Parse_AS_Basic.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{- |
Module : ./Propositional/Parse_AS_Basic.hs
Description : Parser for basic specs
Copyright : (c) Dominik Luecke, Uni Bremen 2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : experimental
Portability : portable
Parser for abstract syntax for propositional logic
Ref.
<http://en.wikipedia.org/wiki/Propositional_logic>
-}
module Propositional.Parse_AS_Basic
( basicSpec -- Parser for basic specs
, symbItems
, symbMapItems
, impFormula
) where
import Common.AnnoState
import Common.AS_Annotation
import Common.Id
import Common.Keywords
import Common.Lexer
import Common.Token
import Common.Parsec
import Common.GlobalAnnotations (PrefixMap)
import Propositional.AS_BASIC_Propositional as AS_BASIC
import Text.ParserCombinators.Parsec
propKeywords :: [String]
propKeywords = criticalKeywords ++
[ propS
, notS
, trueS
, falseS ]
-- | Toplevel parser for basic specs
basicSpec :: PrefixMap -> AParser st AS_BASIC.BASIC_SPEC
basicSpec _ =
fmap AS_BASIC.Basic_spec (annosParser parseBasicItems)
<|> (oBraceT >> cBraceT >> return (AS_BASIC.Basic_spec []))
-- | Parser for basic items
parseBasicItems :: AParser st AS_BASIC.BASIC_ITEMS
parseBasicItems = parsePredDecl <|> parseAxItems
-- | parser for predicate declarations
parsePredDecl :: AParser st AS_BASIC.BASIC_ITEMS
parsePredDecl = fmap AS_BASIC.Pred_decl predItem
-- | parser for Axiom_items
parseAxItems :: AParser st AS_BASIC.BASIC_ITEMS
parseAxItems = do
d <- dotT
(fs, ds) <- aFormula `separatedBy` dotT
(_, an) <- optSemi
let _ = catRange (d : ds)
ns = init fs ++ [appendAnno (last fs) an]
return $ AS_BASIC.Axiom_items ns
-- | Any word to token
propId :: GenParser Char st Token
propId = pToken $ reserved propKeywords scanAnyWords
-- | parser for predicates = propositions
predItem :: AParser st AS_BASIC.PRED_ITEM
predItem = do
v <- asKey (propS ++ sS) <|>
asKey propS
(ps, cs) <- propId `separatedBy` anComma
return $ AS_BASIC.Pred_item ps $ catRange $ v : cs
-- | Parser for implies @=>@
implKey :: AParser st Token
implKey = asKey implS
-- | Parser for and @\/\ @
andKey :: AParser st Token
andKey = asKey lAnd
-- | Parser for or @\\\/@
orKey :: AParser st Token
orKey = asKey lOr
-- | Parser for true
trueKey :: AParser st Token
trueKey = asKey trueS
-- | Parser for false
falseKey :: AParser st Token
falseKey = asKey falseS
-- | Parser for not
notKey :: AParser st Token
notKey = asKey notS
-- | Parser for negation
negKey :: AParser st Token
negKey = asKey negS
-- | Parser for equivalence @<=>@
equivKey :: AParser st Token
equivKey = asKey equivS
-- | Parser for primitive formulae
primFormula :: AParser st AS_BASIC.FORMULA
primFormula =
do c <- trueKey
return (AS_BASIC.True_atom $ tokPos c)
<|>
do c <- falseKey
return (AS_BASIC.False_atom $ tokPos c)
<|>
do c <- notKey <|> negKey <?> "\"not\""
k <- primFormula
return (AS_BASIC.Negation k $ tokPos c)
<|> parenFormula
<|> fmap AS_BASIC.Predication propId
-- | Parser for formulae containing 'and' and 'or'
andOrFormula :: AParser st AS_BASIC.FORMULA
andOrFormula = do
f <- primFormula
do c <- andKey
(fs, ps) <- primFormula `separatedBy` andKey
return . AS_BASIC.Conjunction (f : fs) . catRange $ c : ps
<|> do
c <- orKey
(fs, ps) <- primFormula `separatedBy` orKey
return . AS_BASIC.Disjunction (f : fs) . catRange $ c : ps
<|> return f
-- | Parser for formulae with implications
impFormula :: AParser st AS_BASIC.FORMULA
impFormula = do
f <- andOrFormula
do c <- implKey
(fs, ps) <- andOrFormula `separatedBy` implKey
return . makeImpl (f : fs) . catPosAux $ c : ps
<|> do
c <- equivKey
g <- andOrFormula
return . AS_BASIC.Equivalence f g $ tokPos c
<|> return f
where
makeImpl [f, g] p = AS_BASIC.Implication f g (Range p)
makeImpl (f : r) (c : p) = AS_BASIC.Implication f (makeImpl r p) (Range [c])
makeImpl _ _ = error "makeImpl got illegal argument"
-- | Parser for formulae with parentheses
parenFormula :: AParser st AS_BASIC.FORMULA
parenFormula = do
oParenT << addAnnos
f <- impFormula << addAnnos
cParenT >> return f
-- | Toplevel parser for formulae
aFormula :: AParser st (Annoted AS_BASIC.FORMULA)
aFormula = allAnnoParser impFormula
-- | parsing a prop symbol
symb :: GenParser Char st SYMB
symb = fmap Symb_id propId
-- | parsing one symbol or a mapping of one to a second symbol
symbMap :: GenParser Char st SYMB_OR_MAP
symbMap = do
s <- symb
do f <- pToken $ toKey mapsTo
t <- symb
return (Symb_map s t $ tokPos f)
<|> return (Symb s)
-- | Parse a list of comma separated symbols.
symbItems :: GenParser Char st SYMB_ITEMS
symbItems = do
(is, ps) <- symbs
return (Symb_items is $ catRange ps)
-- | parse a comma separated list of symbols
symbs :: GenParser Char st ([SYMB], [Token])
symbs = do
s <- symb
do c <- commaT `followedWith` symb
(is, ps) <- symbs
return (s : is, c : ps)
<|> return ([s], [])
-- | parse a list of symbol mappings
symbMapItems :: GenParser Char st SYMB_MAP_ITEMS
symbMapItems = do
(is, ps) <- symbMaps
return (Symb_map_items is $ catRange ps)
-- | parse a comma separated list of symbol mappings
symbMaps :: GenParser Char st ([SYMB_OR_MAP], [Token])
symbMaps = do
s <- symbMap
do c <- commaT `followedWith` symb
(is, ps) <- symbMaps
return (s : is, c : ps)
<|> return ([s], [])