AnalysisArchitecture.hs revision 6157bf81d295795067c177aa870fedff83cbe750
{- |
Module : $Header$
Description : static analysis of CASL architectural specifications
Copyright : (c) Maciek Makowski, Warsaw University, C. Maeder 2004-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (via imports)
Static analysis of CASL architectural specifications
Follows the extended static semantics sketched in Chap. III:5.6
of the CASL Reference Manual.
-}
module Static.AnalysisArchitecture
( ana_ARCH_SPEC
, ana_UNIT_SPEC
, ana_UNIT_REF
) where
import Driver.Options
import Logic.Logic
import Logic.ExtSign
import Logic.Coerce
import Logic.Grothendieck
import Static.GTheory
import Static.DevGraph
import Static.ArchDiagram
import Static.AnalysisStructured
import Syntax.Print_AS_Architecture ()
import Syntax.AS_Architecture
import Syntax.AS_Structured
import Common.AS_Annotation
import Common.Id
import Common.Result
import Common.Amalgamate
import Common.DocUtils
import qualified Data.Map as Map
import Data.Graph.Inductive.Graph as Graph (Node)
-- | Analyse an architectural specification
-- @
-- ARCH-SPEC ::= BASIC-ARCH-SPEC | GROUP-ARCH-SPEC | ARCH-SPEC-NAME
-- @
ana_ARCH_SPEC :: LogicGraph
-> DGraph
-> HetcatsOpts -- ^ should only the structure be analysed?
-> ARCH_SPEC -> Result (ArchSig, DGraph, ARCH_SPEC)
{- ^ returns 1. the architectural signature of given ARCH-SPEC
2. development graph resulting from structured specs within the arch
spec and 3. ARCH_SPEC after possible conversions -}
ana_ARCH_SPEC lgraph dg opts archSp = case archSp of
Basic_arch_spec udd uexpr pos ->
do (uctx, dg', udd') <- ana_UNIT_DECL_DEFNS lgraph dg opts udd
(_, usig, _, dg'', uexpr') <-
ana_UNIT_EXPRESSION lgraph dg' opts uctx (item uexpr)
return (ArchSig (ctx uctx) usig, dg'', Basic_arch_spec udd'
(replaceAnnoted uexpr' uexpr) pos)
Group_arch_spec asp _ -> ana_ARCH_SPEC lgraph dg opts (item asp)
Arch_spec_name asn@(Token astr pos) -> case lookupGlobalEnvDG asn dg of
Just (ArchEntry asig) -> return (asig, dg, archSp)
_ -> fatal_error (astr ++
" is not an architectural specification") pos
-- | Analyse a list of unit declarations and definitions
ana_UNIT_DECL_DEFNS :: LogicGraph -> DGraph
-> HetcatsOpts -> [Annoted UNIT_DECL_DEFN]
-> Result (ExtStUnitCtx, DGraph, [Annoted UNIT_DECL_DEFN])
{- ^ returns 1. extended static unit context 2. possibly modified
development graph 3. possibly modified list of unit declarations and
definitions -}
ana_UNIT_DECL_DEFNS lgraph dg opts udds =
ana_UNIT_DECL_DEFNS' lgraph dg opts emptyExtStUnitCtx udds
ana_UNIT_DECL_DEFNS' :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_DECL_DEFN]
-> Result (ExtStUnitCtx, DGraph, [Annoted UNIT_DECL_DEFN])
ana_UNIT_DECL_DEFNS' lgraph dg opts uctx uds = case uds of
udd : udds -> do
(uctx', dg', udd') <-
ana_UNIT_DECL_DEFN lgraph dg opts uctx (item udd)
(uctx'', dg'', udds') <-
ana_UNIT_DECL_DEFNS' lgraph dg' opts uctx' udds
return (uctx'', dg'', (replaceAnnoted udd' udd) : udds')
[] -> return (uctx, dg, [])
alreadyDefinedUnit :: SIMPLE_ID -> String
alreadyDefinedUnit u = "Unit " ++ tokStr u ++ " already declared/defined"
-- | Create a node that represents a union of signatures
nodeSigUnion :: LogicGraph -> DGraph -> [MaybeNode] -> DGOrigin
-> Result (NodeSig, DGraph)
nodeSigUnion lgraph dg nodeSigs orig =
do sigUnion@(G_sign lid sigU ind) <- gsigManyUnion lgraph
$ map getMaybeSig nodeSigs
let nodeContents = newNodeLab emptyNodeName orig
$ noSensGTheory lid sigU ind
node = getNewNodeDG dg
dg' = insNodeDG (node, nodeContents) dg
inslink dgres nsig = do
dgv <- dgres
case nsig of
EmptyNode _ -> dgres
JustNode (NodeSig n sig) -> do
incl <- ginclusion lgraph sig sigUnion
return $ insEdgeDG (n, node, DGLink
{ dgl_morphism = incl
, dgl_type = GlobalDef
, dgl_origin = SeeTarget
, dgl_id = getNewEdgeId dgv
}) dgv
dg'' <- foldl inslink (return dg') nodeSigs
return (NodeSig node sigUnion, dg'')
-- | Analyse unit refs
ana_UNIT_REF :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_REF
-> Result (ExtStUnitCtx, DGraph, UNIT_REF)
{- ^ returns 1. extended static unit context 2. possibly modified
development graph 3. possibly modified UNIT_DECL_DEFN -}
-- unit declaration
ana_UNIT_REF lgraph dg opts
uctx@(buc, _) (Unit_ref un@(Token ustr unpos) usp pos) =
do (dns, diag', dg', _) <-
ana_UNIT_IMPORTED lgraph dg opts uctx pos []
let impSig = toMaybeNode dns
(usig, dg'', usp') <-
ana_REF_SPEC lgraph dg' opts impSig usp
let ud' = Unit_ref un usp' pos
if Map.member un buc
then plain_error (uctx, dg'', ud') (alreadyDefinedUnit un) unpos
else case usig of
ParUnitSig argSigs resultSig ->
do (resultSig', dg''') <- nodeSigUnion lgraph dg''
(JustNode resultSig : [impSig]) DGImports
let basedParUSig = Based_par_unit_sig dns $
ParUnitSig argSigs resultSig'
return ((Map.insert un basedParUSig buc, diag'),
dg''', ud')
UnitSig nsig ->
do (nsig', dg''') <- nodeSigUnion lgraph dg''
(impSig : [JustNode nsig]) DGImports
(dn', diag'') <- extendDiagramIncl lgraph diag' []
nsig' ustr
return ((Map.insert un (Based_unit_sig dn') buc, diag'')
, dg''', ud')
-- | Analyse unit declaration or definition
ana_UNIT_DECL_DEFN :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_DECL_DEFN
-> Result (ExtStUnitCtx, DGraph, UNIT_DECL_DEFN)
{- ^ returns 1. extended static unit context 2. possibly modified
development graph 3. possibly modified UNIT_DECL_DEFN -}
ana_UNIT_DECL_DEFN lgraph dg opts uctx@(buc, _) udd = case udd of
Unit_decl un@(Token ustr unpos) usp uts pos -> do
(dns, diag', dg', uts') <-
ana_UNIT_IMPORTED lgraph dg opts uctx pos uts
let impSig = toMaybeNode dns
(usig, dg'', usp') <-
ana_REF_SPEC lgraph dg' opts impSig usp
let ud' = Unit_decl un usp' uts' pos
if Map.member un buc
then plain_error (uctx, dg'', ud') (alreadyDefinedUnit un) unpos
else case usig of
ParUnitSig argSigs resultSig ->
do (resultSig', dg''') <- nodeSigUnion lgraph dg''
(JustNode resultSig : [impSig]) DGImports
let basedParUSig = Based_par_unit_sig dns $
ParUnitSig argSigs resultSig'
return ((Map.insert un basedParUSig buc, diag'),
dg''', ud')
UnitSig nsig ->
do (nsig', dg''') <- nodeSigUnion lgraph dg''
(impSig : [JustNode nsig]) DGImports
(dn', diag'') <- extendDiagramIncl lgraph diag'
(case dns of
JustDiagNode dn -> [dn]
_ -> []) nsig' ustr
return ((Map.insert un (Based_unit_sig dn') buc, diag'')
, dg''', ud')
Unit_defn un uexp poss -> do
(p, usig, diag, dg', uexp') <-
ana_UNIT_EXPRESSION lgraph dg opts uctx uexp
let ud' = Unit_defn un uexp' poss
{- it's sufficient to check that un is not mapped in buc, we
don't need to convert the ExtStUnitCtx to StUnitCtx as the
domain will be preserved -}
if Map.member un buc then
plain_error (uctx, dg', ud') (alreadyDefinedUnit un) $ tokPos un
else case usig of
{- we can use Map.insert as there are no mappings for
un in ps and bs (otherwise there would have been a
mapping in (ctx uctx)) -}
UnitSig _ -> case p of
JustDiagNode dn -> return ((Map.insert un
(Based_unit_sig dn) buc, diag), dg', ud')
_ -> error "ana_UNIT_DECL_DEFN"
ParUnitSig _ _ -> return ((Map.insert un
(Based_par_unit_sig p usig) buc
, diag), dg', ud')
-- | Analyse unit imports
ana_UNIT_IMPORTED :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> Range -> [Annoted UNIT_TERM]
-> Result (MaybeDiagNode, Diag, DGraph, [Annoted UNIT_TERM])
ana_UNIT_IMPORTED lgraph dg opts uctx@(_, diag) poss terms =
case terms of
[] -> do
curl <- lookupCurrentLogic "UNIT_IMPORTED" lgraph
return (EmptyDiagNode curl, diag, dg, [])
_ -> do
(dnsigs, diag', dg', terms') <-
ana_UNIT_IMPORTED' lgraph dg opts uctx terms
(sig, dg'') <- nodeSigUnion lgraph dg'
(map (JustNode . getSigFromDiag) dnsigs) DGImports
-- check amalgamability conditions
{- let incl s = propagateErrors (ginclusion lgraph (getSig
(getSigFromDiag s)) (getSig sig)) -}
let pos = getPos_UNIT_IMPORTED poss
sink <- inclusionSink lgraph dnsigs sig
() <- assertAmalgamability opts pos diag' sink
(dnsig, diag'') <- extendDiagramIncl lgraph diag' dnsigs
sig $ showDoc terms ""
return (JustDiagNode dnsig, diag'', dg'', terms')
ana_UNIT_IMPORTED' :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_TERM]
-> Result ([DiagNodeSig], Diag, DGraph, [Annoted UNIT_TERM])
ana_UNIT_IMPORTED' lgraph dg opts uctx@(buc, diag) ts = case ts of
[] -> return ([], diag, dg, [])
ut : uts -> do
(dnsig, diag', dg', ut') <-
ana_UNIT_TERM lgraph dg opts uctx (item ut)
(dnsigs, diag'', dg'', uts') <-
ana_UNIT_IMPORTED' lgraph dg' opts (buc, diag') uts
return (dnsig : dnsigs, diag'', dg'', (replaceAnnoted ut' ut) : uts')
-- | Analyse an unit expression
ana_UNIT_EXPRESSION :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_EXPRESSION
-> Result (MaybeDiagNode, UnitSig, Diag, DGraph, UNIT_EXPRESSION)
ana_UNIT_EXPRESSION lgraph dg opts uctx@(buc, diag)
uexp@(Unit_expression ubs ut poss) = case ubs of
[] -> do
(dnsig@(Diag_node_sig _ ns'), diag', dg', ut') <-
ana_UNIT_TERM lgraph dg opts uctx (item ut)
return (JustDiagNode dnsig, UnitSig ns', diag', dg',
Unit_expression [] (replaceAnnoted ut' ut) poss)
_ -> do
(args, dg', ubs') <-
ana_UNIT_BINDINGS lgraph dg opts uctx ubs
(resnsig, _dg'') <- nodeSigUnion lgraph dg'
(map (JustNode . snd) args) DGFormalParams
-- build the extended diagram and new based unit context
let dexp = showDoc uexp ""
insNodes diag0 [] buc0 = return ([], diag0, buc0)
insNodes diag0 ((un, nsig) : args0) buc0 =
do (dnsig, diag') <- extendDiagramIncl lgraph diag0 []
nsig dexp
{- we made sure in ana_UNIT_BINDINGS that there's no
mapping for un in buc so we can just use
Map.insert -}
let buc' = Map.insert un (Based_unit_sig dnsig) buc0
(dnsigs, diag'', buc'') <- insNodes diag' args0 buc'
return (dnsig : dnsigs, diag'', buc'')
(pardnsigs, diag', buc') <- insNodes diag args buc
(_, diag'') <- extendDiagramIncl lgraph diag' pardnsigs
resnsig dexp
-- analyse the unit term
(p@(Diag_node_sig _ pnsig), diag''', dg''', ut') <-
ana_UNIT_TERM lgraph dg' opts (buc', diag'') (item ut)
-- check amalgamability conditions
let pos = getPos_UNIT_EXPRESSION uexp
checkSubSign [] _ = True
checkSubSign (dnsub : dnsigs) nsup =
if isSubGsign lgraph (getSig $ getSigFromDiag dnsub) $ getSig nsup
then checkSubSign dnsigs nsup else False
-- check that signatures in pardnsigs are subsignatures of pnsig
if checkSubSign pardnsigs pnsig
then
do sink <- inclusionSink lgraph (p : pardnsigs) pnsig
() <- assertAmalgamability opts pos diag''' sink
-- add new node to the diagram
curl <- lookupCurrentLogic "UNIT_EXPRESSION" lgraph
return (EmptyDiagNode curl, ParUnitSig (map snd args) pnsig,
diag''', dg''',
Unit_expression ubs' (replaceAnnoted ut' ut) poss)
else -- report an error
fatal_error
("The body signature does not extend the parameter signatures in\n"
++ dexp) pos
{- | Analyse a list of unit bindings. Ensures that the unit names are
not present in extended static unit context and that there are no
duplicates among them. -}
ana_UNIT_BINDINGS :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> [UNIT_BINDING]
-> Result ([(SIMPLE_ID, NodeSig)], DGraph, [UNIT_BINDING])
ana_UNIT_BINDINGS lgraph dg opts uctx@(buc, _) bs = case bs of
[] -> return ([], dg, [])
Unit_binding un@(Token ustr unpos) usp poss : ubs -> do
curl <- lookupCurrentLogic "UNIT_BINDINGS" lgraph
(usig, dg', usp') <-
ana_UNIT_SPEC lgraph dg opts (EmptyNode curl) usp
let ub' = Unit_binding un usp' poss
case usig of
ParUnitSig _ _ -> plain_error ([], dg', [])
("An argument unit " ++
ustr ++ " must not be parameterized") unpos
UnitSig nsig ->
do (args, dg'', ubs') <- ana_UNIT_BINDINGS lgraph
dg' opts uctx ubs
let args' = (un, nsig) : args
if Map.member un buc
then plain_error (args', dg'', ub' : ubs')
(alreadyDefinedUnit un) unpos
else case lookup un args of
Just _ -> plain_error (args', dg'', ub' : ubs')
(alreadyDefinedUnit un) unpos
Nothing -> return (args', dg'', ub' : ubs')
-- | Analyse a list of unit terms
ana_UNIT_TERMS :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> [Annoted UNIT_TERM]
-> Result ([DiagNodeSig], Diag, DGraph, [Annoted UNIT_TERM])
ana_UNIT_TERMS lgraph dg opts uctx@(buc, diag) ts = case ts of
[] -> return ([], diag, dg, [])
ut : uts -> do
(dnsig, diag', dg', ut') <-
ana_UNIT_TERM lgraph dg opts uctx (item ut)
(dnsigs, diag'', dg'', uts') <- ana_UNIT_TERMS lgraph
dg' opts (buc, diag') uts
return (dnsig : dnsigs, diag'', dg'', (replaceAnnoted ut' ut) : uts')
-- | Analyse an unit term
ana_UNIT_TERM :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_TERM
-> Result (DiagNodeSig, Diag, DGraph, UNIT_TERM)
ana_UNIT_TERM lgraph dg opts uctx@(buc, diag) utrm =
let pos = getPos_UNIT_TERM utrm
utStr = showDoc utrm ""
in case utrm of
Unit_reduction ut restr -> do
(p, diag1, dg1, ut') <-
ana_UNIT_TERM lgraph dg opts uctx (item ut)
curl <- lookupCurrentLogic "UNIT_TERM" lgraph
(incl, msigma) <- ana_RESTRICTION (emptyG_sign curl)
(getSig (getSigFromDiag p)) opts restr
(q@(Diag_node_sig qn _), diag', dg') <-
extendDiagramWithMorphismRev pos lgraph diag1 dg1 p incl utStr
(case restr of
Hidden _ _ -> DGHiding
Revealed _ _ -> DGRevealing)
case msigma of
Nothing ->
{- the renaming morphism is just identity, so
there's no need to extend the diagram -}
return (q, diag', dg',
Unit_reduction (replaceAnnoted ut' ut) restr)
Just sigma ->
do
-- check amalgamability conditions
let sink = [(qn, sigma)]
() <- assertAmalgamability opts pos diag' sink
(q', diag'', dg'') <- extendDiagramWithMorphism pos
lgraph diag' dg' q sigma utStr
(case restr of
Hidden _ _ -> DGHiding
Revealed _ _ -> DGRevealing)
return (q', diag'', dg'',
Unit_reduction
(replaceAnnoted ut' ut) restr)
Unit_translation ut ren -> do
(dnsig@(Diag_node_sig p _), diag1, dg1, ut') <-
ana_UNIT_TERM lgraph dg opts uctx (item ut)
-- EmptyNode $ error ... should be replaced with local env!
gMorph <- ana_RENAMING lgraph
(EmptyNode $ error "Static.AnalysisArchitecture")
(getSig (getSigFromDiag dnsig)) opts ren
let sink = [(p, gMorph)]
-- check amalamability conditions
() <- assertAmalgamability opts pos diag1 sink
(dnsig', diag', dg') <- extendDiagramWithMorphism pos lgraph
diag1 dg1 dnsig gMorph utStr
DGTranslation
return (dnsig', diag', dg', Unit_translation
(replaceAnnoted ut' ut) ren)
Amalgamation uts poss -> do
(dnsigs, diag1, dg', uts') <-
ana_UNIT_TERMS lgraph dg opts uctx uts
-- compute sigma
(sig, dg'') <- nodeSigUnion lgraph dg'
(map (JustNode . getSigFromDiag) dnsigs) DGUnion
-- check amalgamability conditions
sink <- inclusionSink lgraph dnsigs sig
() <- assertAmalgamability opts poss diag1 sink
(q, diag') <- extendDiagramIncl lgraph diag1 dnsigs
sig utStr
return (q, diag', dg'', Amalgamation uts' poss)
Local_unit udds ut poss -> do
(uctx', dg1, udds') <-
ana_UNIT_DECL_DEFNS' lgraph dg opts uctx udds
(dnsig, diag', dg', ut') <-
ana_UNIT_TERM lgraph dg1 opts uctx' (item ut)
return (dnsig, diag', dg',
Local_unit udds' (replaceAnnoted ut' ut) poss)
Unit_appl un fargus _ -> do
let ustr = tokStr un
argStr = showDoc fargus ""
case Map.lookup un buc of
Just (Based_unit_sig dnsig) -> case fargus of
[] -> return (dnsig, diag, dg, utrm)
_ -> -- arguments have been given for a parameterless unit
plain_error (dnsig, diag, dg, utrm)
(ustr ++ " is a parameterless unit, "
++ "but arguments have been given: " ++ argStr) pos
Just (Based_par_unit_sig pI (ParUnitSig argSigs resultSig)) ->
do (sigF, dg') <- nodeSigUnion lgraph dg
(toMaybeNode pI : map JustNode argSigs) DGFormalParams
(morphSigs, dg'', diagA) <-
ana_FIT_ARG_UNITS lgraph dg' opts
uctx utrm pos argSigs fargus
let first (e, _, _) = e
second (_, e, _) = e
third (_, _, e) = e
(sigA, dg''') <- nodeSigUnion lgraph dg''
(toMaybeNode pI : (map (JustNode . second) morphSigs))
DGFitSpec
-- compute morphA (\sigma^A)
G_sign lidI sigI _ <- return (getMaybeSig (toMaybeNode pI))
let idI = mkG_morphism lidI (ext_ide sigI)
morphA <- homogeneousMorManyUnion
(idI : (map first morphSigs))
-- compute sigMorExt (\sigma^A(\Delta))
(_, sigMorExt) <- extendMorphism (getSig sigF)
(getSig resultSig) (getSig sigA) morphA
-- check amalgamability conditions
let pIL = case pI of
JustDiagNode dn -> [dn]
_ -> []
sink <- inclusionSink lgraph (pIL ++
map third morphSigs) sigA
() <- assertAmalgamability opts pos diagA sink
(qB@(Diag_node_sig nqB _), diag') <-
extendDiagramIncl lgraph diagA pIL resultSig ""
-- insert nodes p^F_i and appropriate edges to the diagram
let ins diag0 dg0 [] = return (diag0, dg0)
ins diag0 dg0 ((morph, _, targetNode) : morphNodes) =
do (dnsig, diag1, dg1) <-
extendDiagramWithMorphismRev pos lgraph diag0
dg0 targetNode (gEmbed morph) argStr
DGFormalParams
diag'' <- insInclusionEdges lgraph diag1 [dnsig]
qB
ins diag'' dg1 morphNodes
(diag'', dg4) <- ins diag' dg''' morphSigs
-- check amalgamability conditions
(sigR, dg5) <- extendDGraph dg4 resultSig
(gEmbed sigMorExt) DGExtension
incSink <- inclusionSink lgraph (map third morphSigs) sigR
let sink' = (nqB, gEmbed sigMorExt) : incSink
assertAmalgamability opts pos diag'' sink'
(q, diag''') <- extendDiagram diag'' qB
(gEmbed sigMorExt) sigR utStr
diag4 <- insInclusionEdges lgraph diag'''
(map third morphSigs) q
return (q, diag4, dg5, utrm)
_ -> fatal_error ("Undefined unit " ++ ustr) pos
Group_unit_term ut poss -> do
(dnsig, diag1, dg1, ut') <-
ana_UNIT_TERM lgraph dg opts uctx (item ut)
return (dnsig, diag1, dg1, Group_unit_term (replaceAnnoted ut' ut) poss)
-- | Analyse unit arguments
ana_FIT_ARG_UNITS :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> UNIT_TERM
-- ^ the whole application for diagnostic purposes
-> Range
-- ^ the position of the application (for diagnostic purposes)
-> [NodeSig]
-- ^ the signatures of unit's formal parameters
-> [FIT_ARG_UNIT] -- ^ the arguments for the unit
-> Result ([(G_morphism, NodeSig, DiagNodeSig)], DGraph, Diag)
ana_FIT_ARG_UNITS lgraph dg opts uctx@(buc, diag)
appl pos nodeSigs fArgs = case (nodeSigs, fArgs) of
(nsig : nsigs, fau : faus) -> do
(gmorph, nsig', dnsig, dg1, diag1) <-
ana_FIT_ARG_UNIT lgraph dg opts uctx nsig fau
(morphSigs, dg', diag') <- ana_FIT_ARG_UNITS lgraph dg1 opts
(buc, diag1) appl pos nsigs faus
return ((gmorph, nsig', dnsig) : morphSigs, dg', diag')
([], []) -> return ([], dg, diag)
_ -> plain_error ([], dg, diag)
("non-matching number of arguments given in application\n"
++ showDoc appl "") pos
-- | Analyse unit argument
ana_FIT_ARG_UNIT :: LogicGraph -> DGraph
-> HetcatsOpts -> ExtStUnitCtx -> NodeSig -> FIT_ARG_UNIT
-> Result (G_morphism, NodeSig, DiagNodeSig, DGraph, Diag)
-- ^ returns 1. the signature morphism 2. the target signature of the morphism
-- 3. the diagram node 4. the modified DGraph 5. the modified diagram
ana_FIT_ARG_UNIT lgraph dg opts uctx nsig
(Fit_arg_unit ut symbMap poss) = do
(p, diag', dg', _) <-
ana_UNIT_TERM lgraph dg opts uctx (item ut)
-- compute gMorph (the morphism r|sigma/D(p))
let adj = adjustPos poss
gsigmaS = getSig nsig
gsigmaT = getSig (getSigFromDiag p)
G_sign lidS sigmaS _ <- return gsigmaS
G_sign lidT sigmaT _ <- return gsigmaT
G_symb_map_items_list lid sis <- adj $ homogenizeGM (Logic lidS) symbMap
sigmaT' <- adj $ coerceSign lidT lidS "" sigmaT
mor <- if isStructured opts then return (ext_ide sigmaS)
else do rmap <- adj $ stat_symb_map_items lid sis
rmap' <- adj $ coerceRawSymbolMap lid lidS "" rmap
adj $ ext_induced_from_to_morphism lidS rmap'
sigmaS sigmaT'
let gMorph = mkG_morphism lidS mor
(nsig', dg'') <- extendDGraph dg' nsig (gEmbed gMorph) DGFitSpec
return (gMorph, nsig', p, dg'', diag')
-- | Analyse unit specification
ana_UNIT_SPEC :: LogicGraph
-> DGraph
-> HetcatsOpts -- ^ should only the structure be analysed?
-> MaybeNode -- ^ the signature of imports
-> UNIT_SPEC -> Result (UnitSig, DGraph, UNIT_SPEC)
-- ^ returns 1. unit signature 2. the development graph resulting from
-- structred specs inside the unit spec and 3. a UNIT_SPEC after possible
-- conversions.
ana_UNIT_SPEC lgraph dg opts impsig usp = case usp of
Unit_type argSpecs resultSpec poss -> case argSpecs of
[] -> case resultSpec of
Annoted (Spec_inst spn [] _) _ _ _
| case lookupGlobalEnvDG spn dg of
Just (UnitEntry _) -> True
_ -> False ->
{- if argspecs are empty and resultspec is a name of unit spec
then this should be converted to a Spec_name -}
ana_UNIT_SPEC lgraph dg opts impsig (Spec_name spn)
_ -> do -- a trivial unit type
(resultSpec', resultSig, dg') <- ana_SPEC False lgraph
dg impsig emptyNodeName opts (item resultSpec)
return (UnitSig resultSig, dg', Unit_type []
(replaceAnnoted resultSpec' resultSpec) poss)
_ -> do -- a non-trivial unit type
(argSigs, dg1, argSpecs') <- ana_argSpecs lgraph dg opts argSpecs
(sigUnion, dg2) <- nodeSigUnion lgraph dg1
(impsig : map JustNode argSigs) DGFormalParams
(resultSpec', resultSig, dg3) <- ana_SPEC True lgraph
dg2 (JustNode sigUnion)
emptyNodeName opts (item resultSpec)
return (ParUnitSig argSigs resultSig, dg3, Unit_type argSpecs'
(replaceAnnoted resultSpec' resultSpec) poss)
Spec_name usn@(Token ustr pos) -> case lookupGlobalEnvDG usn dg of
Just (UnitEntry usig) -> return (usig, dg, usp)
_ -> fatal_error (ustr ++ " is not an unit specification") pos
Closed_unit_spec usp' _ -> do
curl <- lookupCurrentLogic "UNIT_SPEC" lgraph
ana_UNIT_SPEC lgraph dg opts (EmptyNode curl) usp'
-- | Analyse refinement specification
ana_REF_SPEC :: LogicGraph
-> DGraph
-> HetcatsOpts -- ^ should only the structure be analysed?
-> MaybeNode -- ^ the signature of imports
-> REF_SPEC -> Result (UnitSig, DGraph, REF_SPEC)
ana_REF_SPEC lgraph dg just_struct nsig rsp = case rsp of
Unit_spec asp -> do
(usig, dg', asp') <-
ana_UNIT_SPEC lgraph dg just_struct nsig asp
return (usig, dg', Unit_spec asp')
Arch_unit_spec asp poss -> do
(ArchSig _ usig, dg', asp') <-
ana_ARCH_SPEC lgraph dg just_struct (item asp)
return (usig, dg', Arch_unit_spec (replaceAnnoted asp' asp) poss)
-- dummy implementation for the rest
_ -> error "ana_REF_SPEC"
-- | Analyse a list of argument specifications
ana_argSpecs :: LogicGraph -> DGraph -> HetcatsOpts
-> [Annoted SPEC]
-> Result ([NodeSig], DGraph, [Annoted SPEC])
ana_argSpecs lgraph dg opts args = case args of
[] -> return ([], dg, [])
argSpec : argSpecs -> do
l <- lookupLogic "ana_argSpecs" (currentLogic lgraph) lgraph
(argSpec', argSig, dg') <-
ana_SPEC False lgraph dg (EmptyNode l) emptyNodeName
opts (item argSpec)
(argSigs, dg'', argSpecs') <-
ana_argSpecs lgraph dg' opts argSpecs
return (argSig : argSigs, dg'', replaceAnnoted argSpec' argSpec
: argSpecs')
{- | Check that given diagram ensures amalgamability along given set
of morphisms -}
assertAmalgamability :: HetcatsOpts -- ^ the program options
-> Range -- ^ the position (for diagnostics)
-> Diag -- ^ the diagram to be checked
-> [(Node, GMorphism)] -- ^ the sink
-> Result ()
assertAmalgamability opts pos diag sink =
do ensAmalg <- homogeneousEnsuresAmalgamability opts pos diag sink
case ensAmalg of
Amalgamates -> return ()
NoAmalgamation msg -> plain_error ()
("Amalgamability is not ensured: " ++ msg) pos
DontKnow msg -> warning () msg pos
-- | Check the amalgamability assuming common logic for whole diagram
homogeneousEnsuresAmalgamability :: HetcatsOpts -- ^ the program options
-> Range -- ^ the position (for diagnostics)
-> Diag -- ^ the diagram to be checked
-> [(Node, GMorphism)] -- ^ the sink
-> Result Amalgamates
homogeneousEnsuresAmalgamability opts pos diag sink =
do case sink of
[] -> plain_error defaultDontKnow
"homogeneousEnsuresAmalgamability: Empty sink" pos
lab:_ -> do let (_, mor) = lab
sig = cod mor
G_sign lid _ _<- return sig
hDiag <- homogeniseDiagram lid diag
hSink <- homogeniseSink lid sink
ensures_amalgamability lid (caslAmalg opts,
hDiag, hSink, (diagDesc diag))
-- | Get a position within the source file of a UNIT-TERM
getPos_UNIT_TERM :: UNIT_TERM -> Range
getPos_UNIT_TERM ut = case ut of
Unit_reduction _ restr -> case restr of
-- obtain position from RESTRICTION
(Hidden _ poss) -> poss
(Revealed _ poss) -> poss
Unit_translation _ (Renaming _ poss) -> poss
Amalgamation _ poss -> poss
Local_unit _ _ poss -> poss
Unit_appl u _ poss -> appRange (tokPos u) poss
Group_unit_term _ poss -> poss
-- | Get a position within the source file of UNIT-IMPORTED
getPos_UNIT_IMPORTED :: Range -> Range
getPos_UNIT_IMPORTED (Range ps) = Range $ case ps of
[] -> []
_ : qs -> if null qs then ps else qs
-- | Get a position within the source file of UNIT-EXPRESSION
getPos_UNIT_EXPRESSION :: UNIT_EXPRESSION -> Range
getPos_UNIT_EXPRESSION (Unit_expression _ (Annoted ut _ _ _) poss) =
appRange (getPos_UNIT_TERM ut) poss