Morphism.hs revision bfe34c9d0a279f8f86eae778b761f32e4788d42d
{- |
Module : $Header$
Description : Symbol related functions for SoftFOL.
Copyright : (c) Klaus L�ttich, Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : provisional
Portability : portable
Functions for symbols of SoftFOL.
-}
module SoftFOL.Morphism (symOf, symbolToId, morphismToSymbolMap) where
import SoftFOL.Sign
import Common.Id
import Common.DefaultMorphism
import qualified Data.Set as Set
import qualified Data.Map as Map
symOf :: Sign -> Set.Set SFSymbol
symOf sig =
let opSymbs = Set.unions $ map toOpSymb $ Map.toList $ funcMap sig
predSymbs = Set.unions $ map toPredSymb $ Map.toList $ predMap sig
sortSymbs = Set.map toSortSymb $ Map.keysSet $ sortMap sig
in Set.unions [opSymbs,predSymbs,sortSymbs]
toOpSymb :: (SPIdentifier,Set.Set([SPIdentifier], SPIdentifier))
-> Set.Set SFSymbol
toOpSymb (ident,ts) = Set.map toSymb ts
where toSymb (args,res) =
SFSymbol { sym_ident = ident
, sym_type = SFOpType args res}
toPredSymb (ident,ts) = Set.map toSymb ts
where toSymb args =
SFSymbol { sym_ident = ident
, sym_type = SFPredType args}
toSortSymb :: SPIdentifier -> SFSymbol
toSortSymb ident = SFSymbol { sym_ident = ident
, sym_type = SFSortType}
type SymbolMap = Map.Map SFSymbol SFSymbol
morphismToSymbolMap :: DefaultMorphism Sign -> SymbolMap
morphismToSymbolMap m =
let src = domOfDefaultMorphism m
trg = codOfDefaultMorphism m
sortSymMap = mkSortSymMap (sortMap src) (sortMap trg)
opSymMap = mkFuncSymMap sortSymMap (funcMap src) (funcMap trg)
predSymMap = mkPredSymMap sortSymMap (predMap src) (predMap trg)
in foldr Map.union sortSymMap [opSymMap,predSymMap]
mkSortSymMap :: SortMap -> SortMap -> SymbolMap
mkSortSymMap _ _ = Map.empty
mkFuncSymMap :: SymbolMap -> FuncMap -> FuncMap -> SymbolMap
mkFuncSymMap _ _ _ = Map.empty
mkPredSymMap :: SymbolMap -> PredMap -> PredMap -> SymbolMap
mkPredSymMap _ _ _ = Map.empty
symbolToId :: SFSymbol -> Id
symbolToId = mkId . (:[]) . sym_ident