DFGParser.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $Header$
Description : To be replaced by SoftFOL.DFGParser
Copyright : (c) Immanuel Normann, Uni Bremen 2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : inormann@jacobs-university.de
Stability : provisional
Portability : portable
-}
module Search.SPASS.DFGParser where
import qualified Text.ParserCombinators.Parsec.Token as PT
import Search.SPASS.Sign
-- ----------------------------------------------
-- * SPASS Language Definition
-- ----------------------------------------------
spassDef :: PT.LanguageDef st
spassDef
{ PT.commentStart = ""--"{*"
, PT.commentEnd = ""--"*}"
, PT.commentLine = "%"
, PT.nestedComments = False
, PT.identStart = letter <|> digit -- digit is not conform to dfg-syntax definition, but needed for mptp.
, PT.identLetter = alphaNum <|> oneOf "_'"
, PT.opStart = letter -- brauche ich nicht
, PT.opLetter = letter --
, PT.reservedOpNames= []
, PT.reservedNames = ["forall", "exists", "equal", "true", "false", "or", "and", "not", "implies", "implied", "equiv", "xor"]
, PT.caseSensitive = True
}
-- helpers ----------------------------------------------------------
lexer :: PT.TokenParser st
lexer = PT.makeTokenParser spassDef
comma = PT.comma lexer
dot = PT.dot lexer
commaSep1 = PT.commaSep1 lexer
parens = PT.parens lexer
squares = PT.squares lexer
symbolT = PT.symbol lexer
natural = PT.natural lexer
whiteSpace = PT.whiteSpace lexer
--parensDot :: Text.ParserCombinators.Parsec.Char.CharParser st a -> Text.ParserCombinators.Parsec.Prim.GenParser Char st a
parensDot p = parens p << dot
squaresDot p = squares p << dot
text = string "{*" >> (manyTill anyChar (try (string "*}")))
{-
*SPASS.Parser> run text "{* mein Kommentar *}"
" mein Kommentar "
-}
identifierT = PT.identifier lexer
list_of sort = string "list_of_" >> string sort
list_of_dot sort = list_of sort >> dot
end_of_list = symbolT "end_of_list."
oneOfTokens ls = choice (map (try . symbolT) ls)
{-
*SPASS.Parser> run (oneOfTokens ["ab","cd"]) "abcd"
"ab"
-}
mapTokensToData ls = choice (map (try . tokenToData) ls)
where tokenToData (s,t) = symbolT s >> return t
maybeParser p = option Nothing (do {r <- p; return (Just r)})
parseSPASS = whiteSpace >> problem
-- ** SPASS Problem
problem :: Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPProblem
problem = do symbolT "begin_problem"
i <- parensDot identifierT
dl <- description_list
lp <- logical_part
-- s <- settings -- not yet supported!
symbolT "end_problem."
return (SPProblem
{identifier = i,
description = dl,
logicalPart = lp,
settings = []})
-- ** SPASS Desciptions
{- |
A description is mandatory for a SPASS problem. It has to specify at least
a 'name', the name of the 'author', the 'status' (see also 'SPLogState' below),
and a (verbose) description.
-}
description_list :: Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPDescription
description_list = do list_of_dot "descriptions"
n <- symbolT "name" >> parensDot text
a <- symbolT "author" >> parensDot text
v <- maybeParser (symbolT "version" >> parensDot text)
l <- maybeParser (symbolT "logic" >> parensDot text)
s <- symbolT "status" >> parensDot (mapTokensToData
[("satisfiable",SPStateSatisfiable),
("unsatisfiable",SPStateUnsatisfiable),
("unknown",SPStateUnknown)])
de <- symbolT "description" >> parensDot text
da <- maybeParser (symbolT "date" >> parensDot text)
end_of_list
return (SPDescription
{name = n, author = a, version = v, logic = l,
status = s, desc = de, date = da})
{-
*SPASS.Parser> run description_list "list_of_descriptions.name({* Pelletier?s Problem No. 57 *}).author({* Christoph Weidenbach *}).status(unsatisfiable).description({* Problem taken in revised form from the Pelletier Collection, Journal of Automated Reasoning, Vol. 2, No. 2, pages 191-216 *}).end_of_list."
SPDescription {name = " Pelletier?s Problem No. 57 ", author = " Christoph Weidenbach ", version = Nothing, logic = Nothing, status = SPStateUnsatisfiable, desc = " Problem taken in revised form from the Pelletier Collection, Journal of Automated Reasoning, Vol. 2, No. 2, pages 191-216 ", date = Nothing}
-}
{- |
The state of a SPASS problem can be satisfiable, unsatisfiable, or unknown.
-}
-- ** SPASS Settings
{- |
We only support one of the three types mentioned here:
-}
-- ** SPASS Logical Parts
{- |
A SPASS logical part consists of a symbol list, a declaration list, and a
set of formula lists. Support for clause lists and proof lists hasn't
been implemented yet.
-}
logical_part :: Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPLogicalPart
logical_part = do sl <- maybeParser symbol_list
--dl <- declaration_list -- braucht man nicht fuer mptp
fs <- many formula_list
--cl <- many clause_list -- braucht man nicht fuer mptp
--pl <- many proof_list -- braucht man nicht fuer mptp
return (SPLogicalPart
{symbolList = sl,
declarationList = [],
formulaLists = fs})
-- clauseLists :: [SPClauseList],
-- proofLists :: [SPProofList]
-- *** Symbol List
{- |
SPASS Symbol List
-}
symbol_list :: Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPSymbolList
symbol_list = do list_of_dot "symbols"
fs <- option [] (signSymFor "functions")
ps <- option [] (signSymFor "predicates")
ss <- option [] (signSymFor "sorts")
end_of_list
return (SPSymbolList
{functions = fs,
predicates = ps,
sorts = ss,
operators = [], -- not supported in dfg-syntax version 1.5
quantifiers = []}) -- not supported in dfg-syntax version 1.5
{-
*SPASS.Parser> run symbol_list "list_of_symbols.functions[(f,2), (a,0), (b,0), (c,0)].predicates[(F,2)].end_of_list."
SPSymbolList {functions = [SPSignSym {sym = "f", arity = 2},SPSignSym {sym = "a", arity = 0},SPSignSym {sym = "b", arity = 0},SPSignSym {sym = "c", arity = 0}], predicates = [SPSignSym {sym = "F", arity = 2}], sorts = [], operators = [], quantifiers = []}
-}
signSymFor kind = symbolT kind >> squaresDot (commaSep1 $ parens signSym)
signSym = do s <- identifierT
a <- maybeParser (comma >> natural) -- option Nothing ((do {comma; n <- natural; return (Just n)}))
return (case a
of (Just a) -> SPSignSym {sym = s, arity = fromInteger a}
Nothing -> SPSimpleSignSym s)
-- *** Declaration List
{- |
SPASS Declaration List
-}
--declaration_list
-- *** Formula List
{- |
SPASS Formula List
-}
formula_list :: Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPFormulaList
formula_list = do list_of "formulae"
ot <- parens (mapTokensToData [("axioms",SPOriginAxioms),
("conjectures",SPOriginConjectures)])
dot
fs <- many (formula (case ot of {SPOriginAxioms -> True; _ -> False}))
end_of_list
return (SPFormulaList { originType = ot,
formulae = fs })
{-
*SPASS.Parser> run formula_list "list_of_formulae(axioms).formula(all([a,b],R(a,b)),bla).end_of_list."
SPFormulaList {originType = SPOriginAxioms, formulae = [NamedSen {senName = "bla", isAxiom = True, isDef = False, sentence = SPQuantTerm {quantSym = SPCustomQuantSym "all", variableList = [SPSimpleTerm (SPCustomSymbol "a"),SPSimpleTerm (SPCustomSymbol "b")], qFormula = SPComplexTerm {symbol = SPCustomSymbol "R", arguments = [SPSimpleTerm (SPCustomSymbol "a"),SPSimpleTerm (SPCustomSymbol "b")]}}}]}
*SPASS.Parser> run formula_list "list_of_formulae(axioms).formula(forall([a,b],R(a,b)),bla).end_of_list."
SPFormulaList {originType = SPOriginAxioms, formulae = [NamedSen {senName = "bla", isAxiom = True, isDef = False, sentence = SPQuantTerm {quantSym = SPForall, variableList = [SPSimpleTerm (SPCustomSymbol "a"),SPSimpleTerm (SPCustomSymbol "b")], qFormula = SPComplexTerm {symbol = SPCustomSymbol "R", arguments = [SPSimpleTerm (SPCustomSymbol "a"),SPSimpleTerm (SPCustomSymbol "b")]}}}]}
*SPASS.Parser> run formula_list "list_of_formulae(axioms).formula(forall([a,b],equiv(a,b)),bla).end_of_list."
SPFormulaList {originType = SPOriginAxioms, formulae = [NamedSen {senName = "bla", isAxiom = True, isDef = False, sentence = SPQuantTerm {quantSym = SPForall, variableList = [SPSimpleTerm (SPCustomSymbol "a"),SPSimpleTerm (SPCustomSymbol "b")], qFormula = SPComplexTerm {symbol = SPEquiv, arguments = [SPSimpleTerm (SPCustomSymbol "a"),SPSimpleTerm (SPCustomSymbol "b")]}}}]}
-}
formula :: Bool -> Text.ParserCombinators.Parsec.Prim.GenParser Char st (Search.SPASS.Sign.Named Search.SPASS.Sign.SPTerm)
formula bool = do symbolT "formula"
pos <- getPosition
parensDot (do sen <- term
name <- (option "" (comma >> identifierT))
return (NamedSen
{senName = (show $ sourceLine pos), -- (sourceName pos) ++ " line: " ++ (show $ sourceLine pos) ++ " name:" ++ name,
isAxiom = bool, -- propagated from 'origin_type' of 'list_of_formulae'
isDef = False, -- this originTpe does not exist
sentence = sen}))
-- *** Terms
{- |
A SPASS Term.
-}
quantification :: Search.SPASS.Sign.SPQuantSym -> Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPTerm
quantification s = do (ts',t') <- parens (do ts <- squares (commaSep1 term) -- todo: var binding should allow only simple terms
comma; t <- term
return (ts,t))
return (SPQuantTerm
{quantSym = s,variableList = ts',qFormula = t'})
application :: Search.SPASS.Sign.SPSymbol -> Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPTerm
application s = do ts <- parens (commaSep1 term)
return (SPComplexTerm
{symbol = s, arguments = ts})
constant :: (Monad m) => Search.SPASS.Sign.SPSymbol -> m Search.SPASS.Sign.SPTerm
constant c = return (SPSimpleTerm c)
term :: Text.ParserCombinators.Parsec.Prim.GenParser Char st Search.SPASS.Sign.SPTerm
term = do s <- identifierT
do {try (quantification (SPCustomQuantSym s))
<|> try (application (SPCustomSymbol s))
<|> (constant (SPCustomSymbol s))}
<|>
do q <- mapTokensToData [("forall",SPForall), ("exists",SPExists)]
quantification q
<|>
do a <- mapTokensToData [("equal",SPEqual), ("or",SPOr), ("and",SPAnd),("not",SPNot),
("xor",SPXor),
("implies",SPImplies), ("implied",SPImplied),("equiv",SPEquiv)]
application a
<|>
do c <- mapTokensToData [("true",SPTrue), ("false",SPFalse)]
constant c
{-
For testing
-}
-- ----------------------------------------------
-- * Monad and Functor extensions
-- ----------------------------------------------
bind :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c
bind f p q = do { x <- p; y <- q; return (f x y) }
infixl <<
(<<) :: (Monad m) => m a -> m b -> m a
(<<) = bind const
infixr 5 <:>
(<:>) :: (Monad m) => m a -> m [a] -> m [a]
(<:>) = bind (:)
infixr 5 <++>
(<++>) :: (Monad m) => m [a] -> m [a] -> m [a]
(<++>) = bind (++)
run p input = case (parse p "" input)
of Left err -> error (show err)
Right result -> return result