EProver.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{- |
Module : ./SoftFOL/EProver.hs
Description : Analyze eprover output
Copyright : (c) Jonathan von Schroeder, DFKI Bremen 2013
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Jonathan von Schroeder <jonathan.von_schroeder@dfki.de>
Stability : provisional
Portability : portable
-}
module SoftFOL.EProver (processProof, zipF, supportsProofObject,
digraph, axioms, conjectures, alias, proofInfo) where
import Text.ParserCombinators.Parsec
import Common.Parsec
import SoftFOL.ParseTPTP (singleQuoted, form, genTerm, ppGenTerm)
import SoftFOL.PrintTPTP (printTPTP)
import SoftFOL.Sign (SPTerm (..))
import qualified Data.Set as Set
import System.Exit
import Common.Utils (executeProcess)
import Common.Doc (renderText)
import Common.GlobalAnnotations (emptyGlobalAnnos)
import qualified Data.Map as Map
import Data.Char (toLower)
import Data.Maybe (fromJust, fromMaybe, isNothing)
import Data.List (foldl', intercalate)
import Control.Monad (liftM)
data Role = Axiom | Conjecture | Other deriving (Show, Eq)
data InferenceParent = PTerm String |
PInferred InferenceRule |
PBuiltinTheory String deriving (Show, Eq, Ord)
data InferenceRule = ProofOf String
| File { _fileName :: String, formulaName :: String }
| Rule { rule :: String, parent :: String }
| NoRule { parent :: String }
| InferenceRule { rule :: String, status :: String,
parents :: Set.Set InferenceParent,
_fact :: Bool }
deriving (Show, Eq, Ord)
parentsOf :: InferenceRule -> Set.Set InferenceParent
parentsOf (ProofOf s) = Set.singleton $ PTerm s
parentsOf (File _ _) = Set.empty
parentsOf (Rule _ s) = Set.singleton $ PTerm s
parentsOf (NoRule s) = Set.singleton $ PTerm s
parentsOf (InferenceRule _ _ ps _) = ps
termParents :: Set.Set InferenceParent -> [String]
termParents s = foldl (\ l p -> case p of
PTerm s' -> s' : l
PInferred ir ->
l ++ termParents (parentsOf ir)
_ -> l) [] $ Set.toList s
data ProofStep = ProofStep {
name :: String,
role :: Role,
formula :: Maybe SPTerm,
inference :: InferenceRule } | Empty deriving (Show, Eq)
whiteSpace :: Parser ()
whiteSpace = forget $ oneOf "\r\t\v\f "
lexeme :: GenParser Char () b -> GenParser Char () b
lexeme p = skipMany whiteSpace >> p
lString :: String -> GenParser Char () String
lString s = lexeme $ string s
lChar :: Char -> GenParser Char () Char
lChar c = lexeme $ char c
line :: Parser ProofStep
line = ((do
lString "cnf" <|> lString "fof"
lChar '('
n <- tok
r <- tok
f <- lexeme form
lChar ','
i <- lexeme (noRule <|> fromFile <|> inferenceRule <|> proofOf)
lString ")."
return $ ProofStep n (if r == "axiom" then Axiom
else if r == "conjecture" then Conjecture
else Other)
(Just f) i) <|> commentOrEmptyLine) << eof
commentOrEmptyLine :: Parser ProofStep
commentOrEmptyLine = ((skipMany (char '#') >>
manyTill anyChar (lookAhead eof))
<|> (skipMany whiteSpace >> return "")) >> return Empty
tok :: Parser String
tok = lexeme $ many (noneOf ",") << char ','
fromFile :: Parser InferenceRule
fromFile = do
lString "file" >> lChar '('
f <- lexeme singleQuoted
lChar ',' >> skipMany whiteSpace
n <- manyTill anyChar (char ')')
return $ File f n
proofOf :: Parser InferenceRule
proofOf = do
n <- tok
lString "['"
r <- manyTill anyChar (lookAhead $ oneOf "'")
lString "']"
return $ case r of
"proof" -> ProofOf n
_ -> Rule r n
noRule :: Parser InferenceRule
noRule = try $ do
t <- lexeme $ many (noneOf ",)")
lookAhead $ lString ")."
return $ NoRule t
inferenceRule :: Parser InferenceRule
inferenceRule = do
lString "inference" >> lChar '('
r <- tok
lChar '[' >> lString "status" >> lChar '('
s <- manyTill anyChar (char ')')
lChar ']' >> lChar ',' >> lChar '['
ps <- sepBy inferenceParent (lChar ',')
lChar ']' >> lChar ')'
b <- try (lChar ',' >> lString "['proof']" >> return True)
<|> return False
return $ InferenceRule r s (Set.fromList ps) b
inferenceParent :: Parser InferenceParent
inferenceParent = lexeme $
liftM PInferred inferenceRule <|>
do
t' <- genTerm
let t = show $ ppGenTerm t'
return $ case t of
't' : 'h' : 'e' : 'o' : 'r' : 'y' : '(' : _ -> PBuiltinTheory t
_ -> PTerm t
supportsProofObject :: IO Bool
supportsProofObject = do
(ex, _, _) <- executeProcess "eprover" ["--proof-object", "-V"] ""
case ex of
ExitSuccess -> return True
ExitFailure _ -> return False
processProof :: (a -> ProofStep -> a) -> a -> [String] -> (a, Maybe String)
processProof fn a = foldl' (\ (a', result) l -> case result of
Just _ -> (a', result)
Nothing -> case runParser line () "" l of
Right p | p /= Empty -> (fn a' p, result)
Left e -> (a', Just . unlines $ "Warning - Failed to parse eprover proof"
: map ((:) '\t') (("Input: " ++ l) : lines (show e)))
_ -> (a', result)
) (a, Nothing)
zipF :: (a -> b -> a) -> (c -> b -> c) -> (a, c) -> b -> (a, c)
zipF f1 f2 (a, c) b = (f1 a b, f2 c b)
axioms :: [(String, String)] -> ProofStep -> [(String, String)]
axioms l p = case inference p of
File _ _ | role p == Axiom ->
(formulaName . inference $ p, name p) : l
_ -> l
conjectures :: [(String, String)] -> ProofStep -> [(String, String)]
conjectures l p = if role p == Conjecture
then (formulaName . inference $ p, name p) : l else l
alias :: Map.Map String String -> ProofStep -> Map.Map String String
alias m p = case inference p of
NoRule s -> case Map.lookup s m of
Just s' -> Map.insert (name p) s' m
Nothing -> Map.insert (name p) s m
_ -> m
proofInfo :: Set.Set String -> ProofStep -> Set.Set String
proofInfo p_set p =
if Set.null p_set || Set.member (name p) p_set
then Set.union p_set $ Set.fromList $
name p : termParents (parentsOf $ inference p)
else p_set
showTerm :: ProofStep -> String
showTerm = renderText emptyGlobalAnnos . printTPTP . fromJust . formula
facts :: Set.Set String -> ProofStep -> Set.Set String
facts s p =
let isFact n = case n of
PTerm n' -> Set.member n' s
PInferred ir -> all (`Set.member` s) $
termParents $ parentsOf ir
PBuiltinTheory _ -> True
in if (role p /= Conjecture) &&
all isFact (Set.toList $ parentsOf $ inference p)
then Set.insert (name p) s else s
attributes :: [(String, String)] -> String
attributes attrs = case attrs of
[] -> ""
_ -> "[" ++ intercalate ","
(map (\ (n, v) -> n ++ "=\"" ++ v ++ "\"") attrs) ++ "]"
vertex :: String -> [(String, String)] -> String
vertex s attrs = s ++ attributes attrs
edge :: Bool -> String -> String -> [(String, String)] -> String
edge inv v1 v2 attrs' =
let attrs = ("splines", "curved") : attrs'
in if inv then v2 ++ " -> " ++ v1 ++ attributes attrs
else v1 ++ " -> " ++ v2 ++ attributes attrs
digraph :: Set.Set String -> Map.Map String String ->
(Set.Set String, Set.Set String, String,
Map.Map (String, [String]) String) -> ProofStep ->
(Set.Set String, Set.Set String,
String, Map.Map (String, [String]) String)
digraph p_set aliases (s, neg, d, m) p =
let s' = facts s p
neg_ = Set.insert (name p) neg
negated = any (`Set.member` neg)
(termParents $ parentsOf $ inference p)
alias' n = fromMaybe n (Map.lookup n aliases)
neg' = case inference p of
(InferenceRule _ st _ _)
| elem (map toLower st) ["cth", "unc", "uns"]
-> if negated then neg else neg_
| negated -> neg_
| otherwise -> neg
_ -> if negated then neg_ else neg
isFact' = case inference p of
InferenceRule _ _ _ b -> b
_ -> False
color' = ("fillcolor", if role p == Axiom || Set.member (name p) s'
then "green" else "yellow") :
("style", "filled") : (if Set.member (name p) neg'
then [("color", "red")] else [("color", "green")])
color = case inference p of
ProofOf _ | role p == Other ->
if negated then [("style", "filled"), ("fillcolor", "red"),
("color", "red")]
else [("style", "filled"), ("fillcolor", "green"),
("color", "green")]
_ -> color'
(s'', neg'', m', d') = (case role p of
Axiom -> case inference p of
File f n -> (s', neg', m, [vertex ('v' : name p) $ color ++
[("label", "Axiom " ++ n ++ " (File: " ++ f ++ ")\\n" ++
showTerm p)]])
_ -> (s', neg', m, [])
Conjecture -> case inference p of
File f n -> (s', neg', m, [vertex ('v' : name p) $ color ++
[("label", "Conjecture " ++ n ++ " (File: " ++ f ++ ")\\n" ++
showTerm p)]])
_ -> (s', neg', m, [])
Other ->
let (s'_, neg'_, m'', d'') = case inference p of
ProofOf tm ->
(s', neg', m, [edge True ('v' : alias' tm)
('v' : alias' (name p))
[("label", (if negated then "dis" else "")
++ "proves")]])
r@(Rule _ _) -> (s', neg', m,
[edge False ('v' : alias' (parent r))
('v' : alias' (name p))
[("label", rule r)]])
r@(NoRule _) -> (s', neg', m,
[edge False ('v' : alias' (parent r))
('v' : alias' (name p)) []])
inf@(InferenceRule {}) ->
let (r, l1, m1, new) =
case Map.lookup
(rule inf, termParents $ parents inf) m of
Just r' -> (r',
[edge False r' ('v' : alias' (name p)) []],
m, False)
_ ->
let r1 = 'r' : show (Map.size m)
in (r1, [vertex r1
[("label", "Apply rule " ++ rule inf),
("style", "dotted")],
if not isFact' then edge False r1
((if head (name p) == 'r' then ""
else "v") ++
alias' (name p)) [] else ""],
Map.insert (rule inf, termParents $
parents inf) r1 m, True)
(s2', neg2', l3, m3) =
foldl (\ (s1', neg1', l2, m2) s1 -> case s1 of
PTerm s2 -> if new then
(s1', neg1', l2 ++ [edge False
('v' : alias' s2) r [],
edge (not $ Set.member s2 s')
('v' : alias' s2) r
[("label", "SZS " ++ status inf),
("color", "blue"),
("fontcolor", "blue")] ], m2)
else (s1', neg1', l2, m2)
PInferred ir ->
let (s1'', neg1'', l2', m2') = digraph p_set
aliases (s1', neg1', unlines l2, m2) $
ProofStep r Other Nothing ir
in (s1'', neg1'', [l2'], m2')
PBuiltinTheory s2 ->
case Map.lookup (s2, []) m2 of
Just s2'' -> (s1', neg1', l2 ++
[edge False s2'' r []], m2)
Nothing ->
let s2'' = 't' : show (Map.size m2)
in (s1', neg1', l2 ++ [vertex s2''
[("style", "filled"),
("fillcolor", "green"),
("color", "green"), ("label", s2)],
edge False s2'' r []],
Map.insert (s2, []) s2'' m2))
(s', neg', l1, m1) (Set.toList $ parentsOf inf)
in (s2', neg2', m3, l3)
_ -> (s', neg', m, [])
in (s'_, neg'_, m'', case formula p of
Just _ | not isFact' -> vertex ('v' : name p)
(color ++ [("label", showTerm p)]) : d''
_ -> d''))
in if (Set.member (name p) p_set || isNothing (formula p)) &&
notElem (name p) (Map.keys aliases)
then (s'', neg'', unlines $ d : d', m')
else (s', neg', d, m)