Morphism.hs revision 7a3fe82695aa32657693e05712f84d7f81672f2e
{- |
Module : $Header$
Description : Morphisms in Propositional logic extended with QBFs
Copyright : (c) Jonathan von Schroeder, DFKI GmbH 2010
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : <jonathan.von_schroeder@dfki.de>
Stability : experimental
Portability : portable
Definition of morphisms for propositional logic
copied to "Temporal.Morphism"
-}
{-
Ref.
Till Mossakowski, Joseph Goguen, Razvan Diaconescu, Andrzej Tarlecki.
What is a Logic?.
In Jean-Yves Beziau (Ed.), Logica Universalis, pp. 113-@133. Birkhaeuser.
2005.
-}
module QBF.Morphism
( Morphism (..) -- datatype for Morphisms
, pretty -- pretty printing
, idMor -- identity morphism
, isLegalMorphism -- check if morhpism is ok
, composeMor -- composition
, inclusionMap -- inclusion map
, mapSentence -- map of sentences
, mapSentenceH -- map of sentences, without Result type
, applyMap -- application function for maps
, applyMorphism -- application function for morphism
, morphismUnion
) where
import qualified Data.Map as Map
import qualified Data.Set as Set
import Propositional.Sign as Sign
import qualified Common.Result as Result
import qualified QBF.AS_BASIC_QBF as AS_BASIC
import Common.Id as Id
import Common.Result
import Common.Doc
import Common.DocUtils
-- | The datatype for morphisms in propositional logic as
-- maps of sets
data Morphism = Morphism
{ source :: Sign
, target :: Sign
, propMap :: Map.Map Id Id
} deriving (Eq, Ord, Show)
instance Pretty Morphism where
pretty = printMorphism
-- | Constructs an id-morphism
idMor :: Sign -> Morphism
idMor a = inclusionMap a a
-- | Determines whether a morphism is valid
isLegalMorphism :: Morphism -> Bool
isLegalMorphism pmor =
let psource = items $ source pmor
ptarget = items $ target pmor
pdom = Map.keysSet $ propMap pmor
pcodom = Set.map (applyMorphism pmor) psource
in Set.isSubsetOf pcodom ptarget && Set.isSubsetOf pdom psource
-- | Application funtion for morphisms
applyMorphism :: Morphism -> Id -> Id
applyMorphism mor idt = Map.findWithDefault idt idt $ propMap mor
-- | Application function for propMaps
applyMap :: Map.Map Id Id -> Id -> Id
applyMap pmap idt = Map.findWithDefault idt idt pmap
-- | Composition of morphisms in propositional Logic
composeMor :: Morphism -> Morphism -> Result Morphism
composeMor f g =
let fSource = source f
gTarget = target g
fMap = propMap f
gMap = propMap g
in return Morphism
{ source = fSource
, target = gTarget
, propMap = if Map.null gMap then fMap else
Set.fold ( \ i -> let j = applyMap gMap (applyMap fMap i) in
if i == j then id else Map.insert i j)
Map.empty $ items fSource }
-- | Pretty printing for Morphisms
printMorphism :: Morphism -> Doc
printMorphism m = pretty (source m) <> text "-->" <> pretty (target m)
<> vcat (map ( \ (x, y) -> lparen <> pretty x <> text ","
<> pretty y <> rparen) $ Map.assocs $ propMap m)
-- | Inclusion map of a subsig into a supersig
inclusionMap s1 s2 = Morphism
{ source = s1
, target = s2
, propMap = Map.empty }
-- | sentence translation along signature morphism
-- here just the renaming of formulae
mapSentence mor = return . mapSentenceH mor
mapSentenceH :: Morphism -> AS_BASIC.FORMULA -> AS_BASIC.FORMULA
mapSentenceH mor frm = case frm of
AS_BASIC.Negation form rn -> AS_BASIC.Negation (mapSentenceH mor form) rn
AS_BASIC.Conjunction form rn ->
AS_BASIC.Conjunction (map (mapSentenceH mor) form) rn
AS_BASIC.Disjunction form rn ->
AS_BASIC.Disjunction (map (mapSentenceH mor) form) rn
AS_BASIC.Implication form1 form2 rn -> AS_BASIC.Implication
(mapSentenceH mor form1) (mapSentenceH mor form2) rn
AS_BASIC.Equivalence form1 form2 rn -> AS_BASIC.Equivalence
(mapSentenceH mor form1) (mapSentenceH mor form2) rn
AS_BASIC.True_atom rn -> AS_BASIC.True_atom rn
AS_BASIC.False_atom rn -> AS_BASIC.False_atom rn
AS_BASIC.Predication predH -> AS_BASIC.Predication
$ id2SimpleId $ applyMorphism mor $ Id.simpleIdToId predH
AS_BASIC.Quantified_ForAll xs form rn -> AS_BASIC.Quantified_ForAll (map (id2SimpleId . (applyMorphism mor) . Id.simpleIdToId) xs) (mapSentenceH mor form) rn
AS_BASIC.Quantified_Exists xs form rn -> AS_BASIC.Quantified_Exists (map (id2SimpleId . (applyMorphism mor) . Id.simpleIdToId) xs) (mapSentenceH mor form) rn
morphismUnion :: Morphism -> Morphism -> Result.Result Morphism
morphismUnion mor1 mor2 =
let pmap1 = propMap mor1
pmap2 = propMap mor2
p1 = source mor1
p2 = source mor2
up1 = Set.difference (items p1) $ Map.keysSet pmap1
up2 = Set.difference (items p2) $ Map.keysSet pmap2
(pds, pmap) = foldr ( \ (i, j) (ds, m) -> case Map.lookup i m of
Nothing -> (ds, Map.insert i j m)
Just k -> if j == k then (ds, m) else
(Diag Error
("incompatible mapping of prop " ++ showId i " to "
++ showId j " and " ++ showId k "")
nullRange : ds, m)) ([], pmap1)
(Map.toList pmap2 ++ map (\ a -> (a, a))
(Set.toList $ Set.union up1 up2))
in if null pds then return Morphism
{ source = unite p1 p2
, target = unite (target mor1) $ target mor2
, propMap = pmap } else Result pds Nothing