ProverState.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $Header$
Description : Help functions for all automatic theorem provers.
Copyright : (c) Jonatzhan von Schroeder, DFKI GmbH 2010
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : needs POSIX
Data structures and initialising functions for Prover state and configurations.
-}
module QBF.ProverState where
import Logic.Prover as LP
import Propositional.Sign
import qualified QBF.Morphism as QMorphism
import qualified QBF.AS_BASIC_QBF as AS
import QBF.Tools
import Data.List (intercalate, elemIndex)
import qualified Control.Arrow
import qualified Common.AS_Annotation as AS_Anno
import Common.ProofUtils
import Common.Id
-- * Data structures
data QBFProverState = QBFProverState
{ initialAxioms :: [AS_Anno.Named AS.FORMULA]
, initialSignature :: Sign
} deriving (Show)
{- |
Creates an initial qbf prover state
-}
qbfProverState :: Sign -- ^ QBF signature
-> [AS_Anno.Named AS.FORMULA] -- ^ list of named QBF formulas
-- ^ freeness constraints
-> QBFProverState
qbfProverState sign aSens freedefs =
let
axioms = prepareSenNames transSenName $ filter AS_Anno.isAxiom aSens
in
foldl insertSentence
QBFProverState
{
initialAxioms = []
, initialSignature = sign
, freeDefs = freedefs
} axioms
transSenName :: String -> String
transSenName = id
{- |
Inserts a named SoftFOL term into SoftFOL prover state.
-}
insertSentence :: QBFProverState -- ^ prover state containing the axioms
-> AS_Anno.Named AS.FORMULA -- ^ formula to add
-> QBFProverState
insertSentence pst f = pst { initialAxioms = initialAxioms pst ++ [f] }
{- |
Pretty printing QBF goal in QDIMACS format.
-}
showQDIMACSProblem :: String -- ^ theory name
-> QBFProverState -- ^ prover state
-> AS_Anno.Named AS.FORMULA -- ^ goal
-> [String] -- ^ extra options
-> IO String -- ^ formatted output of the goal
showQDIMACSProblem thName pst nGoal _ =
let
fList :: AS.FORMULA -> [[AS.FORMULA]]
fList (AS.Conjunction fs _) = map (\ f ->
case f of
(AS.Disjunction xs _) -> xs
a@(AS.TrueAtom _) -> [a]
a@(AS.FalseAtom _) -> [a]
p@(AS.Predication _) -> [p]
x -> error ("Unexpected " ++ show x)
) fs
fList (AS.Disjunction xs _) = [xs]
fList a@(AS.TrueAtom _) = [[a]]
fList a@(AS.FalseAtom _) = [[a]]
fList p@(AS.Predication _) = [[p]]
fList n@(AS.Negation _ _) = [[n]]
fList f = error ("Unexpected " ++ show f)
atomToNum :: AS.FORMULA -> Int
atomToNum f = case f of
AS.TrueAtom _ -> trueAtom
AS.FalseAtom _ -> falseAtom
AS.Negation x _ -> -(atomToNum x)
AS.Predication t ->
case (elemIndex t qf, elemIndex t qe) of
(Just i, Nothing) -> 1 + i
(Nothing, Just i) -> lqf + 1 + i
_ -> error ("Unknown variable " ++ show f)
t -> error ("Unexpected " ++ show t)
(initialAxioms pst)
goal = AS_Anno.sentence nGoal
{- first we need to make sure that we simply can move out all
quantifiers by making sure that every quantified variable is unique -}
maxVarLen = maximum (map (length . tokStr)
(concatMap getVars (goal : (snd . unzip) axioms)))
prefix = replicate maxVarLen '_'
(c, goal1) = uniqueQuantifiedVars 1 prefix goal
axioms1 = snd (foldr (\ (s, f) (c', a') -> let
(c1, f') = uniqueQuantifiedVars c' prefix f
in
(c1, (s, f') : a')) (c, []) axioms)
-- next we transform everything into cnf form
axioms2 = map (Control.Arrow.second (fList . cnf . removeQuantifiers))
axioms1
goal2 = (fList . cnf . removeQuantifiers) goal1
{- find out how the variables are quantified - variables that
are not explictly quantified are treated to be existentially
quantified since a theory holds iff it has a model -}
qv = foldr joinQuantifiedVars quantifiedVars
(getQuantifiedVars goal1 : map (getQuantifiedVars . snd) axioms1)
qf = universallyQ qv
qe = existentiallyQ qv ++ notQ qv
lqf = length qf
lqe = length qe
(cTrueAtom, cFalseAtom) = foldl
(\ (r1, r2) (r3, r4) -> (r1 || r3, r2 || r4))
(False, False) ((containsAtoms . AS_Anno.sentence) nGoal :
map (containsAtoms . AS_Anno.sentence) (initialAxioms pst))
goalN = AS_Anno.senAttr nGoal
trueAtom = lqf + lqe + (if cTrueAtom then 1 else 0)
falseAtom = -(trueAtom + (if cFalseAtom then 1 else 0))
base = 3 + (if lqf > 0 then 1 else 0)
+ (if lqe > 0 then 1 else 0) + length axioms2
axiomsL = sum (map (length . snd) axioms2)
in
return (unlines ([
"c Problem" ++ thName,
"c The goal " ++ goalN ++ " is on the lines "
++ show (base + axiomsL + 1) ++ "-"
++ show (base + axiomsL + length goal2)
] ++ snd (foldl
(\ (cnt, lst) (name, fs) ->
( cnt + length fs,
lst ++
["c The axiom " ++ name ++ " is on the lines "
++ show (base + cnt)
++ "-"
++ show (base + cnt + length fs - 1)
]
)
) (1, []) axioms2)
++ ["p cnf "
++ show (-falseAtom)
++ " "
++ show (length goal2 + axiomsL)
]
++ (if qf == [] then []
else ["a " ++ intercalate " " (map show ([1 .. lqf] ++ [0]))])
++ (if qe == [] then []
else ["e " ++ intercalate " " (map show
([(lqf + 1) .. (lqf + lqe)] ++ [0]))])
++ foldl (++) [] (map
(\ (_, f) -> map
(\ fs -> intercalate " "
(map (show . atomToNum) fs ++ ["0"])
) f
) (axioms2 ++ [("", goal2)]))
++ (if cTrueAtom then [show trueAtom, " 0"] else [])
++ (if cFalseAtom then [show falseAtom, " 0"] else [])))