Sign.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{-# LANGUAGE DeriveDataTypeable #-}
{- |
Module : ./RelationalScheme/Sign.hs
Description : signaturefor Relational Schemes
Copyright : Dominik Luecke, Uni Bremen 2008
License : GPLv2 or higher, see LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : provisional
Portability : portable
Signature for Relational Schemes
-}
module RelationalScheme.Sign
( RSIsKey
, RSDatatype (..)
, RSRawSymbol
, RSColumn (..)
, RSTable (..)
, RSTables (..)
, Sign
, RSMorphism (..)
, RSTMap (..)
, emptyRSSign
, isRSSubsig
, idMor
, rsInclusion
, uniteSig
, comp_rst_mor
, RSSymbol (..)
)
where
import RelationalScheme.Keywords
import Common.AS_Annotation
import Common.Doc
import Common.DocUtils
import Common.Id
import Common.Result
import Common.Utils
import Data.Data
import qualified Data.Map as Map
import qualified Data.Set as Set
type RSIsKey = Bool
data RSDatatype
= RSboolean | RSbinary | RSdate | RSdatetime | RSdecimal | RSfloat
| RSinteger | RSstring | RStext | RStime | RStimestamp | RSdouble
| RSnonPosInteger | RSnonNegInteger | RSlong | RSPointer
deriving (Eq, Ord, Typeable, Data)
type RSRawSymbol = Id
data RSSymbol = STable Id | -- id of a table
SColumn
Id -- id of the symbol
Id -- id of the table
RSDatatype -- datatype of the symbol
RSIsKey -- is it a key?
deriving (Eq, Ord, Show, Typeable, Data)
instance GetRange RSSymbol
data RSColumn = RSColumn
{ c_name :: Id
, c_data :: RSDatatype
, c_key :: RSIsKey
}
deriving (Eq, Ord, Show, Typeable, Data)
data RSTable = RSTable
{ t_name :: Id
, columns :: [RSColumn]
, rsannos :: [Annotation]
, t_keys :: Set.Set (Id, RSDatatype)
}
deriving (Show, Typeable, Data)
data RSTables = RSTables
{
tables :: Set.Set RSTable
}
deriving (Eq, Ord, Show, Typeable, Data)
instance GetRange RSTables
isRSSubsig :: RSTables -> RSTables -> Bool
isRSSubsig t1 t2 = t1 <= t2
uniteSig :: (Monad m) => RSTables -> RSTables -> m RSTables
uniteSig s1 s2 =
if s1 `isRSSubsig` s2 || s2 `isRSSubsig` s1 || s1 `isDisjoint` s2
then return $ RSTables $ tables s1 `Set.union` tables s2
else fail $ "Tables " ++ showDoc s1 "\nand "
++ showDoc s2 "\ncannot be united."
type Sign = RSTables
data RSTMap = RSTMap
{
col_map :: Map.Map Id Id
}
deriving (Eq, Ord, Show, Typeable, Data)
data RSMorphism = RSMorphism
{ domain :: RSTables
, codomain :: RSTables
, table_map :: Map.Map Id Id
, column_map :: Map.Map Id RSTMap
}
deriving (Eq, Ord, Show, Typeable, Data)
-- I hope that this works right, I do not want to debug this
apply_comp_c_map :: RSTable -> Map.Map Id Id -> RSMorphism -> RSMorphism
-> (Id, RSTMap)
apply_comp_c_map rst t_map imap imor =
let i = t_name rst
c2 = column_map imor
in case Map.lookup i $ column_map imap of
Just iM -> case Map.lookup (Map.findWithDefault i i t_map) c2 of
Just iM2 ->
let c_set = Map.fromList . map (\ c -> (c_name c, ())) $ columns rst
oM = composeMap c_set (col_map iM) (col_map iM2)
in (i, RSTMap oM)
Nothing -> (i, iM)
Nothing -> (i, Map.findWithDefault (RSTMap Map.empty)
(Map.findWithDefault i i t_map) c2)
-- composition of Rel morphisms
comp_rst_mor :: RSMorphism -> RSMorphism -> Result RSMorphism
comp_rst_mor mor1 mor2 =
let d1 = domain mor1
t1 = Set.toList $ tables d1
t_set = Map.fromList $ map (\ t -> (t_name t, ())) t1
t_map = composeMap t_set (table_map mor1) (table_map mor2)
cm_map = Map.fromList
$ map (\ x -> apply_comp_c_map x t_map mor1 mor2) t1
in return RSMorphism
{ domain = d1
, codomain = codomain mor2
, table_map = t_map
, column_map = cm_map
}
emptyRSSign :: RSTables
emptyRSSign = RSTables
{
tables = Set.empty
}
-- ^ id-morphism for RS
idMor :: RSTables -> RSMorphism
idMor t = RSMorphism
{ domain = t
, codomain = t
, table_map = foldl (\ y x -> Map.insert (t_name x) (t_name x) y)
Map.empty $ Set.toList $ tables t
, column_map =
let
makeRSTMap i =
foldl (\ y x -> Map.insert (c_name x) (c_name x) y)
Map.empty $ columns i
in
foldl (\ y x -> Map.insert (t_name x)
(RSTMap $ makeRSTMap x) y)
Map.empty $ Set.toList $ tables t
}
rsInclusion :: RSTables -> RSTables -> Result RSMorphism
rsInclusion t1 t2 = return RSMorphism
{ domain = t1
, codomain = t2
, table_map = foldl (\ y x -> Map.insert (t_name x) (t_name x) y)
Map.empty $ Set.toList $ tables t1
, column_map =
let
makeRSTMap i =
foldl (\ y x -> Map.insert (c_name x) (c_name x) y)
Map.empty $ columns i
in
foldl (\ y x -> Map.insert (t_name x)
(RSTMap $ makeRSTMap x) y)
Map.empty $ Set.toList $ tables t1
}
-- pretty printing stuff
instance Pretty RSColumn where
pretty c = (if c_key c then keyword rsKey else empty) <+>
pretty (c_name c) <+> colon <+> pretty (c_data c)
instance Pretty RSTable where
pretty t = pretty (t_name t) <> parens (ppWithCommas $ columns t)
$+$ printAnnotationList (rsannos t)
instance Pretty RSTables where
pretty t = keyword rsTables $+$ vcat (map pretty $ Set.toList $ tables t)
instance Pretty RSTMap where
pretty = pretty . col_map
instance Pretty RSMorphism where
pretty m = pretty (domain m) $+$ mapsto <+> pretty (codomain m)
$+$ pretty (table_map m) $+$ pretty (column_map m)
instance Pretty RSSymbol where
pretty s = case s of
STable i -> pretty i
SColumn i _ t k -> pretty $ RSColumn i t k
instance Show RSDatatype where
show dt = case dt of
RSboolean -> rsBool
RSbinary -> rsBin
RSdate -> rsDate
RSdatetime -> rsDatetime
RSdecimal -> rsDecimal
RSfloat -> rsFloat
RSinteger -> rsInteger
RSstring -> rsString
RStext -> rsText
RStime -> rsTime
RStimestamp -> rsTimestamp
RSdouble -> rsDouble
RSnonPosInteger -> rsNonPosInteger
RSnonNegInteger -> rsNonNegInteger
RSlong -> rsLong
RSPointer -> rsPointer
instance Pretty RSDatatype where
pretty = keyword . show
{- we need an explicit instance declaration of Eq and Ord that
correctly deals with tables -}
instance Ord RSTable where
compare t1 t2 =
compare (t_name t1, Set.fromList $ columns t1)
(t_name t2, Set.fromList $ columns t2)
instance Eq RSTable where
a == b = compare a b == EQ
isDisjoint :: RSTables -> RSTables -> Bool
isDisjoint s1 s2 =
let
t1 = Set.map t_name $ tables s1
t2 = Set.map t_name $ tables s2
in
Set.fold (\ x y -> y && (x `Set.notMember` t2)) True t1 &&
Set.fold (\ x y -> y && (x `Set.notMember` t1)) True t2