AnalysisArchitecture.hs revision 89ab08979dc23d72e9e09c8990a8c44847041d6f
{- |
Module : $Header$
Copyright : (c) Maciek Makowski, Warsaw University, C. Maeder 2004-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : non-portable (via imports)
Analysis of architectural specifications.
Follows the extended static semantics sketched in Chap. III:5.6
of the CASL Reference Manual.
-}
{- todo:
-- EmptyNode undefined should be replaced with local env!
-}
module Static.AnalysisArchitecture (ana_ARCH_SPEC, ana_UNIT_SPEC)
where
import Driver.Options
import Logic.Logic
import Logic.Coerce
import Logic.Grothendieck
import Static.DevGraph
import Static.ArchDiagram
import Static.AnalysisStructured
import Syntax.Print_AS_Architecture()
import Syntax.AS_Architecture
import Syntax.AS_Structured
import Common.AS_Annotation
import Common.Id
import Common.Result
import Common.Amalgamate
import Common.PrettyPrint
import qualified Common.Lib.Map as Map
import Data.Graph.Inductive.Graph as Graph(Node)
-- | Analyse an architectural specification
-- @
-- ARCH-SPEC ::= BASIC-ARCH-SPEC | GROUP-ARCH-SPEC | ARCH-SPEC-NAME
-- @
ana_ARCH_SPEC :: LogicGraph -> AnyLogic -- ^ the default logic
-> GlobalContext -> AnyLogic -- ^ current logic
-> HetcatsOpts -- ^ should only the structure be analysed?
-> ARCH_SPEC -> Result (ArchSig, GlobalContext, ARCH_SPEC)
{- ^ returns 1. the architectural signature of given ARCH-SPEC
2. development graph resulting from structured specs within the arch
spec and 3. ARCH_SPEC after possible conversions -}
-- BASIC-ARCH-SPEC
ana_ARCH_SPEC lgraph defl gctx curl opts (Basic_arch_spec udd uexpr pos) =
do (uctx, dg', udd') <- ana_UNIT_DECL_DEFNS lgraph defl gctx curl opts udd
(_, usig, _, dg'', uexpr') <- ana_UNIT_EXPRESSION lgraph defl
dg' curl opts uctx (item uexpr)
return (ArchSig (ctx uctx) usig, dg'', Basic_arch_spec udd'
(replaceAnnoted uexpr' uexpr) pos)
-- GROUP-ARCH-SPEC
ana_ARCH_SPEC lgraph defl gctx curl opts (Group_arch_spec asp _) =
ana_ARCH_SPEC lgraph defl gctx curl opts (item asp)
-- ARCH-SPEC-NAME
ana_ARCH_SPEC _ _ gctx _ _ asp@(Arch_spec_name asn@(Token astr pos)) =
do case Map.lookup asn $ globalEnv gctx of
Nothing -> fatal_error ("Undefined architectural specification "
++ astr) pos
Just (ArchEntry asig) -> return (asig, gctx, asp)
_ -> fatal_error (astr ++
" is not an architectural specification") pos
-- | Analyse a list of unit declarations and definitions
ana_UNIT_DECL_DEFNS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> [Annoted UNIT_DECL_DEFN]
-> Result (ExtStUnitCtx, GlobalContext, [Annoted UNIT_DECL_DEFN])
{- ^ returns 1. extended static unit context 2. possibly modified
development graph 3. possibly modified list of unit declarations and
definitions -}
ana_UNIT_DECL_DEFNS lgraph defl gctx curl opts udds =
ana_UNIT_DECL_DEFNS' lgraph defl gctx curl opts emptyExtStUnitCtx udds
ana_UNIT_DECL_DEFNS' :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_DECL_DEFN]
-> Result (ExtStUnitCtx, GlobalContext, [Annoted UNIT_DECL_DEFN])
ana_UNIT_DECL_DEFNS' _ _ gctx _ _ uctx [] =
do return (uctx, gctx, [])
ana_UNIT_DECL_DEFNS' lgraph defl gctx curl opts uctx (udd : udds) =
do (uctx', dg', udd') <- ana_UNIT_DECL_DEFN lgraph defl
gctx curl opts uctx (item udd)
(uctx'', dg'', udds') <- ana_UNIT_DECL_DEFNS' lgraph defl
dg' curl opts uctx' udds
return (uctx'', dg'', (replaceAnnoted udd' udd) : udds')
alreadyDefinedUnit :: SIMPLE_ID -> String
alreadyDefinedUnit u = "Unit " ++ tokStr u ++ " already declared/defined"
-- | Analyse unit refs
ana_UNIT_REF :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_REF
-> Result (ExtStUnitCtx, GlobalContext, UNIT_REF)
{- ^ returns 1. extended static unit context 2. possibly modified
development graph 3. possibly modified UNIT_DECL_DEFN -}
-- unit declaration
ana_UNIT_REF lgraph defl gctx curl opts
uctx@(buc, _) (Unit_ref un@(Token ustr unpos) usp pos) =
do (dns, diag', dg', _) <- ana_UNIT_IMPORTED lgraph defl
gctx curl opts uctx pos []
let impSig = toMaybeNode dns
(usig, gctx'', usp') <- ana_REF_SPEC lgraph defl dg'
curl opts impSig usp
let ud' = Unit_ref un usp' pos
dg'' = devGraph gctx''
if Map.member un buc
then
plain_error (uctx, gctx'', ud') (alreadyDefinedUnit un) unpos
else
case usig of
Par_unit_sig argSigs resultSig ->
do (resultSig', dg''') <- nodeSigUnion lgraph dg''
(JustNode resultSig : [impSig]) DGImports
let basedParUSig = Based_par_unit_sig dns $
Par_unit_sig argSigs resultSig'
return ((Map.insert un basedParUSig buc, diag'),
gctx'' { devGraph = dg''' }, ud')
Unit_sig nsig ->
do (nsig', dg''') <- nodeSigUnion lgraph dg''
(impSig : [JustNode nsig]) DGImports
(dn', diag'') <- extendDiagramIncl lgraph diag' []
nsig' ustr
return ((Map.insert un (Based_unit_sig dn') buc, diag'')
, gctx'' { devGraph = dg''' }, ud')
-- | Analyse unit declaration or definition
ana_UNIT_DECL_DEFN :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_DECL_DEFN
-> Result (ExtStUnitCtx, GlobalContext, UNIT_DECL_DEFN)
{- ^ returns 1. extended static unit context 2. possibly modified
development graph 3. possibly modified UNIT_DECL_DEFN -}
-- unit declaration
ana_UNIT_DECL_DEFN lgraph defl gctx curl opts uctx@(buc, _)
(Unit_decl un@(Token ustr unpos) usp uts pos) =
do (dns, diag', dg', uts') <- ana_UNIT_IMPORTED lgraph defl
gctx curl opts uctx pos uts
let impSig = toMaybeNode dns
(usig, gctx'', usp') <- ana_REF_SPEC lgraph defl
dg' curl opts impSig usp
let ud' = Unit_decl un usp' uts' pos
dg'' = devGraph gctx''
if Map.member un buc
then
plain_error (uctx, gctx'', ud') (alreadyDefinedUnit un) unpos
else
case usig of
Par_unit_sig argSigs resultSig ->
do (resultSig', dg''') <- nodeSigUnion lgraph dg''
(JustNode resultSig : [impSig]) DGImports
let basedParUSig = Based_par_unit_sig dns $
Par_unit_sig argSigs resultSig'
return ((Map.insert un basedParUSig buc, diag'),
gctx'' { devGraph = dg''' }, ud')
Unit_sig nsig ->
do (nsig', dg''') <- nodeSigUnion lgraph dg''
(impSig : [JustNode nsig]) DGImports
(dn', diag'') <- extendDiagramIncl lgraph diag'
(case dns of
JustDiagNode dn -> [dn]
_ -> []) nsig' ustr
return ((Map.insert un (Based_unit_sig dn') buc, diag'')
, gctx'' { devGraph = dg''' }, ud')
-- unit definition
ana_UNIT_DECL_DEFN lgraph defl gctx curl opts uctx@(buc, _)
(Unit_defn un uexp poss) =
do (p, usig, diag, dg', uexp') <- ana_UNIT_EXPRESSION lgraph defl
gctx curl opts uctx uexp
let ud' = Unit_defn un uexp' poss
{- it's sufficient to check that un is not mapped in buc, we
don't need to convert the ExtStUnitCtx to StUnitCtx as the
domain will be preserved -}
if Map.member un buc
then
plain_error (uctx, dg', ud') (alreadyDefinedUnit un) $ tokPos un
else
case usig of
{- we can use Map.insert as there are no mappings for
un in ps and bs (otherwise there would have been a
mapping in (ctx uctx)) -}
Unit_sig _ -> case p of
JustDiagNode dn -> return ((Map.insert un
(Based_unit_sig dn) buc, diag), dg', ud')
_ -> error "ana_UNIT_DECL_DEFN"
Par_unit_sig _ _ -> return ((Map.insert un
(Based_par_unit_sig p usig) buc
, diag), dg', ud')
-- | Analyse unit imports
ana_UNIT_IMPORTED :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> Range -> [Annoted UNIT_TERM]
-> Result (MaybeDiagNode, Diag, GlobalContext, [Annoted UNIT_TERM])
ana_UNIT_IMPORTED _ _ gctx curl _ (_, diag) _ [] =
do return (EmptyDiagNode curl, diag, gctx, [])
ana_UNIT_IMPORTED lgraph defl gctx curl opts uctx poss terms =
do (dnsigs, diag', gctx', terms') <- ana_UNIT_IMPORTED' lgraph defl
gctx curl opts uctx terms
let dg' = devGraph gctx'
(sig, dg'') <- nodeSigUnion lgraph dg'
(map (JustNode . getSigFromDiag) dnsigs) DGImports
-- check amalgamability conditions
{- let incl s = propagateErrors (ginclusion lgraph (getSig
(getSigFromDiag s)) (getSig sig)) -}
let pos = getPos_UNIT_IMPORTED poss
sink <- inclusionSink lgraph dnsigs sig
() <- assertAmalgamability opts pos diag' sink
(dnsig, diag'') <- extendDiagramIncl lgraph diag' dnsigs
sig $ showPretty terms ""
return (JustDiagNode dnsig, diag'', gctx' { devGraph = dg'' }, terms')
ana_UNIT_IMPORTED' :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_TERM]
-> Result ([DiagNodeSig], Diag, GlobalContext, [Annoted UNIT_TERM])
ana_UNIT_IMPORTED' _ _ gctx _ _ (_, diag) [] =
do return ([], diag, gctx, [])
ana_UNIT_IMPORTED' lgraph defl gctx curl opts uctx@(buc, _) (ut : uts) =
do (dnsig, diag', dg', ut') <- ana_UNIT_TERM lgraph defl
gctx curl opts uctx (item ut)
(dnsigs, diag'', dg'', uts') <- ana_UNIT_IMPORTED' lgraph defl
dg' curl opts (buc, diag') uts
return (dnsig : dnsigs, diag'', dg'', (replaceAnnoted ut' ut) : uts')
-- | Analyse an unit expression
ana_UNIT_EXPRESSION :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_EXPRESSION
-> Result (MaybeDiagNode, UnitSig, Diag, GlobalContext, UNIT_EXPRESSION)
ana_UNIT_EXPRESSION lgraph defl gctx curl opts uctx
(Unit_expression [] ut poss) =
do (dnsig@(Diag_node_sig _ ns'), diag', dg', ut') <-
ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
return (JustDiagNode dnsig, Unit_sig ns', diag', dg',
Unit_expression [] (replaceAnnoted ut' ut) poss)
ana_UNIT_EXPRESSION lgraph defl gctx curl opts
uctx@(buc, diag) uexp@(Unit_expression ubs ut poss) =
do (args, gctx', ubs') <- ana_UNIT_BINDINGS lgraph defl
gctx curl opts uctx ubs
(resnsig, _dg'') <- nodeSigUnion lgraph (devGraph gctx')
(map (JustNode . snd) args) DGFormalParams
-- build the extended diagram and new based unit context
let dexp = showPretty uexp ""
insNodes diag0 [] buc0 = do return ([], diag0, buc0)
insNodes diag0 ((un, nsig) : args0) buc0 =
do (dnsig, diag') <- extendDiagramIncl lgraph diag0 []
nsig dexp
{- we made sure in ana_UNIT_BINDINGS that there's no
mapping for un in buc so we can just use
Map.insert -}
let buc' = Map.insert un (Based_unit_sig dnsig) buc0
(dnsigs, diag'', buc'') <- insNodes diag' args0 buc'
return (dnsig : dnsigs, diag'', buc'')
(pardnsigs, diag', buc') <- insNodes diag args buc
(_, diag'') <- extendDiagramIncl lgraph diag' pardnsigs
resnsig dexp
-- analyse the unit term
(p@(Diag_node_sig _ pnsig), diag''', dg''', ut') <-
ana_UNIT_TERM lgraph defl
gctx' curl opts (buc', diag'') (item ut)
-- check amalgamability conditions
let pos = getPos_UNIT_EXPRESSION uexp
checkSubSign [] _ = True
checkSubSign (dnsub : dnsigs) nsup =
if isSubGsign lgraph (getSig $ getSigFromDiag dnsub) $ getSig nsup
then checkSubSign dnsigs nsup else False
-- check that signatures in pardnsigs are subsignatures of pnsig
if checkSubSign pardnsigs pnsig
then
do sink <- inclusionSink lgraph (p : pardnsigs) pnsig
() <- assertAmalgamability opts pos diag''' sink
-- add new node to the diagram
return (EmptyDiagNode curl, Par_unit_sig (map snd args) pnsig,
diag''', dg''',
Unit_expression ubs' (replaceAnnoted ut' ut) poss)
else -- report an error
fatal_error
("The body signature does not extend the parameter signatures in\n"
++ dexp) pos
{- | Analyse a list of unit bindings. Ensures that the unit names are
not present in extended static unit context and that there are no
duplicates among them. -}
ana_UNIT_BINDINGS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [UNIT_BINDING]
-> Result ([(SIMPLE_ID, NodeSig)], GlobalContext, [UNIT_BINDING])
ana_UNIT_BINDINGS _ _ gctx _ _ _ [] =
do return ([], gctx, [])
ana_UNIT_BINDINGS lgraph defl gctx curl opts uctx@(buc, _)
((Unit_binding un@(Token ustr unpos) usp poss) : ubs) =
do (usig, dg', usp') <- ana_UNIT_SPEC lgraph defl
gctx curl opts (EmptyNode curl) usp
let ub' = Unit_binding un usp' poss
case usig of
Par_unit_sig _ _ -> plain_error ([], dg', [])
("An argument unit " ++
ustr ++ " must not be parameterized") unpos
Unit_sig nsig ->
do (args, dg'', ubs') <- ana_UNIT_BINDINGS lgraph defl
dg' curl opts uctx ubs
let args' = (un, nsig) : args
if Map.member un buc
then plain_error (args', dg'', ub' : ubs')
(alreadyDefinedUnit un) unpos
else
case lookup un args of
Just _ -> plain_error (args', dg'', ub' : ubs')
(alreadyDefinedUnit un) unpos
Nothing -> return (args', dg'', ub' : ubs')
-- | Analyse a list of unit terms
ana_UNIT_TERMS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_TERM]
-> Result ([DiagNodeSig], Diag, GlobalContext, [Annoted UNIT_TERM])
ana_UNIT_TERMS _ _ gctx _ _ (_, diag) [] =
do return ([], diag, gctx, [])
ana_UNIT_TERMS lgraph defl gctx curl opts uctx@(buc, _) (ut : uts) =
do (dnsig, diag', dg', ut') <- ana_UNIT_TERM lgraph defl
gctx curl opts uctx (item ut)
(dnsigs, diag'', dg'', uts') <- ana_UNIT_TERMS lgraph defl
dg' curl opts (buc, diag') uts
return (dnsig : dnsigs, diag'', dg'', (replaceAnnoted ut' ut) : uts')
-- | Analyse an unit term
ana_UNIT_TERM :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_TERM
-> Result (DiagNodeSig, Diag, GlobalContext, UNIT_TERM)
-- UNIT-REDUCTION
ana_UNIT_TERM lgraph defl gctx curl opts uctx red@(Unit_reduction ut restr) =
do (p, diag, gctx1, ut') <- ana_UNIT_TERM lgraph defl
gctx curl opts uctx (item ut)
let dg = devGraph gctx1
(incl, msigma) <- ana_RESTRICTION dg (emptyG_sign curl)
(getSig (getSigFromDiag p)) opts restr
let pos = getPos_UNIT_TERM red
(q@(Diag_node_sig qn _), diag', dg') <-
extendDiagramWithMorphismRev pos lgraph diag dg p incl
(showPretty red "")
(case restr of
Hidden _ _ -> DGHiding
Revealed _ _ -> DGRevealing)
case msigma of
Nothing ->
{- the renaming morphism is just identity, so
there's no need to extend the diagram -}
do return (q, diag', gctx1 { devGraph = dg' },
Unit_reduction (replaceAnnoted ut' ut) restr)
Just sigma ->
do
-- check amalgamability conditions
let sink = [(qn, sigma)]
() <- assertAmalgamability opts pos diag' sink
(q', diag'', dg'') <- extendDiagramWithMorphism pos
lgraph diag' dg' q sigma
(showPretty red "")
(case restr of
Hidden _ _ -> DGHiding
Revealed _ _ -> DGRevealing)
return (q', diag'', gctx1 { devGraph = dg'' },
Unit_reduction
(replaceAnnoted ut' ut) restr)
-- UNIT-TRANSLATION
ana_UNIT_TERM lgraph defl gctx curl opts uctx tr@(Unit_translation ut ren) =
do (dnsig@(Diag_node_sig p _), diag, gctx1, ut') <- ana_UNIT_TERM lgraph
defl gctx curl opts uctx (item ut)
-- EmptyNode undefined should be replaced with local env!
gMorph <- ana_RENAMING lgraph (EmptyNode undefined)
(getSig (getSigFromDiag dnsig)) opts ren
let pos = getPos_UNIT_TERM tr
sink = [(p, gMorph)]
dg = devGraph gctx1
-- check amalamability conditions
() <- assertAmalgamability opts pos diag sink
(dnsig', diag', dg') <- extendDiagramWithMorphism pos lgraph
diag dg dnsig gMorph (showPretty tr "")
DGTranslation
return (dnsig', diag', gctx1 { devGraph = dg' }, Unit_translation
(replaceAnnoted ut' ut) ren)
-- AMALGAMATION
ana_UNIT_TERM lgraph defl gctx curl opts uctx am@(Amalgamation uts poss) =
do (dnsigs, diag, gctx', uts') <- ana_UNIT_TERMS lgraph defl
gctx curl opts uctx uts
let dg' = devGraph gctx'
-- compute sigma
(sig, dg'') <- nodeSigUnion lgraph dg'
(map (JustNode . getSigFromDiag) dnsigs) DGUnion
-- check amalgamability conditions
sink <- inclusionSink lgraph dnsigs sig
() <- assertAmalgamability opts poss diag sink
(q, diag') <- extendDiagramIncl lgraph diag dnsigs
sig $ showPretty am ""
return (q, diag', gctx' { devGraph = dg'' }, Amalgamation uts' poss)
-- LOCAL-UNIT
ana_UNIT_TERM lgraph defl gctx curl opts uctx (Local_unit udds ut poss) =
do (uctx', dg, udds') <- ana_UNIT_DECL_DEFNS' lgraph defl
gctx curl opts uctx udds
(dnsig, diag, dg', ut') <- ana_UNIT_TERM lgraph defl
dg curl opts uctx' (item ut)
return (dnsig, diag, dg', Local_unit udds' (replaceAnnoted ut' ut) poss)
-- UNIT-APPL
ana_UNIT_TERM lgraph defl gctx curl opts uctx@(buc, diag)
uappl@(Unit_appl un fargus _) =
do let pos = getPos_UNIT_TERM uappl
dg = devGraph gctx
ustr = tokStr un
case Map.lookup un buc of
Just (Based_unit_sig dnsig) ->
do case fargus of
[] -> return (dnsig, diag, gctx, uappl)
_ ->
-- arguments have been given for a parameterless unit
do plain_error (dnsig, diag, gctx, uappl)
(ustr ++ " is a parameterless unit, "
++ "but arguments have been given: " ++
showPretty fargus "") pos
Just (Based_par_unit_sig pI (Par_unit_sig argSigs resultSig)) ->
do (sigF, dg') <- nodeSigUnion lgraph dg
(toMaybeNode pI : map JustNode argSigs) DGFormalParams
(morphSigs, gctx'', diagA) <- ana_FIT_ARG_UNITS lgraph defl
gctx { devGraph = dg' } curl opts
uctx uappl pos argSigs fargus
let first (e, _, _) = e
second (_, e, _) = e
third (_, _, e) = e
dg'' = devGraph gctx''
(sigA, dg''') <- nodeSigUnion lgraph dg''
(toMaybeNode pI : (map (JustNode . second) morphSigs))
DGFitSpec
-- compute morphA (\sigma^A)
G_sign lidI sigI <- return (getMaybeSig (toMaybeNode pI))
let idI = G_morphism lidI (ide lidI sigI)
morphA <- homogeneousMorManyUnion
(idI : (map first morphSigs))
-- compute sigMorExt (\sigma^A(\Delta))
(_, sigMorExt) <- extendMorphism (getSig sigF)
(getSig resultSig) (getSig sigA) morphA
-- check amalgamability conditions
let pIL = case pI of
JustDiagNode dn -> [dn]
_ -> []
sink <- inclusionSink lgraph (pIL ++
map third morphSigs) sigA
() <- assertAmalgamability opts pos diagA sink
(qB@(Diag_node_sig nqB _), diag') <-
extendDiagramIncl lgraph diagA pIL resultSig ""
-- insert nodes p^F_i and appropriate edges to the diagram
let ins diag0 dg0 [] = do return (diag0, dg0)
ins diag0 dg0 ((morph, _, targetNode) : morphNodes) =
do (dnsig, diag1, dg1) <-
extendDiagramWithMorphismRev pos lgraph diag0
dg0 targetNode (gEmbed morph)
(showPretty fargus "")
DGFormalParams
diag'' <- insInclusionEdges lgraph diag1 [dnsig]
qB
ins diag'' dg1 morphNodes
(diag'', dg4) <- ins diag' dg''' morphSigs
-- check amalgamability conditions
(sigR, dg5) <- extendDGraph dg4 resultSig
(gEmbed sigMorExt) DGExtension
incSink <- inclusionSink lgraph (map third morphSigs) sigR
let sink' = (nqB, gEmbed sigMorExt) : incSink
assertAmalgamability opts pos diag'' sink'
(q, diag''') <- extendDiagram diag'' qB
(gEmbed sigMorExt) sigR
$ showPretty uappl ""
diag4 <- insInclusionEdges lgraph diag'''
(map third morphSigs) q
return (q, diag4, gctx'' { devGraph = dg5 }, uappl)
_ -> fatal_error ("Undefined unit " ++ ustr) pos
-- group unit term
ana_UNIT_TERM lgraph defl gctx curl opts uctx (Group_unit_term ut poss) =
do (dnsig, diag, dg, ut') <- ana_UNIT_TERM lgraph defl
gctx curl opts uctx (item ut)
return (dnsig, diag, dg, Group_unit_term (replaceAnnoted ut' ut) poss)
-- | Analyse unit arguments
ana_FIT_ARG_UNITS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_TERM
-- ^ the whole application for diagnostic purposes
-> Range
-- ^ the position of the application (for diagnostic purposes)
-> [NodeSig]
-- ^ the signatures of unit's formal parameters
-> [FIT_ARG_UNIT] -- ^ the arguments for the unit
-> Result ([(G_morphism, NodeSig, DiagNodeSig)], GlobalContext, Diag)
ana_FIT_ARG_UNITS _ _ gctx _ _ (_, diag) _ _ [] [] =
do return ([], gctx, diag)
ana_FIT_ARG_UNITS lgraph defl gctx curl opts uctx@(buc, _)
appl pos (nsig : nsigs) (fau : faus) =
do (gmorph, nsig', dnsig, dg, diag) <- ana_FIT_ARG_UNIT lgraph defl
gctx curl opts uctx nsig fau
(morphSigs, dg', diag') <- ana_FIT_ARG_UNITS lgraph defl
dg curl opts
(buc, diag) appl pos nsigs faus
return ((gmorph, nsig', dnsig) : morphSigs, dg', diag')
ana_FIT_ARG_UNITS _ _ gctx _ _ (_, diag) appl pos [] _ =
do plain_error ([], gctx, diag)
("Too many arguments given in application\n"
++ showPretty appl "") pos
ana_FIT_ARG_UNITS _ _ gctx _ _ (_, diag) appl pos _ [] =
do plain_error ([], gctx, diag)
("Too few arguments given in application\n"
++ showPretty appl "") pos
-- | Analyse unit argument
ana_FIT_ARG_UNIT :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> NodeSig -> FIT_ARG_UNIT
-> Result (G_morphism, NodeSig, DiagNodeSig, GlobalContext, Diag)
-- ^ returns 1. the signature morphism 2. the target signature of the morphism
-- 3. the diagram node 4. the modified DGraph 5. the modified diagram
ana_FIT_ARG_UNIT lgraph defl gctx curl opts uctx nsig
(Fit_arg_unit ut symbMap poss) =
do (p, diag', gctx', _) <- ana_UNIT_TERM lgraph defl
gctx curl opts uctx (item ut)
-- compute gMorph (the morphism r|sigma/D(p))
let adj = adjustPos poss
gsigmaS = getSig nsig
gsigmaT = getSig (getSigFromDiag p)
dg' = devGraph gctx'
G_sign lidS sigmaS <- return gsigmaS
G_sign lidT sigmaT <- return gsigmaT
G_symb_map_items_list lid sis <- adj $ homogenizeGM (Logic lidS) symbMap
sigmaT' <- adj $ coerceSign lidT lidS "" sigmaT
mor <- if isStructured opts then return (ide lidS sigmaS)
else do rmap <- adj $ stat_symb_map_items lid sis
rmap' <- adj $ coerceRawSymbolMap lid lidS "" rmap
adj $ induced_from_to_morphism lidS rmap'
sigmaS sigmaT'
let gMorph = G_morphism lidS mor
(nsig', dg'') <- extendDGraph dg' nsig (gEmbed gMorph) DGFitSpec
return (gMorph, nsig', p, gctx' { devGraph = dg'' }, diag')
-- | Analyse unit specification
ana_UNIT_SPEC :: LogicGraph -> AnyLogic -- ^ the default logic
-> GlobalContext -> AnyLogic -- ^ current logic
-> HetcatsOpts -- ^ should only the structure be analysed?
-> MaybeNode -- ^ the signature of imports
-> UNIT_SPEC -> Result (UnitSig, GlobalContext, UNIT_SPEC)
-- ^ returns 1. unit signature 2. the development graph resulting from
-- structred specs inside the unit spec and 3. a UNIT_SPEC after possible
-- conversions.
-- UNIT-TYPE
{- if argspecs are empty and resultspec is a name of unit spec then this
should be converted to a Spec_name -}
ana_UNIT_SPEC lgraph defl gctx curl just_struct
impsig (Unit_type [] (Annoted (Spec_inst spn [] _) _ _ _) _)
| case Map.lookup spn $ globalEnv gctx of
Just (UnitEntry _) -> True
_ -> False =
ana_UNIT_SPEC lgraph defl gctx curl just_struct impsig (Spec_name spn)
-- a trivial unit type
ana_UNIT_SPEC lgraph _ gctx _ just_struct impsig
(Unit_type [] resultSpec poss) =
do (resultSpec', resultSig, dg') <- ana_SPEC lgraph
gctx impsig emptyNodeName just_struct (item resultSpec)
return (Unit_sig resultSig, dg', Unit_type []
(replaceAnnoted resultSpec' resultSpec) poss)
-- a non-trivial unit type
ana_UNIT_SPEC lgraph defl gctx _ opts impSig
(Unit_type argSpecs resultSpec poss) =
do (argSigs, gctx1, argSpecs') <- ana_argSpecs lgraph defl gctx
opts argSpecs
let dg1 = devGraph gctx1
(sigUnion, dg2) <- nodeSigUnion lgraph dg1
(impSig : map JustNode argSigs) DGFormalParams
(resultSpec', resultSig, dg3) <- ana_SPEC lgraph
gctx1 { devGraph = dg2 } (JustNode sigUnion)
emptyNodeName opts (item resultSpec)
return (Par_unit_sig argSigs resultSig, dg3, Unit_type argSpecs'
(replaceAnnoted resultSpec' resultSpec) poss)
-- SPEC-NAME (an alias)
ana_UNIT_SPEC _ _ gctx _ _ _impsig usp@(Spec_name usn@(Token ustr pos)) =
do case Map.lookup usn $ globalEnv gctx of
Nothing -> fatal_error ("Undefined unit specification "
++ ustr) pos
Just (UnitEntry usig) -> return (usig, gctx, usp)
_ -> fatal_error (ustr ++ " is not an unit specification")
pos
-- CLOSED-UNIT-SPEC
ana_UNIT_SPEC lgraph defl gctx curl just_struct _ (Closed_unit_spec usp' _) =
ana_UNIT_SPEC lgraph defl gctx curl just_struct (EmptyNode curl) usp'
-- | Analyse refinement specification
ana_REF_SPEC :: LogicGraph -> AnyLogic -- ^ the default logic
-> GlobalContext -> AnyLogic -- ^ current logic
-> HetcatsOpts -- ^ should only the structure be analysed?
-> MaybeNode -- ^ the signature of imports
-> REF_SPEC -> Result (UnitSig, GlobalContext, REF_SPEC)
-- UNIT-SPEC
ana_REF_SPEC lgraph defl gctx curl just_struct nsig (Unit_spec asp) =
do (usig, dg', asp') <- ana_UNIT_SPEC lgraph defl
gctx curl just_struct nsig asp
return (usig, dg', Unit_spec asp')
-- ARCH-UNIT-SPEC
ana_REF_SPEC lgraph defl gctx curl just_struct _ (Arch_unit_spec asp poss) =
do (ArchSig _ usig, dg', asp') <- ana_ARCH_SPEC lgraph defl
gctx curl just_struct (item asp)
return (usig, dg', Arch_unit_spec (replaceAnnoted asp' asp) poss)
-- dummy implementation for the rest
ana_REF_SPEC _ _ _ _ _ _ _ = error "ana_REF_SPEC"
-- | Analyse a list of argument specifications
ana_argSpecs :: LogicGraph -> AnyLogic -> GlobalContext -> HetcatsOpts
-> [Annoted SPEC]
-> Result ([NodeSig], GlobalContext, [Annoted SPEC])
ana_argSpecs _ _ gctx _ [] =
do return ([], gctx, [])
ana_argSpecs lgraph defl gctx opts (argSpec : argSpecs) =
do (argSpec', argSig, dg') <- ana_SPEC lgraph
gctx (EmptyNode defl) emptyNodeName
opts (item argSpec)
(argSigs, dg'', argSpecs') <- ana_argSpecs lgraph defl
dg' opts argSpecs
return (argSig : argSigs, dg'', replaceAnnoted argSpec' argSpec
: argSpecs')
{- | Check that given diagram ensures amalgamability along given set
of morphisms -}
assertAmalgamability :: HetcatsOpts -- ^ the program options
-> Range -- ^ the position (for diagnostics)
-> Diag -- ^ the diagram to be checked
-> [(Node, GMorphism)] -- ^ the sink
-> Result ()
assertAmalgamability opts pos diag sink =
do ensAmalg <- homogeneousEnsuresAmalgamability opts pos diag sink
case ensAmalg of
Amalgamates -> return ()
NoAmalgamation msg -> plain_error ()
("Amalgamability is not ensured: " ++ msg) pos
DontKnow msg -> warning () msg pos
-- | Check the amalgamability assuming common logic for whole diagram
homogeneousEnsuresAmalgamability :: HetcatsOpts -- ^ the program options
-> Range -- ^ the position (for diagnostics)
-> Diag -- ^ the diagram to be checked
-> [(Node, GMorphism)] -- ^ the sink
-> Result Amalgamates
homogeneousEnsuresAmalgamability opts pos diag sink =
do case sink of
[] -> plain_error defaultDontKnow
"homogeneousEnsuresAmalgamability: Empty sink" pos
lab:_ -> do let (_, mor) = lab
sig = cod Grothendieck mor
G_sign lid _ <- return sig
hDiag <- homogeniseDiagram lid diag
hSink <- homogeniseSink lid sink
ensures_amalgamability lid (caslAmalg opts,
hDiag, hSink, (diagDesc diag))
-- | Get a position within the source file of a UNIT-TERM
getPos_UNIT_TERM :: UNIT_TERM -> Range
-- UNIT-REDUCTION
getPos_UNIT_TERM (Unit_reduction _ restr) =
-- obtain position from RESTRICTION
case restr of
(Hidden _ poss) -> poss
(Revealed _ poss) -> poss
-- UNIT-TRANSLATION
getPos_UNIT_TERM (Unit_translation _ (Renaming _ poss)) =
poss
-- AMALGAMATION
getPos_UNIT_TERM (Amalgamation _ poss) =
poss
-- LOCAL-UNIT
getPos_UNIT_TERM (Local_unit _ _ poss) =
poss
-- UNIT-APPLICATION
getPos_UNIT_TERM (Unit_appl u _ poss) =
appRange (tokPos u) poss
-- GROUP-UNIT-TERM
getPos_UNIT_TERM (Group_unit_term _ poss) =
poss
-- | Get a position within the source file of UNIT-IMPORTED
getPos_UNIT_IMPORTED :: Range -> Range
getPos_UNIT_IMPORTED (Range ps) = Range $ case ps of
[] -> []
_ : qs -> if null qs then ps else qs
-- | Get a position within the source file of UNIT-EXPRESSION
getPos_UNIT_EXPRESSION :: UNIT_EXPRESSION -> Range
getPos_UNIT_EXPRESSION (Unit_expression _ (Annoted ut _ _ _) poss) =
appRange (getPos_UNIT_TERM ut) poss