Select.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $Header$
Description : Logic independent retrieval functionality
Copyright : (c) Immanuel Normann, Uni Bremen 2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : inormann@jacobs-university.de
Stability : provisional
Portability : portable
-}
module Search.Common.Select where
import Search.Common.Data hiding (parameter,role)
import Data.List as L
import Data.Set as S
import Data.Map as M hiding ((!))
import Data.Maybe (catMaybes)
import Search.Utils.SetMap as SM --(fromListSetValues)
import Search.Utils.List
import Database.HaskellDB
import Database.HaskellDB.DriverAPI
import Database.HaskellDB.HDBRec
import Search.DB.Connection
import Search.DB.FormulaDB.Profile
-- -----------------------------------------------------------
-- * Principle Functions
-- -----------------------------------------------------------
{- |
search is the main function of this module. It takes a handler function
to read in the source theory and a path to the file of the source theory
and returns all possible profile morphisms from all matching target theories
in the database.
-}
search :: (Ord p, Read p, Show p) =>
(FilePath -> TheoryName -> IO ([ShortProfile p], [ShortProfile p]))
-> FilePath
-> TheoryName
-> IO [[LongInclusionTuple p]]
search getSourceProfiles dir file =
let skelOf (skel,_,_,_) = skel
in do (axioms,theorems) <- getSourceProfiles dir file
axioms' <- return $ removeDuplicateProfiles axioms
targetCandidates <- allTargetCandidates (L.map skelOf axioms')
mapM (showResults file axioms' theorems) (M.toList targetCandidates)
{- |
showResults shows for a given target theory candidate all possible profile morphisms
and the actual reused theorems.
-}
showResults :: (Ord p, Read p, Show p) =>
TheoryName
-> [ShortProfile p]
-> [ShortProfile p]
-> (String, Map Skel (Set ([p], LineNr)))
-> IO [LongInclusionTuple p]
showResults sourceTheory sAxioms sTheorems (targetTheory,tMap) =
let sAxioms' = (L.map toProfile2 sAxioms)
morphs = profileMorphism sAxioms' tMap
toProfile2 (skel, ps, lineNr, _) = (skel, (ps, lineNr))
toIncTuple (st,tt,ps,lm,lines) = (st,tt,ps,lm,length lines)
in do putStrLn targetTheory
targetProfiles <- getProfilesFromDB targetTheory
longIncTuples <- return (L.map (inclusionTuple sourceTheory targetTheory
targetProfiles sTheorems)
morphs)
multiInsertInclusion (L.map toIncTuple longIncTuples)
return longIncTuples
inclusionTuple :: (Eq p,Ord p) =>
TheoryName -- ^ source theory
-> TheoryName -- ^ target theory
-> [ShortProfile p] -- ^ profiles of target sentences
-> [ShortProfile p] -- ^ profiles of source theorems
-> (Renaming p, LineMap) -- ^ profile mapping
-> LongInclusionTuple p -- ^ profiles of reused source theorems
inclusionTuple st tt ts ss (ren,lmap) = (st,tt,ren',lmap',newTheorems)
where newTheorems = L.map lineOf $ reusedTheorems ts ss ren
lineOf (_,_,lNr,_) = lNr
neq a b = a /=b
ren' = M.filterWithKey neq ren
lmap' = M.filterWithKey neq lmap
reusedTheorems :: (Eq p,Ord p) => [ShortProfile p] -> [ShortProfile p] -> Renaming p -> [ShortProfile p]
reusedTheorems tSens sTheorems renaming = L.filter reusedTheorem sTheorems'
where sTheorems' = L.map (translate renaming) sTheorems
neq (s1,p1,_,_) (s2,p2,_,_) = (s1 /= s2) || (p1 /= p2)
reusedTheorem s = all (neq s) tSens
translate :: (Ord p) => Renaming p -> ShortProfile p -> ShortProfile p
translate renaming (skel,param,lnr,role) = (skel,param',lnr,role)
where param' = L.map (f renaming) param
f renaming param = findWithDefault param param renaming
getProfilesFromDB :: (Read p) => TheoryName -> IO [ShortProfile p]
getProfilesFromDB targetTheory =
let q = do t <- table profile -- the query
restrict ((t!file) .==. (constant targetTheory))
project (skeleton_md5 << t!skeleton_md5 #
parameter << t!parameter #
line << t!line # role << t!role)
recToTuple rec = (skel, (read parameter) , line, role)
where (RecCons skel (RecCons parameter (RecCons line (RecCons role _)))) =
rec RecNil
in do recs <- myQuery q
return $ L.map recToTuple recs
{- |
two profiles are said to be duplicates if they have the same skeletons and parameters.
-}
removeDuplicateProfiles :: (Eq p) => [ShortProfile p] -> [ShortProfile p]
removeDuplicateProfiles profiles = nubBy eqProfiles profiles
where eqProfiles (skel1,par1,_,_) (skel2,par2,_,_) =
skel1 == skel2 && par1 == par2
-- -----------------------------------------------------------
-- * Database Access
-- -----------------------------------------------------------
{- |
allTargetCandidates takes a list of skeletons and retrieves from the database
candidates of target theories. A theory is a candidate if it contains all the
skeletons from the input list.
-}
allTargetCandidates :: (Ord p, Read p) =>
[Skel] -> IO (Map TheoryName (Map Skel (Set ([p], LineNr))))
allTargetCandidates skels =
let len = length $ nub skels
comprisesAllSkels skelLineSet =
((S.size $ S.map fst skelLineSet) == len)
in do triples <- matchSkeleton skels
return $ (M.map fromSetSetValues
(M.filter comprisesAllSkels (fromListSetValues triples)))
{- |
matchSkeleton takes a list of skeletons and retrieves from the database all
datasets whose skeleton matches one of the input list.
(this function is only used in 'allTargetCandidates')
-}
matchSkeleton :: (Ord p, Read p) => [Skel] -> IO [(TheoryName, (Skel, ([p], LineNr)))]
matchSkeleton skels =
let q = do t <- table profile -- the query
restrict (_in (t!skeleton_md5) (L.map constant skels))
project (file << t!file # skeleton_md5 << t!skeleton_md5 #
parameter << t!parameter # line << t!line)
recToTuple rec = (theory,(skel, (read parameter, line)))
where (RecCons theory (RecCons skel (RecCons parameter (RecCons line _)))) =
rec RecNil
in do recs <- myQuery q
return $ L.map recToTuple recs
-- -----------------------------------------------------------
-- * Matching
-- -----------------------------------------------------------
{- |
profileMorphism finds all theory morphisms from profiles of a source theory
to profiles in a target theory.
-}
profileMorphism :: (Ord p, Read p) =>
[(Skel,([p], LineNr))] -- ^ source profiles
-> M.Map Skel (S.Set ([p], LineNr)) -- ^ map from skeletons to target profile
-> [(Renaming p, LineMap)]
profileMorphism sourceProfiles targetProfileMap =
let matchList' (s,sourceProfile) =
case M.lookup s targetProfileMap
of (Just targetProfiles) -> matchList (S.toList targetProfiles) sourceProfile
Nothing -> []
in case (L.map matchList' sourceProfiles)
of (h:t) -> foldr merge h t
[] -> []
{- |
merge takes two lists of profile mappings and returns the list of
all profile mappings resulting from a admissible union out of the
Cartesian product of the input lists. A union is of two profile mappings
is admissible iff their renamings are equal on their common domain.
-}
merge :: (Ord p, Read p) => [(Renaming p, LineMap)]
-> [(Renaming p, LineMap)]
-> [(Renaming p, LineMap)]
merge ps1 ps2 = catMaybes [merge' p1 p2 | p1 <- ps1, p2 <- ps2]
where merge' (r1,l1) (r2,l2) =
case maybeUnion r1 r2
of (Just r) -> Just (r, M.union l1 l2)
Nothing -> Nothing
{- |
matchList takes a list of target pairs and a single source pair
and returns a list of renamings together with a line number mapping.
-}
matchList :: (Ord p, Read p) =>
[([p], LineNr)] -> ([p], LineNr) -> [(Renaming p, LineMap)]
matchList targetProfiles sourceProfile =
foldr justInsert [] (L.map (match sourceProfile) targetProfiles)
where justInsert Nothing lst = lst
justInsert (Just x) lst = x:lst
{- |
match takes two pairs and returns (Just)
a renaming of parameters and a line number association
if the pairs match and Nothing otherwise.
Each pair has a list of parameter as first component
and a line number as second. Each pair represents a formula
whose skeleton is supposed to be identical.
The pairs match iff their parameter do (s. 'constructRenaming').
-}
match :: (Ord p, Read p) => ([p],LineNr) -> ([p],LineNr)
-> Maybe (Renaming p, LineMap)
match (p1,l1) (p2,l2) =
case constructRenaming p1 p2
of (Just renaming) -> Just (renaming, M.singleton l1 l2)
_ -> Nothing
{- |
constructRenaming takes two lists of parameters and returns (Just) a pointwise
mapping between these lists if this is consistently possible.
Otherwise it returns Nothing.
-}
constructRenaming :: (Ord p, Read p) => [p] -> [p] -> Maybe (Renaming p)
constructRenaming lst1 lst2 = SM.fromList $ zip lst1 lst2