coerceMaybeNode lg dg mn nn l2 = case mn of
EmptyNode _ -> return (EmptyNode l2, dg)
JustNode ns -> do
(ms, dg2) <- coerceNode lg dg ns nn l2
return (JustNode ms, dg2)
coerceNode :: LogicGraph -> DGraph -> NodeSig -> NodeName -> AnyLogic
-> Result (NodeSig, DGraph)
coerceNode lg dg ns@(NodeSig n s@(G_sign lid1 _ _)) nn l2@(Logic lid2) =
if language_name lid1 == language_name lid2 then return (ns, dg)
else do
c <- logicInclusion lg (Logic lid1) l2
gmor <- gEmbedComorphism c s
case find (\ (_, _, l) -> dgl_origin l == SeeTarget
&& dgl_type l == globalDef
&& dgl_morphism l == gmor) $ outDG dg n of
Nothing -> do
let (ms@(NodeSig m _), dg2) =
insGSig dg (inc nn) DGTranslation $ cod gmor
dg3 = insLink dg2 gmor globalDef SeeTarget n m
return (ms, dg3)
Just (_, t, _) ->
return (NodeSig t $ signOf $ dgn_theory $ labDG dg t, dg)
insGTheory :: DGraph -> NodeName -> DGOrigin -> G_theory -> (NodeSig, DGraph)
insGTheory dg name orig (G_theory lid sig ind sens tind) =
let (sgMap, s) = sigMapI dg
(tMap, t) = thMapI dg
nind = if ind == startSigId then succ s else ind
tb = tind == startThId && not (Map.null sens)
ntind = if tb then succ t else tind
nsig = G_sign lid sig nind
nth = G_theory lid sig nind sens ntind
node_contents = newNodeLab name orig nth
node = getNewNodeDG dg
in (NodeSig node nsig,
(if tb then setThMapDG $ Map.insert (succ t) nth tMap else id) $
(if ind == startSigId
then setSigMapDG $ Map.insert (succ s) nsig sgMap else id)
$ insNodeDG (node, node_contents) dg)
insGSig :: DGraph -> NodeName -> DGOrigin -> G_sign -> (NodeSig, DGraph)
insGSig dg name orig (G_sign lid sig ind) =
insGTheory dg name orig $ noSensGTheory lid sig ind
insLink :: DGraph -> GMorphism -> DGLinkType -> DGLinkOrigin -> Node -> Node
-> DGraph
insLink dg (GMorphism cid sign si mor mi) ty orig n t =
let (sgMap, s) = sigMapI dg
(mrMap, m) = morMapI dg
nsi = if si == startSigId then succ s else si
nmi = if mi == startMorId then succ m else mi
nmor = GMorphism cid sign nsi mor nmi
link = DGLink
{ dgl_morphism = nmor
, dgl_type = ty
, dgl_origin = orig
, dgl_id = defaultEdgeId }
in (if mi == startMorId then setMorMapDG $ Map.insert (succ m)
(toG_morphism nmor) mrMap else id) $
(if si == startSigId then setSigMapDG $ Map.insert (succ s)
(G_sign (sourceLogic cid) sign nsi) sgMap else id)
$ insLEdgeNubDG (n, t, link) dg
-- | analyze a SPEC
-- first Parameter determines if incoming symbols shall be ignored
-- options: here we need the info: shall only the structure be analysed?
ana_SPEC :: Bool -> LogicGraph -> DGraph -> MaybeNode -> NodeName ->
HetcatsOpts -> SPEC -> Result (SPEC, NodeSig, DGraph)
ana_SPEC addSyms lg dg nsig name opts sp = case sp of
Basic_spec (G_basic_spec lid bspec) pos ->
do let adj = adjustPos pos
curLogic = Logic lid
(nsig', dg0) <- coerceMaybeNode lg dg nsig name curLogic
G_sign lid' sigma' _ <- return $ case nsig' of
EmptyNode cl -> emptyG_sign cl
JustNode ns -> getSig ns
ExtSign sig sys <-
adj $ coerceSign lid' lid "Analysis of basic spec" sigma'
(bspec', ExtSign sigma_complete sysd, ax) <- adj $
if isStructured opts
then return (bspec, mkExtSign $ empty_signature lid, [])
else do
b <- maybeToMonad
("no basic analysis for logic " ++ language_name lid)
(basic_analysis lid)
b (bspec, sig, globalAnnos dg0)
let (ns@(NodeSig node gsig), dg') = insGTheory dg0 name DGBasic
$ G_theory lid (ExtSign sigma_complete
$ Set.intersection
(if addSyms then Set.union sys sysd else sysd)
$ sym_of lid sigma_complete) startSigId (toThSens ax) startThId
dg'' <- case nsig' of
EmptyNode _ -> return dg'
JustNode jn@(NodeSig n _) -> do
incl <- adj $ ginclusion lg (getSig jn) gsig
return $ insLink dg' incl globalDef DGLinkExtension n node
return (Basic_spec (G_basic_spec lid bspec') pos, ns, dg'')
EmptySpec pos -> case nsig of
EmptyNode _ -> do
warning () "empty spec" pos
let (ns, dg') = insGSig dg name DGEmpty (getMaybeSig nsig)
return (sp, ns, dg')
{- ana_SPEC should be changed to return a MaybeNode!
Then this duplicate dummy node could be avoided.
Also empty unions could be treated then -}
JustNode ns -> return (sp, ns ,dg)
Translation asp ren ->
do let sp1 = item asp
(sp1', NodeSig n' gsigma, dg') <-
ana_SPEC addSyms lg dg nsig (inc name) opts sp1
mor <- ana_RENAMING lg nsig gsigma opts ren
-- ??? check that mor is identity on local env
let (ns@(NodeSig node _), dg'') =
insGSig dg' name DGTranslation $ cod mor
-- ??? too simplistic for non-comorphism inter-logic translations
return (Translation (replaceAnnoted sp1' asp) ren, ns,
insLink dg'' mor globalDef SeeTarget n' node)
Reduction asp restr ->
do let sp1 = item asp
(sp1', NodeSig n' gsigma', dg') <-
ana_SPEC addSyms lg dg nsig (inc name) opts sp1
let gsigma = getMaybeSig nsig
(hmor, tmor) <- ana_RESTRICTION gsigma gsigma' opts restr
-- we treat hiding and revealing differently
-- in order to keep the dg as simple as possible
case tmor of
Nothing ->
do let (ns@(NodeSig node _), dg'') =
insGSig dg' name DGHiding $ dom hmor
-- ??? too simplistic for non-comorphism inter-logic reductions
return (Reduction (replaceAnnoted sp1' asp) restr, ns,
insLink dg'' hmor HidingDefLink SeeTarget n' node)
Just tmor' -> do
let gsigma1 = dom tmor'
gsigma'' = cod tmor'
-- ??? too simplistic for non-comorphism inter-logic reductions
-- the case with identity translation leads to a simpler dg
if tmor' == ide (dom tmor')
then do
let (ns@(NodeSig node1 _), dg'') =
insGSig dg' name DGRevealing gsigma1
return (Reduction (replaceAnnoted sp1' asp) restr, ns,
insLink dg'' hmor HidingDefLink SeeTarget n' node1)
else do
let (NodeSig node1 _, dg'') =
insGSig dg' (extName "T" name) DGRevealing gsigma1
(ns@(NodeSig node2 _), dg3) =
insGSig dg'' name DGRevealTranslation gsigma''
dg4 = insLink dg3 hmor HidingDefLink SeeTarget n' node1
return (Reduction (replaceAnnoted sp1' asp) restr, ns,
insLink dg4 tmor' globalDef SeeTarget node1 node2)
Union [] pos -> adjustPos pos $ fail $ "empty union"
Union asps pos ->
do let sps = map item asps
(sps', nsigs, dg', _) <-
let ana (sps1, nsigs, dg', n) sp' = do
(sp1, nsig', dg1) <- ana_SPEC addSyms lg dg' nsig n opts sp'
return (sp1 : sps1, nsig' : nsigs, dg1, inc n)
in foldM ana ([], [], dg, extName "U" name) sps
let nsigs' = reverse nsigs
adj = adjustPos pos
gbigSigma <- adj $ gsigManyUnion lg (map getSig nsigs')
let (ns@(NodeSig node _), dg2) = insGSig dg' name DGUnion gbigSigma
insE dgl (NodeSig n gsigma) = do
incl <- adj $ ginclusion lg gsigma gbigSigma
return $ insLink dgl incl globalDef SeeTarget n node
dg3 <- foldM insE dg2 nsigs'
return (Union (map (uncurry replaceAnnoted)
(zip (reverse sps') asps))
pos, ns, dg3)
Extension asps pos -> do
(sps', nsig1', dg1, _, _, _, _) <-
foldM ana_Extension ([], nsig, dg, lg, opts, pos, addSyms) namedSps
case nsig1' of
EmptyNode _ -> fail "empty extension"
JustNode nsig1 -> return (Extension (map (uncurry replaceAnnoted)
(zip (reverse sps') asps))
pos, nsig1,dg1)
where
namedSps = zip (reverse (name: tail (take (length asps)
(iterate inc (extName "E" name)))))
asps
Free_spec asp poss -> do
(nasp, nsig', dg') <- anaPlainSpec addSyms lg opts dg nsig name DGFree
(FreeOrCofreeDefLink Free nsig) asp poss
return (Free_spec nasp poss, nsig', dg')
Cofree_spec asp poss -> do
(nasp, nsig', dg') <- anaPlainSpec addSyms lg opts dg nsig name DGCofree
(FreeOrCofreeDefLink Cofree nsig) asp poss
return (Cofree_spec nasp poss, nsig', dg')
Local_spec asp asp' poss ->
do let sp1 = item asp
sp1' = item asp'
adj = adjustPos poss
(sp2, nsig'@(NodeSig _ (G_sign lid' sigma' _)), dg') <-
ana_SPEC False lg dg nsig (extName "L" name) opts sp1
(sp2', NodeSig n'' (G_sign lid'' sigma'' _), dg'') <-
ana_SPEC False lg dg' (JustNode nsig') (inc name) opts sp1'
let gsigma = getMaybeSig nsig
G_sign lid sigma _ <- return gsigma
sigma1 <- adj $ coerceSign lid' lid "Analysis of local spec" sigma'
sigma2 <- adj $ coerceSign lid'' lid "Analysis of local spec" sigma''
let sys = ext_sym_of lid sigma
sys1 = ext_sym_of lid sigma1
sys2 = ext_sym_of lid sigma2
mor3 <- if isStructured opts then return (ext_ide sigma2)
else adj $ ext_cogenerated_sign lid
(sys1 `Set.difference` sys) sigma2
let sigma3 = dom mor3
-- gsigma2 = G_sign lid sigma2
gsigma3 = G_sign lid (makeExtSign lid sigma3) startSigId
sys3 = sym_of lid sigma3
when (not( isStructured opts ||
sys2 `Set.difference` sys1 `Set.isSubsetOf` sys3))
$ plain_error () (
"illegal use of locally declared symbols: "
++ showDoc ((sys2 `Set.intersection` sys1) `Set.difference` sys3) "")
poss
let (ns@(NodeSig node _), dg2) = insGSig dg'' name DGLocal gsigma3
return (Local_spec (replaceAnnoted sp2 asp)
(replaceAnnoted sp2' asp')
poss, ns,
insLink dg2 (gEmbed2 gsigma3 $ mkG_morphism lid mor3)
HidingDefLink SeeTarget n'' node)
Closed_spec asp pos ->
do let sp1 = item asp
l = getLogic nsig
-- analyse spec with empty local env
(sp', NodeSig n' gsigma', dg') <-
ana_SPEC False lg dg (EmptyNode l) (inc name) opts sp1
let gsigma = getMaybeSig nsig
adj = adjustPos pos
gsigma'' <- adj $ gsigUnion lg gsigma gsigma'
let (ns@(NodeSig node gsigma2), dg2) = insGSig dg' name DGClosed gsigma''
incl1 <- adj $ ginclusion lg gsigma gsigma2
incl2 <- adj $ ginclusion lg gsigma' gsigma2
let dg3 = insLink dg2 incl2 globalDef SeeTarget n' node
return (Closed_spec (replaceAnnoted sp' asp) pos, ns, case nsig of
EmptyNode _ -> dg3
JustNode (NodeSig n _) ->
insLink dg3 incl1 globalDef DGLinkClosedLenv n node)
Qualified_spec lognm@(Logic_name ln _) asp pos -> do
let newLG = lg { currentLogic = tokStr ln }
l <- lookupCurrentLogic "Qualified_spec" newLG
let newNSig = case nsig of
EmptyNode _ -> EmptyNode l
_ -> nsig
(nasp, nsig', dg') <-
anaPlainSpec addSyms lg opts dg newNSig name DGLogicQual globalDef
asp pos
return (Qualified_spec lognm nasp pos, nsig', dg')
Group asp pos -> do
(sp', nsig', dg') <- ana_SPEC addSyms lg dg nsig name opts (item asp)
return (Group (replaceAnnoted sp' asp) pos, nsig', dg')
Spec_inst spname afitargs pos0 -> let
pos = if null afitargs then tokPos spname else pos0
adj = adjustPos pos
spstr = tokStr spname
in case lookupGlobalEnvDG spname dg of
Just (SpecEntry gs@(ExtGenSig imps params _ body@(NodeSig nB gsigmaB))) ->
case (\ x y -> (x , x - y)) (length afitargs) (length params) of
-- the case without parameters leads to a simpler dg
(0, 0) -> do
case nsig of
EmptyNode _ ->
-- if the node shall not be named and the logic does not change,
if isInternal name
-- then just return the body
then return (sp, body, dg)
-- otherwise, we need to create a new one
else do
let (fsig@(NodeSig node gsigma'), dg2) =
insGSig dg name (DGSpecInst spname) gsigmaB
incl <- adj $ ginclusion lg gsigmaB gsigma'
return (sp, fsig, insLink dg2 incl globalDef SeeTarget nB node)
JustNode (NodeSig n sigma) -> do
gsigma <- adj $ gsigUnion lg sigma gsigmaB
let (fsig@(NodeSig node gsigma'), dg2) =
insGSig dg name (DGSpecInst spname) gsigma
incl <- adj $ ginclusion lg gsigmaB gsigma'
let dg3 = insLink dg2 incl globalDef SeeTarget nB node
incl2 <- adj $ ginclusion lg sigma gsigma'
return (sp, fsig,
insLink dg3 incl2 globalDef SeeTarget n node)
-- now the case with parameters
(_, 0) -> do
let fitargs = map item afitargs
(fitargs', dg', args, _) <- adj $ foldM (anaFitArg lg opts spname imps)
([], dg, [], extName "A" name) (zip params fitargs)
let actualargs = reverse args
(gsigma', morDelta@(GMorphism cid _ _ _ _)) <-
adj $ apply_GS lg gs actualargs
gsigmaRes <- case nsig of
EmptyNode _ -> return gsigma'
JustNode (NodeSig _ sigma) -> adj $ gsigUnion lg sigma gsigma'
let (ns@(NodeSig node gsigmaRes'), dg2) =
insGSig dg' name (DGSpecInst spname) gsigmaRes
dg3 <- foldM (parLink lg DGLinkFitSpec gsigmaRes' node) dg2
$ map snd args
morDelta' <- case nsig of
EmptyNode _ -> return morDelta
_ -> do
incl2 <- adj $ ginclusion lg gsigma' gsigmaRes'
comp morDelta incl2
(_, imor) <- gSigCoerce lg gsigmaB $ Logic $ sourceLogic cid
tmor <- gEmbedComorphism imor gsigmaB
morDelta'' <- comp tmor morDelta'
let dg4 = insLink dg3 morDelta'' globalDef SeeTarget nB node
dg5 <- case nsig of
EmptyNode _ -> return dg4
JustNode (NodeSig n sigma) -> do
incl1 <- adj $ ginclusion lg sigma gsigmaRes'
return $ insLink dg4 incl1 globalDef SeeTarget n node
return (Spec_inst spname
(map (uncurry replaceAnnoted)
(zip (reverse fitargs') afitargs))
pos, ns, dg5)
-- finally the case with conflicting numbers of formal and actual parameters
_ ->
fatal_error
(spstr ++ " expects " ++ show (length params) ++ " arguments"
++ " but was given " ++ show (length afitargs)) pos
_ -> fatal_error
("Structured specification " ++ spstr ++ " not found") pos
-- analyse "data SPEC1 SPEC2"
Data (Logic lidD) (Logic lidP) asp1 asp2 pos -> do
let sp1 = item asp1
sp2 = item asp2
adj = adjustPos pos
-- look for the inclusion comorphism from the current logic's data logic
-- into the current logic itself
Comorphism cid <- adj $ logicInclusion lg (Logic lidD) (Logic lidP)
let lidD' = sourceLogic cid
lidP' = targetLogic cid
dname = inc name
-- analyse SPEC1
(sp1', NodeSig n' (G_sign lid' sigma' _), dg') <-
ana_SPEC False lg dg (EmptyNode (Logic lidD)) dname opts sp1
-- force the result to be in the data logic
sigmaD <- adj $ coerceSign lid' lidD' "Analysis of data spec" sigma'
-- translate SPEC1's signature along the comorphism
(sigmaD', sensD') <- adj $ ext_map_sign cid sigmaD
-- create a development graph link for this translation
let (nsig2@(NodeSig node _), dg1) = insGTheory dg' dname DGData
$ G_theory lidP' sigmaD' startSigId (toThSens sensD') startThId
dg2 = insLink dg1 (GMorphism cid sigmaD startSigId
(ext_ide sigmaD') startMorId)
globalDef SeeTarget n' node
-- analyse SPEC2
(sp2', nsig3, dg3) <-
ana_SPEC addSyms lg dg2 (JustNode nsig2) name opts sp2
return (Data (Logic lidD) (Logic lidP)
(replaceAnnoted sp1' asp1)
(replaceAnnoted sp2' asp2)
pos, nsig3, dg3)
anaPlainSpec :: Bool -> LogicGraph -> HetcatsOpts -> DGraph -> MaybeNode
-> NodeName -> DGOrigin -> DGLinkType -> Annoted SPEC -> Range
-> Result (Annoted SPEC, NodeSig, DGraph)
anaPlainSpec addSyms lg opts dg nsig name orig dglType asp pos = do
(sp', NodeSig n' gsigma, dg') <-
ana_SPEC addSyms lg dg nsig (inc name) opts $ item asp
let (ns@(NodeSig node gsigma'), dg2) = insGSig dg' name orig gsigma
incl <- adjustPos pos $ ginclusion lg (getMaybeSig nsig) gsigma'
return (replaceAnnoted sp' asp, ns,
insLink dg2 incl dglType SeeTarget n' node)
anaFitArg :: LogicGraph -> HetcatsOpts -> SPEC_NAME -> MaybeNode
-> ([FIT_ARG], DGraph, [(G_morphism, NodeSig)], NodeName)
-> (NodeSig, FIT_ARG)
-> Result ([FIT_ARG], DGraph, [(G_morphism, NodeSig)], NodeName)
anaFitArg lg opts spname imps (fas', dg1, args, name') (nsig', fa) = do
(fa', dg', arg) <- ana_FIT_ARG lg dg1 spname imps nsig' opts name' fa
return (fa' : fas', dg', arg : args , inc name')
parLink :: LogicGraph -> DGLinkOrigin -> G_sign -> Node -> DGraph -> NodeSig
-> Result DGraph
parLink lg orig gsigma' node dg (NodeSig nA_i sigA_i)= do
incl <- ginclusion lg sigA_i gsigma'
return $ insLink dg incl globalDef orig nA_i node
-- analysis of renamings
ana_ren :: LogicGraph -> HetcatsOpts -> MaybeNode -> Range -> GMorphism
-> G_mapping -> Result GMorphism
ana_ren lg opts lenv pos gmor@(GMorphism r sigma ind1 mor _) gmap =
let adj = adjustPos pos in case gmap of
G_symb_map (G_symb_map_items_list lid sis) ->
let lid2 = targetLogic r in
adj $ if language_name lid2 == language_name lid then
if isStructured opts then return gmor else do
sis1 <- coerceSymbMapItemsList lid lid2 "Analysis of renaming" sis
rmap <- stat_symb_map_items lid2 sis1
mor1 <- induced_from_morphism lid2 rmap (cod mor)
case lenv of
EmptyNode _ -> return ()
JustNode (NodeSig _ (G_sign lidLenv sigmaLenv _)) -> do
-- needs to be changed for logic translations
sigmaLenv' <- adj $ coerceSign lidLenv lid2
"Analysis of renaming: logic translations not properly handeled"
sigmaLenv -- see Calculi/Time/FlowOfTime.casl line 305
let sysLenv = ext_sym_of lid2 sigmaLenv'
m = symmap_of lid2 mor1
isChanged sy = case Map.lookup sy m of
Just sy' -> sy /= sy'
Nothing -> False
forbiddenSys = Set.filter isChanged sysLenv
when (not $ Set.null forbiddenSys) $ plain_error () (
"attempt to rename the following symbols from " ++
"the local environment:\n" ++ showDoc forbiddenSys "") pos
mor2 <- adj $ comp mor mor1
return $ GMorphism r sigma ind1 mor2 startMorId
else do
comor <- logicInclusion lg (Logic lid2) (Logic lid)
gmorTrans <- gEmbedComorphism comor $ cod gmor
newMor <- comp gmor gmorTrans
ana_ren lg opts lenv pos newMor gmap
G_logic_translation (Logic_code tok src tar pos1) ->
let adj1 = adjustPos $ if pos1 == nullRange then pos else pos1
in adj1 $ do
G_sign srcLid srcSig ind <- return (cod gmor)
c <- case tok of
Just ctok -> do
let getLogicStr (Logic_name l _) = tokStr l
Comorphism cid <- lookupComorphism (tokStr ctok) lg
when (isJust src && getLogicStr (fromJust src) /=
language_name (sourceLogic cid))
(fail (getLogicStr (fromJust src) ++
"is not the source logic of "
++ language_name cid))
when (isJust tar && getLogicStr (fromJust tar) /=
language_name (targetLogic cid))
(fail (getLogicStr (fromJust tar) ++
"is not the target logic of "
++ language_name cid))
return (Comorphism cid)
Nothing -> case tar of
Just (Logic_name l _) -> do
tarL <- lookupLogic "with logic: " (tokStr l) lg
logicInclusion lg (Logic srcLid) tarL
Nothing -> fail "with logic: cannot determine comorphism"
mor1 <- gEmbedComorphism c (G_sign srcLid srcSig ind)
comp gmor mor1
ana_RENAMING :: LogicGraph -> MaybeNode -> G_sign -> HetcatsOpts -> RENAMING
-> Result GMorphism
ana_RENAMING lg lenv gSigma opts (Renaming ren pos) =
foldM (ana_ren lg opts lenv pos) (ide gSigma) ren
-- analysis of restrictions
ana_restr :: G_sign -> Range -> GMorphism -> G_hiding -> Result GMorphism
ana_restr (G_sign lidLenv sigmaLenv _) pos
(GMorphism cid (ExtSign sigma1 sys1) _ mor _) gh =
case gh of
G_symb_list (G_symb_items_list lid' sis') -> do
let lid1 = sourceLogic cid
sis1 <- coerceSymbItemsList lid' lid1 "Analysis of restriction" sis'
rsys <- stat_symb_items lid1 sis1
let sys = sym_of lid1 sigma1
sys' = Set.filter (\ sy -> any (matches lid1 sy) rsys) sys
unmatched = filter ( \ rsy -> Set.null $ Set.filter
( \ sy -> matches lid1 sy rsy) sys') rsys
when (not $ null unmatched)
$ plain_error () ("attempt to hide unknown symbols:\n"
++ showDoc unmatched "") pos
-- needs to be changed when logic projections are implemented
sigmaLenv' <- coerceSign lidLenv lid1
"Analysis of restriction: logic projections not properly handeled"
sigmaLenv
let sysLenv = ext_sym_of lid1 sigmaLenv'
forbiddenSys = sys' `Set.intersection` sysLenv
when (not $ Set.null forbiddenSys)
$ plain_error () (
"attempt to hide the following symbols from the local environment:\n"
++ showDoc forbiddenSys "") pos
mor1 <- cogenerated_sign lid1 sys' sigma1
mor1' <- map_morphism cid mor1
mor2 <- comp mor1' mor
return $ GMorphism cid (ExtSign (dom mor1) $ Set.fold (\ sy ->
case Map.lookup sy $ symmap_of lid1 mor1 of
Nothing -> id
Just sy1 -> Set.insert sy1) Set.empty sys1)
startSigId mor2 startMorId
G_logic_projection (Logic_code _tok _src _tar pos1) ->
fatal_error "no analysis of logic projections yet" pos1
ana_RESTRICTION :: G_sign -> G_sign -> HetcatsOpts -> RESTRICTION
-> Result (GMorphism, Maybe GMorphism)
ana_RESTRICTION gSigma@(G_sign lid sigma _)
gSigma'@(G_sign lid' sigma' _) opts restr =
if isStructured opts then return (ide gSigma, Nothing) else
case restr of
Hidden rstr pos -> do
mor <- foldM (ana_restr gSigma pos) (ide gSigma') rstr
return (mor, Nothing)
Revealed (G_symb_map_items_list lid1 sis) pos -> do
let sys = ext_sym_of lid sigma -- local env
sys' = ext_sym_of lid' sigma' -- "big" signature
adj = adjustPos pos
sis' <- adj $ coerceSymbMapItemsList lid1 lid'
"Analysis of restriction" sis
rmap <- adj $ stat_symb_map_items lid' sis'
let sys'' =
Set.fromList
[sy | sy <- Set.toList sys', rsy <-
Map.keys rmap, matches lid' sy rsy]
-- domain of rmap intersected with sys'
-- domain of rmap should be checked to match symbols from sys' ???
sys1 <- adj $ coerceSymbolSet lid lid' "Analysis of restriction" sys
-- ??? this is too simple in case that local env is translated
-- to a different logic
mor1 <- adj $ ext_generated_sign lid' (sys1 `Set.union` sys'') sigma'
mor2 <- adj $ induced_from_morphism lid' rmap (dom mor1)
return (gEmbed (mkG_morphism lid' mor1),
Just (gEmbed (mkG_morphism lid' mor2)))
ana_Gmaps :: LogicGraph -> HetcatsOpts -> Range
-> G_sign -> G_sign -> [G_mapping] -> Result G_morphism
ana_Gmaps lg opts pos psig@(G_sign lidP sigmaP _) (G_sign lidA sigmaA _) gsis
= do
let adj = adjustPos pos
adj $ if isStructured opts
then return $ mkG_morphism lidP $ ext_ide sigmaP
else if null gsis then do
sigmaA' <- adj $ coerceSign lidA lidP "ana_Gmaps" sigmaA
fmap (mkG_morphism lidP) $
ext_induced_from_to_morphism lidP Map.empty sigmaP sigmaA'
else do
cl <- lookupCurrentLogic "ana_Gmaps" lg
G_symb_map_items_list lid sis <- homogenizeGM cl gsis
rmap <- stat_symb_map_items lid sis
let noMatch sig r = Set.null $ Set.filter
(\ s -> matches lid s r) $ ext_sym_of lid sig
(G_sign lidP' sigmaP'' _, _) <- adj $ gSigCoerce lg psig (Logic lid)
sigmaP' <- adj $ coerceSign lidP' lid "ana_Gmaps1" sigmaP''
sigmaA' <- adj $ coerceSign lidA lid "ana_Gmaps2" sigmaA
let unknowns = filter (noMatch sigmaP') (Map.keys rmap)
++ filter (noMatch sigmaA') (Map.elems rmap)
if null unknowns then fmap (mkG_morphism lid)
$ ext_induced_from_to_morphism lid rmap sigmaP' sigmaA'
else fatal_error ("unknown symbols " ++ showDoc unknowns "") pos
{-
let symI = sym_of lidP sigmaI'
symmap_mor = symmap_of lidP mor
-- are symbols of the imports left untouched?
if Set.all (\sy -> lookupFM symmap_mor sy == Just sy) symI
then return ()
else plain_error () "Fitting morphism must not affect import" pos
-} -- ??? does not work
-- ??? also output some symbol that is affected
ana_FIT_ARG :: LogicGraph -> DGraph -> SPEC_NAME -> MaybeNode
-> NodeSig -> HetcatsOpts -> NodeName -> FIT_ARG
-> Result (FIT_ARG, DGraph, (G_morphism,NodeSig))
ana_FIT_ARG lg dg spname nsigI (NodeSig nP gsigmaP) opts name fv = case fv of
Fit_spec asp gsis pos -> do
(sp', nsigA@(NodeSig nA gsigA), dg') <-
ana_SPEC False lg dg nsigI name opts (item asp)
gmor <- ana_Gmaps lg opts pos gsigmaP gsigA gsis
return (Fit_spec (replaceAnnoted sp' asp) gsis pos,
insLink dg' (gEmbed gmor) globalThm
(DGLinkSpecInst spname) nP nA, (gmor, nsigA))
Fit_view vn afitargs pos -> let
adj = adjustPos pos
spstr = tokStr spname
in case lookupGlobalEnvDG vn dg of
Just (ViewEntry (ExtViewSig src mor gs@(ExtGenSig imps params _ target)))
-> do
let nSrc = getNode src
nTar = getNode target
gsigmaS = getSig src
gsigmaT = getSig target
gsigmaI = getMaybeSig nsigI
GMorphism cid _ _ morHom ind <- return mor
let lid = targetLogic cid
case (\ x y -> (x, x - y)) (length afitargs) (length params) of
-- the case without parameters leads to a simpler dg
(0, 0) -> case nsigI of
-- the subcase with empty import leads to a simpler dg
EmptyNode _ -> do
gmor <- ginclusion lg gsigmaP gsigmaS
return (fv, insLink dg gmor globalThm (DGLinkFitView spname)
nP nSrc, (G_morphism lid morHom ind, target))
-- the subcase with nonempty import
JustNode (NodeSig nI _) -> do
gsigmaIS <- adj $ gsigUnion lg gsigmaI gsigmaS
when (not (isSubGsign lg gsigmaP gsigmaIS))
(plain_error ()
("Parameter does not match source of fittig view. "
++ "Parameter signature:\n"
++ showDoc gsigmaP
"\nSource signature of fitting view (united with import):\n"
++ showDoc gsigmaIS "") pos)
(G_sign lidI sigI1 _, _) <- adj $ gSigCoerce lg gsigmaI (Logic lid)
sigI <- adj $ coerceSign lidI lid
"Analysis of instantiation with import" sigI1
mor_I <- adj $ morphism_union lid morHom $ ext_ide sigI
gsigmaA <- adj $ gsigUnion lg gsigmaI gsigmaT
incl1 <- adj $ ginclusion lg gsigmaI gsigmaA
incl2 <- adj $ ginclusion lg gsigmaT gsigmaA
incl3 <- adj $ ginclusion lg gsigmaI gsigmaP
incl4 <- adj $ ginclusion lg gsigmaS gsigmaP
let (ns@(NodeSig nA _), dg1) =
insGSig dg name (DGFitViewA spname) gsigmaA
(NodeSig n' _, dg2) =
insGSig dg1 (inc name) (DGFitView spname) gsigmaP
dg3 = insLink dg2 incl1 globalDef
(DGLinkFitViewAImp spname) nI nA
dg4 = insLink dg3 incl3 globalDef
(DGLinkFitViewImp spname) nI n'
dg5 = insLink dg4 incl2 globalDef SeeTarget nTar nA
dg6 = insLink dg5 incl4 globalDef SeeTarget nSrc n'
dg7 = insLink dg6 (ide gsigmaP)
globalThm SeeTarget nP n'
return (fv, dg7, (mkG_morphism lid mor_I, ns))
-- now the case with parameters
(_, 0) -> do
let fitargs = map item afitargs
(fitargs', dg', args,_) <- foldM (anaFitArg lg opts spname imps)
([], dg, [], extName "A" name) (zip params fitargs)
let actualargs = reverse args
(gsigmaA, gmor_f) <- adj $ apply_GS lg gs actualargs
gsigmaRes <- adj $ gsigUnion lg gsigmaI gsigmaA
mor1 <- adj $ comp mor gmor_f
incl1 <- adj $ ginclusion lg gsigmaA gsigmaRes
mor' <- adj $ comp gmor_f incl1
GMorphism cid1 _ _ mor1Hom _<- return mor1
let lid1 = targetLogic cid1
when (not (language_name (sourceLogic cid1) == language_name lid1))
(fatal_error
("heterogeneous fitting views not yet implemented")
pos)
G_sign lidI sigI1 _<- return gsigmaI
sigI <- adj $ coerceSign lidI lid1
"Analysis of instantiation with parameters" sigI1
theta <- adj $ morphism_union lid1 mor1Hom (ext_ide sigI)
incl2 <- adj $ ginclusion lg gsigmaI gsigmaRes
incl3 <- adj $ ginclusion lg gsigmaI gsigmaP
incl4 <- adj $ ginclusion lg gsigmaS gsigmaP
let (ns@(NodeSig nA _), dg1) =
insGSig dg' name (DGFitViewA spname) gsigmaRes
(NodeSig n' _, dg2) =
insGSig dg1 (extName "V" name) (DGFitView spname) gsigmaP
dg3 <- foldM (parLink lg (DGLinkFitView spname) gsigmaRes nA) dg2
$ map snd args
let dg4 = case nsigI of
EmptyNode _ -> dg3
JustNode (NodeSig nI _) -> let
dg3a = insLink dg3 incl2 globalDef
(DGLinkFitViewAImp spname) nI nA
in insLink dg3a incl3 globalDef (DGLinkFitViewImp spname) nI n'
dg5 = insLink dg4 mor' globalDef SeeTarget nTar nA
dg6 = insLink dg5 incl4 globalDef SeeTarget nSrc n'
dg7 = insLink dg6 (ide gsigmaP) globalThm SeeTarget nP n'
return (Fit_view vn
(map (uncurry replaceAnnoted)
(zip (reverse fitargs') afitargs))
pos, dg7, (mkG_morphism lid1 theta, ns))
-- finally the case with conflicting numbers of formal and actual parameters
_ ->
fatal_error
(spstr ++ " expects " ++ show (length params) ++ " arguments"
++ " but was given " ++ show (length afitargs)) pos
_ -> fatal_error
("View " ++ tokStr vn ++ " not found") pos
-- Extension of signature morphisms (for instantitations)
-- first some auxiliary functions
mapID :: Map.Map Id (Set.Set Id) -> Id -> Result Id
mapID idmap i@(Id toks comps pos1) =
case Map.lookup i idmap of
Nothing -> do
compsnew <- mapM (mapID idmap) comps
return (Id toks compsnew pos1)
Just ids -> if Set.null ids then return i else
if Set.null $ Set.deleteMin ids then return $ Set.findMin ids else
plain_error i
("Identifier component " ++ showId i
" can be mapped in various ways:\n"
++ showDoc ids "") $ getRange i
extID1 :: Map.Map Id (Set.Set Id) -> Id
-> Result (EndoMap Id) -> Result (EndoMap Id)
extID1 idmap i@(Id toks comps pos1) m = do
m1 <- m
compsnew <- mapM (mapID idmap) comps
return $ if comps == compsnew then m1 else
Map.insert i (Id toks compsnew pos1) m1
extID :: Set.Set Id -> Map.Map Id (Set.Set Id) -> Result (EndoMap Id)
extID ids idmap = Set.fold (extID1 idmap) (return Map.empty) ids
extendMorphism :: G_sign -- ^ formal parameter
-> G_sign -- ^ body
-> G_sign -- ^ actual parameter
-> G_morphism -- ^ fitting morphism
-> Result(G_sign, GMorphism)
extendMorphism (G_sign lid sigmaP _) (G_sign lidB sigmaB1 _)
(G_sign lidA sigmaA1 _) (G_morphism lidM fittingMor1 _) = do
-- for now, only homogeneous instantiations....
sigmaB@(ExtSign _ sysB) <-
coerceSign lidB lid "Extension of symbol map1" sigmaB1
sigmaA <- coerceSign lidA lid "Extension of symbol map2" sigmaA1
fittingMor <- coerceMorphism lidM lid "Extension of symbol map3" fittingMor1
let symsP = ext_sym_of lid sigmaP
symsB = ext_sym_of lid sigmaB
idsB = Set.map (sym_name lid) symsB
h = symmap_of lid fittingMor
symbMapToRawSymbMap =
Map.foldWithKey (\sy1 sy2 -> Map.insert (symbol_to_raw lid sy1)
(symbol_to_raw lid sy2))
Map.empty
rh = symbMapToRawSymbMap h
idh = Map.foldWithKey
(\sy1 sy2 -> Rel.setInsert (sym_name lid sy1) (sym_name lid sy2))
Map.empty h
idhExt <- extID idsB idh
let rIdExt = Map.foldWithKey (\id1 id2 -> Map.insert
(id_to_raw lid id1) (id_to_raw lid id2))
Map.empty
(foldr (\i -> Map.delete i) idhExt $ Map.keys idh)
r = rh `Map.union` rIdExt
-- do we need combining function catching the clashes???
mor <- ext_induced_from_morphism lid r sigmaB
let hmor = symmap_of lid mor
sigmaAD = ExtSign (cod mor) $ Set.map (\ sy ->
Map.findWithDefault sy sy hmor) sysB
sigma <- ext_signature_union lid sigmaA sigmaAD
let illShared = (ext_sym_of lid sigmaA `Set.intersection`
ext_sym_of lid sigmaAD )
Set.\\ Rel.image h symsP
when (not (Set.null illShared))
(plain_error () ("Symbols shared between actual parameter and body"
++ "\nmust be in formal parameter:\n"
++ showDoc illShared "") nullRange)
let myKernel m = Set.fromDistinctAscList $ comb1 $ Map.toList m
comb1 [] = []
comb1 (p : qs) =
comb2 p qs [] ++ comb1 qs
comb2 _ [] rs = rs
comb2 p@(a, b) ((c, d) : qs) rs =
comb2 p qs $ if b == d then (a, c) : rs else rs
newIdentifications = myKernel hmor Set.\\ myKernel h
when (not (Set.null newIdentifications))
(plain_error () (
"Fitting morphism leads to forbidden identifications:\n"
++ showDoc newIdentifications "") nullRange)
incl <- ext_inclusion lid sigmaAD sigma
mor1 <- comp mor incl
return (G_sign lid sigma startSigId, gEmbed $ mkG_morphism lid mor1)
apply_GS :: LogicGraph -> ExtGenSig -> [(G_morphism, NodeSig)]
-> Result(G_sign, GMorphism)
apply_GS lg (ExtGenSig nsigI _ gsigmaP nsigB) args = do
let mor_i = map fst args
gsigmaA_i = map (getSig . snd) args
gsigmaB = getSig nsigB
gsigmaA@(G_sign lidA _ _) <- gsigManyUnion lg gsigmaA_i
(_, Comorphism uid) <- logicUnion lg (getNodeLogic nsigB) (Logic lidA)
let cl = Logic $ targetLogic uid
G_morphism lidG mor0 _ <- case nsigI of
EmptyNode _ -> homogeneousMorManyUnion mor_i
JustNode (NodeSig _ gsigmaI) -> do
(G_sign lidI sigmaI _, _) <- gSigCoerce lg gsigmaI (Logic lidA)
let idI = ext_ide sigmaI
homogeneousMorManyUnion $ mkG_morphism lidI idI : mor_i
(gsigmaP', _) <- gSigCoerce lg gsigmaP cl
(gsigmaB', _) <- gSigCoerce lg gsigmaB cl
(gsigmaA', Comorphism aid) <- gSigCoerce lg gsigmaA cl
mor1 <- coerceMorphism lidG (sourceLogic aid) "apply_GS" mor0
mor2 <- map_morphism aid mor1
extendMorphism gsigmaP' gsigmaB' gsigmaA' $
G_morphism (targetLogic aid) mor2 startMorId
homogenizeGM :: AnyLogic -> [Syntax.AS_Structured.G_mapping]
-> Result G_symb_map_items_list
homogenizeGM (Logic lid) gsis =
foldM homogenize1 (G_symb_map_items_list lid []) gsis
where
homogenize1 itl2@(G_symb_map_items_list lid2 sis) sm = case sm of
Syntax.AS_Structured.G_symb_map (G_symb_map_items_list lid1 sis1) -> do
sis1' <- coerceSymbMapItemsList lid1 lid2 "" sis1
return $ G_symb_map_items_list lid2 $ sis ++ sis1'
_ -> return itl2
-- | check if structured analysis should be performed
isStructured :: HetcatsOpts -> Bool
isStructured a = case analysis a of
Structured -> True
_ -> False
-- only consider addSyms for the first spec
ana_Extension
:: ([SPEC], MaybeNode, DGraph, LogicGraph, HetcatsOpts, Range, Bool)
-> (NodeName, Annoted SPEC)
-> Result ([SPEC], MaybeNode, DGraph, LogicGraph, HetcatsOpts, Range, Bool)
ana_Extension (sps', nsig', dg', lg, opts, pos, addSyms) (name',asp') = do
(sp1', nsig1@(NodeSig n1 sig1), dg1) <-
ana_SPEC addSyms lg dg' nsig' name' opts (item asp')
let anno = find isSemanticAnno $ l_annos asp'
-- is the extension going between real nodes?
dg2 <- case (anno, nsig') of
(Just anno0@(Semantic_anno anno1 _), JustNode (NodeSig n' sig')) -> do
-- any other semantic annotation? that's an error
when (any (\an -> isSemanticAnno an && an/=anno0) $ l_annos asp')
(plain_error () "Conflicting semantic annotations"
pos)
-- %implied should not occur here
when (anno1 == SA_implied)
(plain_error ()
"Annotation %implied should come after a BASIC-ITEM"
pos)
if anno1 == SA_implies then do
when (not (isHomSubGsign sig1 sig')) (plain_error ()
"Signature must not be extended in presence of %implies"
pos)
-- insert a theorem link according to p. 319 of the CASL Reference Manual
return $ insLink dg1 (ide sig1) globalThm DGLinkExtension n1 n'
else do
let anno2 = case anno1 of
SA_cons -> Cons
SA_def -> Def
SA_mono -> Mono
_ -> error "Static.AnalysisStructured: this cannot happen"
-- insert a theorem link according to p. 319 of the CASL Reference Manual
-- the theorem link is trivally proved by the parallel definition link,
-- but for clarity, we leave it open here
-- the interesting open proof obligation is anno2, of course
incl <- ginclusion lg sig' sig1
-- here conservativity of the global def-link should be set
return $ insLink dg1 incl (globalConsThm anno2)
DGLinkExtension n' n1
_ -> return dg1
return (sp1' : sps', JustNode nsig1, dg2, lg, opts, pos, True)