AnalysisArchitecture.hs revision 7297175957c5ad3c0498032190b1dee9ec5fb873
{- |
Module : $Header$
Author : Maciek Makowski
Year : 2004
Copyright : (c) Maciek Makowski, Warsaw University 2004
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : non-portable (via imports)
Analysis of architectural specifications.
Follows the extended static semantics sketched in Chap. III:5.6
of the CASL Reference Manual.
-}
module Static.AnalysisArchitecture (ana_ARCH_SPEC, ana_UNIT_SPEC)
where
import Options
import Maybe
import Logic.Logic
import Logic.Grothendieck
import Common.Lib.Graph
import Static.DevGraph
import Static.ArchDiagram
import Syntax.AS_Architecture
import Syntax.AS_Structured
import Static.AnalysisStructured
import Common.AS_Annotation
import Common.Id (Token)
import Common.Result
import Common.Id
import Common.Lib.Graph
import Common.PrettyPrint
import qualified Common.Lib.Map as Map
import Syntax.Print_AS_Architecture
import List
-- import Debug.Trace
-- | Analyse an architectural specification
-- @
-- ARCH-SPEC ::= BASIC-ARCH-SPEC | GROUP-ARCH-SPEC | ARCH-SPEC-NAME
-- @
ana_ARCH_SPEC :: LogicGraph -> AnyLogic -- ^ the default logic
-> GlobalContext -> AnyLogic -- ^ current logic
-> HetcatsOpts -- ^ should only the structure be analysed?
-> ARCH_SPEC -> Result (ArchSig, DGraph, ARCH_SPEC)
-- ^ returns 1. the architectural signature of given ARCH-SPEC 2. development graph resulting from
-- structured specs within the arch spec and 3. ARCH_SPEC after possible conversions
-- BASIC-ARCH-SPEC
ana_ARCH_SPEC lgraph defl gctx@(gannos, genv, _) curl opts (Basic_arch_spec udd uexpr pos) =
do (uctx, dg', udd') <- ana_UNIT_DECL_DEFNS lgraph defl gctx curl opts udd
(_, usig, _, dg'', uexpr') <- ana_UNIT_EXPRESSION lgraph defl (gannos, genv, dg') curl opts uctx (item uexpr)
return ((ctx uctx, usig), dg'', Basic_arch_spec udd' (replaceAnnoted uexpr' uexpr) pos)
-- GROUP-ARCH-SPEC
ana_ARCH_SPEC lgraph defl gctx curl opts (Group_arch_spec asp _) =
ana_ARCH_SPEC lgraph defl gctx curl opts (item asp)
-- ARCH-SPEC-NAME
ana_ARCH_SPEC _ defl (_, genv, dg) _ _ asp@(Arch_spec_name asn@(Token _ pos)) =
do case Map.lookup asn genv of
Nothing -> plain_error ((emptyStUnitCtx, (emptyUnitSig defl)), dg, asp)
("Undefined architectural specification " ++ showPretty asn "")
pos
Just (ArchEntry asig) -> return (asig, dg, asp)
_ -> plain_error ((emptyStUnitCtx, (emptyUnitSig defl)), dg, asp)
((showPretty asn "") ++ " is not an architectural specification")
pos
-- | Analyse a list of unit declarations and definitions
ana_UNIT_DECL_DEFNS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> [Annoted UNIT_DECL_DEFN]
-> Result (ExtStUnitCtx, DGraph, [Annoted UNIT_DECL_DEFN])
-- ^ returns 1. extended static unit context 2. possibly modified development graph
-- 3. possibly modified list of unit declarations and definitions
ana_UNIT_DECL_DEFNS lgraph defl gctx curl opts udds =
ana_UNIT_DECL_DEFNS' lgraph defl gctx curl opts emptyExtStUnitCtx udds
ana_UNIT_DECL_DEFNS' :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic -> HetcatsOpts
-> ExtStUnitCtx -> [Annoted UNIT_DECL_DEFN]
-> Result (ExtStUnitCtx, DGraph, [Annoted UNIT_DECL_DEFN])
ana_UNIT_DECL_DEFNS' _ _ (_, _, dg) _ _ uctx [] =
do return (uctx, dg, [])
ana_UNIT_DECL_DEFNS' lgraph defl gctx@(gannos, genv, _) curl opts uctx (udd : udds) =
do (uctx', dg', udd') <- ana_UNIT_DECL_DEFN lgraph defl gctx curl opts uctx (item udd)
(uctx'', dg'', udds') <- ana_UNIT_DECL_DEFNS' lgraph defl (gannos, genv, dg') curl opts uctx' udds
return (uctx'', dg'', (replaceAnnoted udd' udd) : udds')
-- | Analyse unit declaration or definition
ana_UNIT_DECL_DEFN :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_DECL_DEFN -> Result (ExtStUnitCtx, DGraph, UNIT_DECL_DEFN)
-- ^ returns 1. extended static unit context 2. possibly modified development graph
-- 3. possibly modified UNIT_DECL_DEFN
-- unit declaration
ana_UNIT_DECL_DEFN lgraph defl gctx@(gannos, genv, _) curl opts
uctx@(buc, _) (Unit_decl un@(Token _ unpos) usp uts pos) =
do (dns, diag', dg', uts') <- ana_UNIT_IMPORTED lgraph defl gctx curl opts uctx pos uts
let impSig = getSigFromDiag dns
(usig, dg'', usp') <- ana_UNIT_SPEC lgraph defl (gannos, genv, dg') curl opts impSig usp
let ud' = Unit_decl un usp' uts' pos
if Map.member un buc
then
plain_error (uctx, dg'', ud')
("Unit " ++ showPretty un " already declared/defined")
unpos
else
case usig of
Par_unit_sig (argSigs, resultSig) ->
do (resultSig', dg''') <- nodeSigUnion lgraph dg'' (resultSig : [impSig]) DGImports
let basedParUSig = Based_par_unit_sig (dns, (argSigs, resultSig'))
return ((Map.insert un basedParUSig buc, diag'), dg''', ud')
Unit_sig nsig ->
do (nsig', dg''') <- nodeSigUnion lgraph dg'' (impSig : [nsig]) DGImports
(dn', diag'') <- extendDiagramIncl lgraph diag' [dns] nsig' (renderText Nothing (printText un))
return ((Map.insert un (Based_unit_sig dn') buc, diag''), dg''', ud')
-- unit definition
ana_UNIT_DECL_DEFN lgraph defl gctx curl opts uctx@(buc, _)
(Unit_defn un@(Token _ unpos) uexp poss) =
do (p, usig, diag, dg', uexp') <- ana_UNIT_EXPRESSION lgraph defl gctx curl opts uctx uexp
let ud' = Unit_defn un uexp' poss
{- it's sufficient to check that un is not mapped in buc, we don't need
to convert the ExtStUnitCtx to StUnitCtx as the domain will be preserved -}
if Map.member un buc
then
plain_error (uctx, dg', ud')
("Unit " ++ showPretty un " already defined/declared")
unpos
else
case usig of
{- we can use Map.insert as there are no mappings for un in ps and bs
(otherwise there would have been a mapping in (ctx uctx)) -}
Unit_sig _ -> return ((Map.insert un (Based_unit_sig p) buc, diag),
dg', ud')
Par_unit_sig parusig -> return ((Map.insert un (Based_par_unit_sig (p, parusig)) buc, diag),
dg', ud')
-- | Analyse unit imports
ana_UNIT_IMPORTED :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [Pos] -> [Annoted UNIT_TERM]
-> Result (DiagNodeSig, Diag, DGraph, [Annoted UNIT_TERM])
ana_UNIT_IMPORTED _ _ (_, _, dg) curl _ (_, diag) _ [] =
do return (Empty_node curl, diag, dg, [])
ana_UNIT_IMPORTED lgraph defl gctx curl opts uctx poss terms =
do (dnsigs, diag', dg', terms') <- ana_UNIT_IMPORTED' lgraph defl gctx curl opts uctx terms
(sig, dg'') <- nodeSigUnion lgraph dg' (map getSigFromDiag dnsigs) DGImports
-- check amalgamability conditions
-- let incl s = propagateErrors (ginclusion lgraph (getSig (getSigFromDiag s)) (getSig sig))
let pos = getPos_UNIT_IMPORTED poss
sink <- inclusionSink lgraph dnsigs sig
() <- assertAmalgamability opts pos diag' sink
(dnsig, diag'') <- extendDiagramIncl lgraph diag' dnsigs sig (renderText Nothing (printText terms))
return (dnsig, diag'', dg'', terms')
ana_UNIT_IMPORTED' :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_TERM]
-> Result ([DiagNodeSig], Diag, DGraph, [Annoted UNIT_TERM])
ana_UNIT_IMPORTED' _ _ (_, _, dg) _ _ (_, diag) [] =
do return ([], diag, dg, [])
ana_UNIT_IMPORTED' lgraph defl gctx@(gannos, genv, _) curl opts uctx@(buc, _) (ut : uts) =
do (dnsig, diag', dg', ut') <- ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
(dnsigs, diag'', dg'', uts') <- ana_UNIT_IMPORTED' lgraph defl (gannos, genv, dg') curl opts (buc, diag') uts
return (dnsig : dnsigs, diag'', dg'', (replaceAnnoted ut' ut) : uts')
-- | Analyse an unit expression
ana_UNIT_EXPRESSION :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_EXPRESSION
-> Result (DiagNodeSig, UnitSig, Diag, DGraph, UNIT_EXPRESSION)
ana_UNIT_EXPRESSION lgraph defl gctx curl opts uctx (Unit_expression [] ut poss) =
do (dnsig, diag', dg', ut') <- ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
return (dnsig, Unit_sig (getSigFromDiag dnsig), diag', dg',
Unit_expression [] (replaceAnnoted ut' ut) poss)
ana_UNIT_EXPRESSION lgraph defl gctx@(gannos, genv, _) curl opts
uctx@(buc, diag) exp@(Unit_expression ubs ut poss) =
do (args, dg', ubs') <- ana_UNIT_BINDINGS lgraph defl gctx curl opts uctx ubs
(resnsig, dg'') <- nodeSigUnion lgraph dg' (map snd args) DGFormalParams
-- build the extended diagram and new based unit context
let insNodes diag [] buc = do return ([], diag, buc)
insNodes diag ((un, nsig) : args) buc =
do (dnsig, diag') <- extendDiagramIncl lgraph diag [] nsig (renderText Nothing (printText exp))
{- we made sure in ana_UNIT_BINDINGS that there's no mapping for un in buc
so we can just use Map.insert -}
let buc' = Map.insert un (Based_unit_sig dnsig) buc
(dnsigs, diag'', buc'') <- insNodes diag' args buc'
return (dnsig : dnsigs, diag'', buc'')
(pardnsigs, diag', buc') <- insNodes diag args buc
(_, diag'') <- extendDiagramIncl lgraph diag' pardnsigs resnsig (renderText Nothing (printText exp))
-- analyse the unit term
(p@(Diag_node_sig _ pnsig), diag''', dg''', ut') <- ana_UNIT_TERM lgraph defl (gannos, genv, dg'')
curl opts (buc', diag'') (item ut)
-- check amalgamability conditions
let pos = getPos_UNIT_EXPRESSION exp
checkSubSign [] _ = True
checkSubSign (dnsub : dnsigs) nsup =
if is_subgsign (getSig (getSigFromDiag dnsub)) (getSig nsup)
then checkSubSign dnsigs nsup
else False
-- check that signatures in pardnsigs are subsignatures of pnsig
if checkSubSign pardnsigs pnsig
then
do sink <- inclusionSink lgraph (p : pardnsigs) pnsig
() <- assertAmalgamability opts pos diag''' sink
-- add new node to the diagram
(z, diag4) <- extendDiagramIncl lgraph diag''' [] (EmptyNode curl) (renderText Nothing (printText exp))
return (z, Par_unit_sig (map snd args, getSigFromDiag p), diag4, dg''',
Unit_expression ubs' (replaceAnnoted ut' ut) poss)
else -- report an error
do (z, diag4) <- extendDiagramIncl lgraph diag''' [] (EmptyNode curl) (renderText Nothing (printText exp))
plain_error (z, Par_unit_sig (map snd args, getSigFromDiag p), diag4, dg''',
Unit_expression ubs' (replaceAnnoted ut' ut) poss)
("The body signature does not extend the parameter signatures in\n" ++ (showPretty exp ""))
pos
-- | Analyse a list of unit bindings. Ensures that the unit names are not present
-- in extended static unit context and that there are no duplicates among them.
ana_UNIT_BINDINGS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [UNIT_BINDING]
-> Result ([(SIMPLE_ID, NodeSig)], DGraph, [UNIT_BINDING])
ana_UNIT_BINDINGS _ _ (_, _, dg) _ _ _ [] =
do return ([], dg, [])
ana_UNIT_BINDINGS lgraph defl gctx@(gannos, genv, _) curl opts uctx@(buc, _)
((Unit_binding un@(Token _ unpos) usp poss) : ubs) =
do (usig, dg', usp') <- ana_UNIT_SPEC lgraph defl gctx curl opts (EmptyNode curl) usp
let ub' = Unit_binding un usp' poss
case usig of
Par_unit_sig _ -> plain_error ([], dg', [])
("An argument unit " ++ showPretty un " must not be parameterized")
unpos
Unit_sig nsig ->
do (args, dg'', ubs') <- ana_UNIT_BINDINGS lgraph defl (gannos, genv, dg') curl opts uctx ubs
let args' = (un, nsig) : args
if Map.member un buc
then
plain_error (args', dg'', ub' : ubs')
("Unit " ++ showPretty un " already declared/defined")
unpos
else
case lookup un args of
Just _ -> plain_error (args', dg'', ub' : ubs')
("Unit " ++ showPretty un " already declared/defined")
unpos
Nothing -> return (args', dg'', ub' : ubs')
-- | Analyse a list of unit terms
ana_UNIT_TERMS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_TERM]
-> Result ([DiagNodeSig], Diag, DGraph, [Annoted UNIT_TERM])
ana_UNIT_TERMS _ _ (_, _, dg) _ _ (_, diag) [] =
do return ([], diag, dg, [])
ana_UNIT_TERMS lgraph defl gctx@(gannos, genv, _) curl opts uctx@(buc, _) (ut : uts) =
do (dnsig, diag', dg', ut') <- ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
(dnsigs, diag'', dg'', uts') <- ana_UNIT_TERMS lgraph defl (gannos, genv, dg') curl opts (buc, diag') uts
return (dnsig : dnsigs, diag'', dg'', (replaceAnnoted ut' ut) : uts')
-- | Analyse an unit term
ana_UNIT_TERM :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_TERM
-> Result (DiagNodeSig, Diag, DGraph, UNIT_TERM)
-- UNIT-REDUCTION
ana_UNIT_TERM lgraph defl gctx curl opts uctx red@(Unit_reduction ut restr) =
do (p, diag, dg, ut') <- ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
(incl, msigma) <- ana_RESTRICTION dg (emptyG_sign curl) (getSig (getSigFromDiag p)) opts restr
let pos = getPos_UNIT_TERM red
(q@(Diag_node_sig qn _), diag', dg') <- extendDiagramWithMorphismRev pos lgraph diag dg p incl
(renderText Nothing (printText red))
(case restr of
(Hidden _ _) -> DGHiding
(Revealed _ _) -> DGRevealing)
case msigma of
Nothing ->
-- the renaming morphism is just identity, so there's no need
-- to extend the diagram
do return (q, diag', dg', Unit_reduction (replaceAnnoted ut' ut) restr)
Just sigma ->
do
-- check amalgamability conditions
let sink = [(qn, sigma)]
() <- assertAmalgamability opts pos diag' sink
(q', diag'', dg'') <- extendDiagramWithMorphism pos lgraph diag' dg' q sigma
(renderText Nothing (printText red))
(case restr of
(Hidden _ _) -> DGHiding
(Revealed _ _) -> DGRevealing)
return (q', diag'', dg'', Unit_reduction (replaceAnnoted ut' ut) restr)
-- UNIT-TRANSLATION
ana_UNIT_TERM lgraph defl gctx curl opts uctx tr@(Unit_translation ut ren) =
do (dnsig@(Diag_node_sig p _), diag, dg, ut') <- ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
gMorph <- ana_RENAMING dg (getSig (getSigFromDiag dnsig)) opts ren
let pos = getPos_UNIT_TERM tr
sink = [(p, gMorph)]
-- check amalamability conditions
() <- assertAmalgamability opts pos diag sink
(dnsig', diag', dg') <- extendDiagramWithMorphism pos lgraph diag dg dnsig gMorph
(renderText Nothing (printText tr))
DGTranslation
return (dnsig', diag', dg', Unit_translation (replaceAnnoted ut' ut) ren)
-- AMALGAMATION
ana_UNIT_TERM lgraph defl gctx curl opts uctx am@(Amalgamation uts poss) =
do (dnsigs, diag, dg', uts') <- ana_UNIT_TERMS lgraph defl gctx curl opts uctx uts
-- compute sigma
(sig, dg'') <- nodeSigUnion lgraph dg' (map getSigFromDiag dnsigs) DGUnion
-- check amalgamability conditions
sink <- inclusionSink lgraph dnsigs sig
() <- assertAmalgamability opts (headPos poss) diag sink
(q, diag') <- extendDiagramIncl lgraph diag dnsigs sig (renderText Nothing (printText am))
return (q, diag', dg'', Amalgamation uts' poss)
-- LOCAL-UNIT
ana_UNIT_TERM lgraph defl gctx@(gannos, genv, _) curl opts uctx (Local_unit udds ut poss) =
do (uctx', dg, udds') <- ana_UNIT_DECL_DEFNS' lgraph defl gctx curl opts uctx udds
(dnsig, diag, dg', ut') <- ana_UNIT_TERM lgraph defl (gannos, genv, dg) curl opts uctx' (item ut)
return (dnsig, diag, dg', Local_unit udds' (replaceAnnoted ut' ut) poss)
-- UNIT-APPL
ana_UNIT_TERM lgraph defl (gannos, genv, dg) curl opts uctx@(buc, diag)
uappl@(Unit_appl un fargus _) =
do let pos = getPos_UNIT_TERM uappl
case Map.lookup un buc of
Just (Based_unit_sig dnsig) ->
do case fargus of
[] -> return (dnsig, diag, dg, uappl)
_ -> -- arguments have been given for a parameterless unit
do plain_error (dnsig, diag, dg, uappl)
(showPretty un " is a parameterless unit, but arguments have been given: " ++
showPretty fargus "")
pos
Just (Based_par_unit_sig (pI, (argSigs, resultSig))) ->
do (sigF, dg') <- nodeSigUnion lgraph dg ((getSigFromDiag pI) : argSigs) DGFormalParams
(morphSigs, dg'', diagA) <- ana_FIT_ARG_UNITS lgraph defl (gannos, genv, dg') curl opts uctx
uappl pos argSigs fargus
let first (e, _, _) = e
second (_, e, _) = e
third (_, _, e) = e
(sigA, dg''') <- nodeSigUnion lgraph dg''
((getSigFromDiag pI) : (map second morphSigs))
DGFitSpec
-- compute morphA (\sigma^A)
G_sign lidI sigI <- return (getSig (getSigFromDiag pI))
let idI = G_morphism lidI (ide lidI sigI)
morphA <- homogeneousMorManyUnion (idI : (map first morphSigs))
-- compute sigMorExt (\sigma^A(\Delta))
(_, sigMorExt) <- extendMorphism (getSig sigF) (getSig resultSig) (getSig sigA) morphA
-- check amalgamability conditions
sink <- inclusionSink lgraph (pI : (map third morphSigs)) sigA
() <- assertAmalgamability opts pos diagA sink
(qB@(Diag_node_sig nqB _), diag') <- extendDiagramIncl lgraph diagA [pI] resultSig ""
-- insert nodes p^F_i and appropriate edges to the diagram
let ins diag dg [] = do return (diag, dg)
ins diag dg ((morph, _, targetNode) : morphNodes) =
do (dnsig, diag', dg') <- extendDiagramWithMorphismRev pos lgraph diag
dg targetNode (gEmbed morph)
(renderText Nothing (printText fargus))
DGFormalParams
diag'' <- insInclusionEdges lgraph diag' [dnsig] qB
ins diag'' dg' morphNodes
(diag'', dg4) <- ins diag' dg''' morphSigs
-- check amalgamability conditions
(sigR, dg5) <- extendDGraph dg4 resultSig (gEmbed sigMorExt) DGExtension
sink <- inclusionSink lgraph (map third morphSigs) sigR
let sink' = (nqB, gEmbed sigMorExt) : sink
() <- assertAmalgamability opts pos diag'' sink'
(q, diag''') <- extendDiagram diag'' qB (gEmbed sigMorExt) sigR
(renderText Nothing (printText uappl))
diag4 <- insInclusionEdges lgraph diag''' (map third morphSigs) q
return (q, diag4, dg5, uappl)
Nothing -> plain_error (emptyDiagNodeSig defl, diag, dg, uappl)
("Undefined unit " ++ showPretty un "")
pos
-- group unit term
ana_UNIT_TERM lgraph defl gctx curl opts uctx (Group_unit_term ut poss) =
do (dnsig, diag, dg, ut') <- ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
return (dnsig, diag, dg, Group_unit_term (replaceAnnoted ut' ut) poss)
-- | Analyse unit arguments
ana_FIT_ARG_UNITS :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx
-> UNIT_TERM -- ^ the whole application for diagnostic purposes
-> Pos -- ^ the position of the application (for diagnostic purposes)
-> [NodeSig] -- ^ the signatures of unit's formal parameters
-> [FIT_ARG_UNIT] -- ^ the arguments for the unit
-> Result ([(G_morphism, NodeSig, DiagNodeSig)], DGraph, Diag)
ana_FIT_ARG_UNITS _ _ (_, _, dg) _ _ (_, diag) _ _ [] [] =
do return ([], dg, diag)
ana_FIT_ARG_UNITS lgraph defl gctx@(gannos, genv, _) curl opts uctx@(buc, _)
appl pos (nsig : nsigs) (fau : faus) =
do (gmorph, nsig', dnsig, dg, diag) <- ana_FIT_ARG_UNIT lgraph defl gctx curl opts
uctx nsig fau
(morphSigs, dg', diag') <- ana_FIT_ARG_UNITS lgraph defl (gannos, genv, dg) curl opts
(buc, diag) appl pos nsigs faus
return ((gmorph, nsig', dnsig) : morphSigs, dg', diag')
ana_FIT_ARG_UNITS _ _ (_, _, dg) _ _ (_, diag) appl pos [] _ =
do plain_error ([], dg, diag)
("Too many arguments given in application\n" ++ showPretty appl "")
pos
ana_FIT_ARG_UNITS _ _ (_, _, dg) _ _ (_, diag) appl pos _ [] =
do plain_error ([], dg, diag)
("Too few arguments given in application\n" ++ showPretty appl "")
pos
-- | Analyse unit argument
ana_FIT_ARG_UNIT :: LogicGraph -> AnyLogic -> GlobalContext -> AnyLogic
-> HetcatsOpts -> ExtStUnitCtx -> NodeSig -> FIT_ARG_UNIT
-> Result (G_morphism, NodeSig, DiagNodeSig, DGraph, Diag)
-- ^ returns 1. the signature morphism 2. the target signature of the morphism
-- 3. the diagram node 4. the modified DGraph 5. the modified diagram
ana_FIT_ARG_UNIT lgraph defl gctx curl opts uctx nsig (Fit_arg_unit ut symbMap poss) =
do (p, diag', dg', _) <- ana_UNIT_TERM lgraph defl gctx curl opts uctx (item ut)
-- compute gMorph (the morphism r|sigma/D(p))
let adj = adjustPos (headPos poss)
gsigmaS = getSig nsig
gsigmaT = getSig (getSigFromDiag p)
G_sign lidS sigmaS <- return gsigmaS
G_sign lidT sigmaT <- return gsigmaT
G_symb_map_items_list lid sis <- return symbMap
sigmaT' <- rcoerce lidT lidS (headPos poss) sigmaT
mor <- if isStructured opts then return (ide lidS sigmaS)
else do rmap <- adj $ stat_symb_map_items lid sis
rmap' <- rcoerce lid lidS (headPos poss) rmap
adj $ induced_from_to_morphism lidS rmap' sigmaS sigmaT'
let gMorph = G_morphism lidS mor
(nsig', dg'') <- extendDGraph dg' nsig (gEmbed gMorph) DGFitSpec
return (gMorph, nsig', p, dg'', diag')
-- | Analyse unit specification
ana_UNIT_SPEC :: LogicGraph -> AnyLogic -- ^ the default logic
-> GlobalContext -> AnyLogic -- ^ current logic
-> HetcatsOpts -- ^ should only the structure be analysed?
-> NodeSig -- ^ the signature of imports
-> UNIT_SPEC -> Result (UnitSig, DGraph, UNIT_SPEC)
-- ^ returns 1. unit signature 2. the development graph resulting from
-- structred specs inside the unit spec and 3. a UNIT_SPEC after possible
-- conversions.
-- UNIT-TYPE
{- if argspecs are empty and resultspec is a name of unit spec then this
should be converted to a Spec_name -}
ana_UNIT_SPEC lgraph defl gctx@(_, genv, _) curl just_struct
impsig (Unit_type [] (Annoted (Spec_inst spn [] _) _ _ _) _)
| case Map.lookup spn genv of Just (UnitEntry _) -> True
_ -> False =
ana_UNIT_SPEC lgraph defl gctx curl just_struct impsig (Spec_name spn)
-- a trivial unit type
ana_UNIT_SPEC lgraph _ gctx _ just_struct impsig (Unit_type [] resultSpec poss) =
do (resultSpec', resultSig, dg') <- ana_SPEC lgraph gctx impsig Nothing
just_struct (item resultSpec)
return (Unit_sig resultSig, dg', Unit_type [] (replaceAnnoted resultSpec' resultSpec) poss)
-- a non-trivial unit type
ana_UNIT_SPEC lgraph defl gctx@(gannos, genv, _) _ opts impSig (Unit_type argSpecs resultSpec poss) =
do (argSigs, dg1, argSpecs') <- ana_argSpecs lgraph defl gctx opts argSpecs
(sigUnion, dg2) <- nodeSigUnion lgraph dg1 (impSig : argSigs) DGFormalParams
(resultSpec', resultSig, dg3) <- ana_SPEC lgraph (gannos, genv, dg2) sigUnion
Nothing opts (item resultSpec)
return (Par_unit_sig (argSigs, resultSig), dg3,
Unit_type argSpecs' (replaceAnnoted resultSpec' resultSpec) poss)
-- SPEC-NAME (an alias)
ana_UNIT_SPEC _ _ (_, genv, dg) _ _ impsig usp@(Spec_name usn@(Token _ pos)) =
do case Map.lookup usn genv of
Nothing -> plain_error (Unit_sig impsig, dg, usp)
("Undefined unit specification " ++ showPretty usn "")
pos
Just (UnitEntry usig) -> return (usig, dg, usp)
_ -> plain_error (Unit_sig impsig, dg, usp)
((showPretty usn "") ++ " is not an unit specification")
pos
-- ARCH-UNIT-SPEC
ana_UNIT_SPEC lgraph defl gctx curl just_struct _ (Arch_unit_spec asp poss) =
do ((_, usig), dg', asp') <- ana_ARCH_SPEC lgraph defl gctx curl just_struct (item asp)
return (usig, dg', Arch_unit_spec (replaceAnnoted asp' asp) poss)
-- CLOSED-UNIT-SPEC
ana_UNIT_SPEC lgraph defl gctx curl just_struct _ (Closed_unit_spec usp' _) =
ana_UNIT_SPEC lgraph defl gctx curl just_struct (EmptyNode curl) usp'
-- | Analyse a list of argument specifications
ana_argSpecs :: LogicGraph -> AnyLogic -> GlobalContext -> HetcatsOpts -> [Annoted SPEC]
-> Result ([NodeSig], DGraph, [Annoted SPEC])
ana_argSpecs _ _ (_, _, dg) _ [] =
do return ([], dg, [])
ana_argSpecs lgraph defl gctx@(gannos, genv, _) opts (argSpec : argSpecs) =
do (argSpec', argSig, dg') <- ana_SPEC lgraph gctx (EmptyNode defl) Nothing
opts (item argSpec)
(argSigs, dg'', argSpecs') <- ana_argSpecs lgraph defl (gannos, genv, dg') opts argSpecs
return (argSig : argSigs, dg'', (replaceAnnoted argSpec' argSpec) : argSpecs')
-- | Check that given diagram ensures amalgamability along given set of morphisms
assertAmalgamability :: HetcatsOpts -- ^ the program options
-> Pos -- ^ the position (for diagnostics)
-> Diag -- ^ the diagram to be checked
-> [(Node, GMorphism)] -- ^ the sink
-> Result ()
assertAmalgamability opts pos diag sink =
do ensAmalg <- homogeneousEnsuresAmalgamability opts pos diag sink
case ensAmalg of
Logic.Logic.Yes -> return ()
Logic.Logic.No msg -> plain_error () ("Amalgamability is not ensured: " ++ msg) pos
DontKnow msg -> warning () msg pos
-- | Check the amalgamability assuming common logic for whole diagram
homogeneousEnsuresAmalgamability :: HetcatsOpts -- ^ the program options
-> Pos -- ^ the position (for diagnostics)
-> Diag -- ^ the diagram to be checked
-> [(Node, GMorphism)] -- ^ the sink
-> Result Amalgamates
homogeneousEnsuresAmalgamability opts pos diag sink =
do case sink of
[] -> plain_error defaultDontKnow "homogeneousEnsuresAmalgamability: Empty sink" pos
lab:_ -> do let (_, mor) = lab
sig = cod Grothendieck mor
G_sign lid _ <- return sig
hDiag <- homogeniseDiagram lid diag
hSink <- homogeniseSink lid sink
ensures_amalgamability lid (opts, hDiag, hSink, (diagDesc diag))
-- | Get a position within the source file of a UNIT-TERM
getPos_UNIT_TERM :: UNIT_TERM
-> Pos
-- UNIT-REDUCTION
getPos_UNIT_TERM (Unit_reduction _ restr) =
-- obtain position from RESTRICTION
case restr of
(Hidden _ poss) -> headPos poss
(Revealed _ poss) -> headPos poss
-- UNIT-TRANSLATION
getPos_UNIT_TERM (Unit_translation _ (Renaming _ poss)) =
headPos poss
-- AMALGAMATION
getPos_UNIT_TERM (Amalgamation _ poss) =
headPos poss
-- LOCAL-UNIT
getPos_UNIT_TERM (Local_unit _ _ poss) =
headPos poss
-- UNIT-APPLICATION
getPos_UNIT_TERM (Unit_appl (Token _ unpos) _ _) =
unpos
-- GROUP-UNIT-TERM
getPos_UNIT_TERM (Group_unit_term _ poss) =
headPos poss
-- | Get a position within the source file of UNIT-IMPORTED
getPos_UNIT_IMPORTED :: [Pos]
-> Pos
getPos_UNIT_IMPORTED (_ : (pos : _)) = pos
getPos_UNIT_IMPORTED _ = nullPos
-- | Get a position within the source file of UNIT-EXPRESSION
getPos_UNIT_EXPRESSION :: UNIT_EXPRESSION
-> Pos
getPos_UNIT_EXPRESSION (Unit_expression _ (Annoted ut _ _ _) []) =
getPos_UNIT_TERM ut
getPos_UNIT_EXPRESSION (Unit_expression _ _ poss) =
headPos poss